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SOME NEW T H E O R E M S ON LIMITS OF 
VARIATION* 

BY R. L. PEEK, JR. 

1. Introduction. The application of statistical methods to en­
gineering and inspection data makes it possible to describe the 
variability of such data in quantitative terms. It is often im­
practical to at tempt a complete description of the variability, 
such as would be given by the frequency distribution of the 
quantity in question, and it suffices in many cases to state limits 
to the variations from the arithmetic mean such that variations 
exceeding these limits occur with a frequency less than some 
specified amount. In a practical methodology the evaluation of 
such virtual upper limits to the variations requires the use of 
expressions which are independent of the type of frequency dis­
tribution involved, as the form of the latter will often be un­
known. 

The best known expression for such an upper limit is that 
given by TchebychefTs theorem. While the limits given by this 
theorem are as close as any that can be stated with perfect 
generality in terms of the standard deviation alone, they are 
much larger than those applying to most frequency distribu­
tions of common occurrence in engineering data. There is pre­
sented below a new theorem, as general in its application as 
TchebychefTs, by means of which much closer limits can be 
placed on the relative frequency of results differing from the 
arithmetic mean by more than a specified amount. This more 
stringent inequality involves the use of both the standard devi­
ation and the average deviation. 

2. Folded Distributions. I t will be convenient in the following 
discussion to employ the concept of folding a frequency dis­
cussion. By considering the original distribution as referred to 
the arithmetic mean as origin, any member of the distribution 
will be denoted by its deviation from the mean, x, and its rela­
tive frequency by p. The absolute values of these deviations 
X i = | # | , constitute a new frequency distribution for which 

* Presented to the Society, June 22, 1933. 
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p(xi)=p(x)+p( — x). This derived distribution may be de­
scribed as the folded distribution, for it may be obtained by 
folding a graphical representation of the original distribution 
about its arithmetic mean, and adding the superimposed ordi-
nates. The arithmetic mean, xi, of the folded distribution is, by 
definition, the average deviation of the original distribution. 

Similarly, the folded distribution can itself be folded, yielding 
a second derived distribution, of which the members are denoted 
by #2= |#i — #i|t and which may be described as the second 
folded distribution. The standard deviation of the original dis­
tribution will be written as a, that of the first folded distribution 
as <ri, and so on. 

The inequalities presented below follow from a consideration 
of the limits of variation in these folded distributions. There is 
required a preliminary theorem, which may be proved by direct 
substitution in the expression for <j\ of the expressions for a and 
xi. This theorem states tha t : 

If a is the standard deviation of any set of numbers {the original 
distribution), xi their average deviation, and a\ the standard devia­
tion of their absolute deviations from the mean (the folded distri­
bution), then 

(1) a2 - ôc? = a? . 

3. The New Inequality. With the aid of the preceding theorem, 
it can be shown, by a proof similar to that for TchebychefFs 
theorem, that the following is true. 

If a is the standard deviation of any set of numbers, and 
p = xi/a, where x\ is the average deviation, then the relative fre­
quency, 1 — Pto, of numbers differing from the mean by more than 
ta obeys (for t>p) the following inequality: 

1 - p2 

(2) - ~ - t2 - 2*p + 1 

Considering the folded distribution, we see readily that <ri2 

must exceed (1— Pt(r)(ta — xi)2, this being the least contribu­
tion to <Ti2 that can be made by the fraction, 1 — Pt<r, of the num­
bers which exceed ta. Of the remaining fraction, Pt<r, of the 
numbers, expressed as deviations from the mean, the absolute 
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values of some at least must be less than xi. I t will next be 
shown that the least contribution which the fraction Pia of the 
numbers can make to <T\ is that made in the special case in which 
all these numbers have the absolute value Zif where Pt<x(xi — %i) 
= (1— Pta){t(J — xi). This leaves the value of xi unchanged, if 
all the numbers included in the fraction 1—P^ have the ab­
solute value ta, and it is evident that if some of the numbers 
included in the fraction 1— Pu have absolute values greater 
than ta, z\ must be smaller for x\ to be unchanged, and the con­
tribution of the fraction Pt<r to &i will thereby be increased. I t 
remains to be shown that if some of the numbers included in the 
fraction Pt<r have absolute values other than zu ax will thereby 
be increased. 

Suppose a group of numbers having a relative frequency q' 
to be changed in absolute value from Z\ to some other value z{. 
For xi to be unchanged in value, another group of numbers 
having the frequency q" must be changed to s/ ' , where 

(3) q'fa - */) + ?"(*i " *i") = (?' + <z")(*i - *i). 

Now before the change, these numbers contributed to a? an 
amount (q'-\~q")(xi — Zi)2, while after the change they con­
tribute an amount q'(xi — z{)2+q"(xi--z{ )2 , which, from (3), 
exceeds the former amount by q'q"(z{ — z{')2/(qf+q")2. Hence 
any change from the special case cited results in an increase to 
the contribution to a? made by the fraction Pta of the numbers. 
I t follows that 

/ ( l - Pt*)(Ur - *i)V 
CT!2 ^ (1 - Pt*)(t* - *l)2 + Pj- £ - ) ' 

\ Pta / 

Substituting in this the value of o"i given by (1), and writing p 
for Xi/cr, gives (2) above. 

4. A Corollary of the Preceding Theorem. The preceding the­
orem has been obtained by determining the minimum value of 
<Ti, the standard deviation of the folded distribution, composed 
of the absolute deviations from the mean of the original dis­
tribution. The same treatment may be applied to each of the 
distributions formed by taking successives folds. Thus the ap-
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plication to the second folded distribution of the preceding ar­
gument gives the inequality 

(4) 1-P*£ 
P2 - P ' 

t2 - 2t{p + p') + 2pp' + 1 

where p ' = #2/o\ The argument may be readily generalized to 
apply to the distribution of the nth. fold, and if pn is written 
for xn/a, a general expression for l—Pto may be obtained from 
(4) by writing the sum of the p's for p+p', the sum of their 
squares for p2+p'2, and the sum of their paired products for pp''. 

