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NOTE ON T H E ORTHOGONALITY OF T C H E B Y C H E F F 
POLYNOMIALS ON CONFOCAL ELLIPSES* 

BY J. L. WALSH 

In the study of polynomial expansions of analytic functions 
in the complex plane, two different definitions of orthogonality 
are current : 

(1) I n(z)pj(z)pk(z) dz = 0, or I p3{z)qk(z)dz = 0, (j 5* k), 
J c J c 

(2) f n(z)p3{z)Mz) | <fe | = 0, (j * k). 
J c 

Definition (1) in one form or the other (the second form of (1) 
may be called biorthogonality) is of frequent use, for instance 
in connection with the Legendre polynomials,! and has the 
great advantage that if the functions involved are analytic, the 
contour of integration C may be deformed without altering the 
orthogonality property. Definition (2) is of importance—indeed 
inevitable—when one wishes to study approximation on C in 
the sense of least squares, and it is entirely with definition (2) 
that we shall be concerned in the present note. More explicitly, 
condition (2) may be described as orthogonality with respect 
to the norm function n(z), ordinarily chosen as continuous and 
positive or at least non-negative on C. 

An illustration of (1), where C is the unit circle \z\ = 1, is the 
set of functions 1, z, z2, • • • , n(z) = l. An illustration of (2), 
where C is the unit circle, is the set of functions • • • , z~2, z~l, 
1, s, s2, • • • , » ( S ) E = 1 : 

/

, . r z' dz 

z*z*\dz\ = — — = 0, (j* k). 
c J c z w 

The connection of orthogonality in the sense of (2) with ap-
* Presented to the Society, October 28, 1933. 
f The reader may refer to Heine, Kugelfunktionen, 1878; Darboux, Journal 

de Mathématiques, (3), vol. 4 (1878), pp. 5-56, and pp. 377-416; Geronimus, 
Transactions of this Society, vol. 33 (1931), pp. 322-328. 
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proximation in the sense of least squares has long been known.* 
The application to polynomial expansions on curves in the com­
plex plane is due to Szegof in the case n(z) = 1 and to Walsh % 
in the more general case. The most important theorem which 
concerns us here is the following, which is due to Szegö (n(z) = 1, 
C analytic), Smirnoff (n(z) = l, C rectifiable and subject to 
auxiliary condition), and Walsh, loc. cit., (n(z) positive and con­
tinuous, C rectifiable). 

Let C be a rectifiable Jordan curve and let the function w = <j>{z) 
map the exterior of C onto the exterior of \w\ = 1 so that the points 
at infinity correspond to each other. Let the curve \<t>(z)\ =R>1 
be generically denoted by CR. 

If the function f (z) is analytic interior to Cp but has a singularity 
on CP1 and if 

/oN ƒ(*) ~ Hakpk(z), 

ak I n(z)pk(z)pk(z) \dz\ = I n(z)f(z)pk(z) \dz\, 
J (J J Q 

is the f or mal expansion of f(z) in terms of the polynomials pk(z) 
of respective degrees k orthogonal on C with respect to the function 
n(z) positive and continuous on C, then series (3) converges to f(z) 
interior to Cp, uniformly on any closed point set interior to Cpy and 
converges uniformly in no region containing in its interior a point 
of Cp. 

There is no series other than (3) of the form^bkpkiz) which 
converges to f(z) uniformly on C. 

This theorem is valid also in the limiting case that C is a line 
segment or other rectifiable Jordan arc. The case that C is a 
line segment has long been studied and by numerous writers; 
for instance the weight function n(z) = 1 leads to expansions in 
Legendre polynomials treated for complex values of the argu­
ment by C. Neumann in 1862. When C is a line segment, the 
curves CR are ellipses whose foci are the ends of the segment. 

The theorem naturally raises the question as to whether (3) 
can be both the formal expansion of ƒ(z) on C and the formal 
expansion of f(z) on some Cp>, p' <p, or in other words whether 

* See for instance Kowalewski, Determinantentheorie, 1909, p. 335. 
f Mathematische Zeitschrift, vol. 9 (1921), pp. 218-270. 
Î Transactions of this Society, vol. 32 (1930), pp. 794-816. 
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the same set of polynomials pk(z) can result from orthogonaliza-
tion (in the sense corresponding to (2)) of the set 1, z, z2, • • • , 
on two different curves. An obvious illustration is the case that 
C is the unit circle. The polynomials l,z,z2, • • • are orthogonal 
with weight function unity on every circle whose center is the 
origin, and the formal expansion (3) of a function ƒ(z) analytic 
at the origin is the same on every such circle containing on or 
within it no singularity of f(z). 

It is the object of the present note to show that the Tchebycheff 
polynomials found by orthogonalization of 1, z, z2, • • • on the 
line segment C\— l ^ s ^ + 1 with respect to the norm function 
(1— z2)~1/2 are also orthogonal with respect to suitable norm f unc­
tions on all the corresponding curves CR, which are ellipses with 
the common foci (—1, + 1 ) . 

We shall find it more convenient to transform our problem to 
the w-plane. The exterior of C: — 1 ^z^ + 1 is transformed onto 
the exterior of 7 : \w\ = 1 by the transformation 

(4) = - ( W -\ ; 

2 \ w/ 

so that the points at infinity correspond to each other. Let the 
polynomials pQ(z) = l, pi(z), £2(2), • • • result from orthogo-
nalizing on 7 the linearly independent set 1, z, z2, • • • with 
norm function unity. We shall prove that the polynomials phiz) 
form an orthogonal set on T : |w | =R>\ with norm function 
unity. For the sake of reference we write the equations 

(5) 

= -( w + — V z2 = -(^2 + 2+— Y 
2 \ wj 4 \ w2/ 

1 / 3 1 \ 
= - ( ws + 3 W H 1 ) ; • • • ; 

8 \ w w8/ 

whence, on T, 

(6) 

1/R2 w\ 1/R* w2\ 

2\w R2) 4 \ w 2 RV 

1/R6 3R2 3w w*\ 

8 W w R2 R*J 
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We need merely prove that the polynomial pn(z) is orthogonal 
to each of the polynomials po(z), pi{z), • • • , pn-i(z), and it is 
sufficient to show that pn(z) is orthogonal to each of the func­
tions 1, z, - - • , zn~l. We shall prove this by induction. 

We have by hypothesis 

(7) f pn(z)\dw\ = 0, 
J y 

and we show first that we have also 

(8) ƒ pn(z) \dw\=0. 

Direct computation gives us | dw \ =R dw/(iw) for w on Y. When 
this substitution is made in (7) and (8), it is seen that the in­
tegral in (8) is except for the factor R precisely the integral in 
(7) ; the function pn(z) has no singularities in the w-plane except 
at the origin and at infinity. Hence equation (8) follows at once. 

Let us now suppose 

(9) I pn(z)\dw\=0, I pn(z)z I dw I = 0, 

pn(z)zk~l I dw I = 0, 0 - 1 < n - 1). 
' r 

We are to prove that 

(10) f pn(z)zk\ dw\ = 0. 

From inspection of equations (6) and by virtue of equations 
(9), it follows that the integral in (10) can be written 

Rdw 

iw 

1 r /R2k wk\ 
(H) — Pn{z) + ) 

2kJv \wk R2kJ 
If we consider the various terms in pn(z) as expressed by means 
of (5), and omit such of those terms as obviously make no con­
tribution to the integral (11), we see that (11) can be written 

C ( 1 \ /R2k wk\ Rdw 
(12) Ank lwk + ~ ) + ) 

J r \ wkJ \wk R2k/ iw 

= 2*r4„*£ [*** + — L 
L R2kJ 
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where Ank is a suitable constant independent of R, easy to com­
pute in terms of the coefficients of the powers of z in pn(z). By 
hypothesis the polynomials pn(%) are orthogonal on the circle 
7. Hence the integrals corresponding to (10), (11), and (12) 
vanish for R — l. Thus we have Ank = 0, so (10) is established 
and the orthogonality on T of the set ph{z) with respect to the 
norm function unity is completely proved. 

I t remains to study the norm function in the s-plane, and to 
identify our present polynomials with the polynomials of 
Tchebycheff. From (4) we have for \w\ = R} 

1 / 1 \ 
dz = -1 1 1 dw, 

2 \ W 

dw 

dz 

2R 

1 j 
w • 

w 

R 

| (1 - z2)1/2\ 

The circle \w\ = 1 corresponds to the segment — l ^ s r g + l 
(counted twice, or in the study of orthogonality, only once if we 
prefer, for the norm function is single-valued on the segment). 
We clearly have 

Ln 
(z)pn(z)pk(z) I dz I ƒ n(z)pn(z)pk(z) I dw\ 

dz 

dw 

so the corresponding norm function on the segment — 1 ^ z ^ + 1 
is 1 / | (1 — s2)1 / 2 | . The norm function on an arbitrary ellipse 
whose foci are + 1 and — 1 is R/| ( 1 — z2)1/21 , where the ellipse is 
represented by | z-11 + | z + \\ = R + 1/R, R>1. The norm 
function on any curve can be modified by any non-vanishing 
constant factor, so if we prefer we can still express the norm 
function on any ellipse CR as | 1 — z2\ ~~1/2. 

In the present note we have studied orthogonality on a par­
ticular set of confocal ellipses; a simple transformation yields 
the analogous results for orthogonality of corresponding poly­
nomials on any set of confocal ellipses. 

The writer is not aware of any case other than the present 
one, where orthogonalization in the sense of (2) of the set 
1, z, z2, • - • , on a curve G with respect to a norm function 
Wi(s),is equivalent to orthogonalization of that set on another 
curve C2 with respect to a norm function n*(z), except where G 
and Ci are concentric circles. 
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