5. Limits to Variation in a Continuous Distribution. The pre­
ceding theorem is primarily an application to the quantity 
a2 — x? of the argument leading to TchybechefFs theorem. Sim­
ilarly, an inequality applying to continuous frequency distribu­
tions may be obtained by applying to this same quantity the 
argument employed in developing the Camp-Meidell inequality. 
There may thus be obtained the following theorem. 

For a frequency distribution such that the probability P of a 
result differing from the arithmetic mean by less than x\ is a 
continuous function for which d2P/dx\2 is always negative for 
x\>x\ {the average deviation), and for which a is the standard 
deviation and p = Xi/a, we have 

4(1 - p2) 
(5) 1 - Pt, < -7 T: ' 

9{t - p)2 

This is most readily proved by reference to a geometrical rep­
resentation of the relation between P and xi, such as that shown 
in Fig. 1. As the slope of this curve is, by definition, the sum 
of the ordinates at X\ and —X\ of the original frequency distribu­
tion curve, cri2 may be written 

= 1 Oi -
J o 

cri2 = 1 Oi - xx)
2dP. 

J o 

Referring to Fig. 1, it is evident that the value of <Xi2 will ex­
ceed the value of this last integral over the (shaded) area be­
neath the tangent to P at ta. Writing the slope of this tangent 
in terms of the intercept PQ on xi = X\, we have 



1933-1 LIMITS OF VARIATION 957 

(6) > ƒ' 
(ta — #i)2 

(P - PoYdP 
(P* - A ) 2 

= (to- - Xi) 2 ( l - P Q ) 3 

3(P«, - Po)2 

Now for any distribution meeting the conditions stated in 
the theorem, the above inequality will hold if PQ is taken as 
having that value for which the integral of (6) is a minimum. 
This value of P 0 is, of course, that for which the partial deriva-
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tive of the right hand side of (6) with respect to P 0 is zero, and 
is thus found to equal 3Pt<r — 2. Substituting this latter quantity 
in (6) gives the minimum value for ai for any distribution meet­
ing the conditions stated above, and thus leads directly to (5). 

6. Discussion. The closeness of the limits given by (2) de­
pends upon the value of p for the frequency distribution in 
question. This quantity can have any value from zero to unity. 
Values for several familiar types of distribution are listed in 
Table I. 
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TABLE I 

[December, 

Distribution 

Two numbers of Equal Fre­
quency 

Normal Law 

3 Term Gram Charlier Series 

Rectangular 
Right Triangular 
Distribution for which (in 

above notation) P = kxin 

P 

1 
(2/7r)1/2=0.798 

/ / 3 2 - 3 \ 
( 2 / ^ 1 - - ) 

\ 24 J 
3/2*/*=0.867 
(16/27) ^ « 0 . 8 3 8 

(2» + l)1/V(» + D 

1 - p ' 

0 
0.363 

7r-2 j8 2 ~3 / | 8 « - 3 \ 
+ - 1 2 - - ) 

7T 1 2 x \ 24 / 
0.250 
0.298 

[»/(» + l)]« 
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VALUES OF t 

FlG. 2 

3.0 3.5 4.0 4.5 5.0 

Comparison of (2) with Tchebycheff's theorem shows that p 
is really a measure of the flatness of a distribution, and this is 
illustrated by the values of p listed in Table I. To afford a com-



1933-1 MULTIPLE CURVES 959 

parison of the limits given by (2) and by TchebychefFs theorem, 
Fig. 2 has been prepared. This shows the values of 1— Pu 
plotted against tf the several curves corresponding to various 
values of p as indicated. The dotted line gives the limits from 
Tchebycheff's theorem. 

BELL TELEPHONE LABORATORIES 

CHARACTERISTICS OF MULTIPLE CURVES 
AND T H E I R RESIDUALS* 

BY T. R. HOLLCROFT 

Salmon f obtained formulas relating the characteristics of two 
curves which together form the complete intersection of two 
algebraic surfaces when one of the curves is double on one of the 
surfaces. In this paper, by a generalization of Salmon's method, 
the relations between the characteristics of two such curves are 
found when one of the curves is of given multiplicity on each of 
the two surfaces. Such a formula is useful in studying a system 
of surfaces with a multiple basis curve. I t was this need for it 
that led to its derivation. 

Consider two algebraic surfaces / i and / 2 of orders MI and ju2, 
respectively, whose complete intersection consists of two curves 
G, G of orders ni, n2; ranks r\, r2; genera pi, p2\ and with hi, h2 

apparent double points, respectively. Assume that G is of mul­
tiplicity i\ on f i and i2 on f2 and also that G itself is the complete 
intersection curve of two surfaces. G (counted simply) and G 
have t actual intersections and niti2 — t apparent intersections. 

Consider a third surface/3 of order jU3 passing simply through 
G but not through G. The equivalence E of G on the three 
surfaces ft, /2 , fz isj 

E = ni(i2ixi + i\H2 + iit2fJ<3 — 2 v 2 ) — * W i . 

•Presented to the Society, April 14, 1933. 
t Salmon, Geometry of Three Dimensions, 4th éd., 1882, p. 322. 
t M. Noether, Sulle curve multiple di superficie algebriche, Annali di Mate-

matica, (2), vol. 5 (1871), p. 166. 


