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alizes the theorem of Thompson and Tait. We can prove, in
fact, that a condition for an affirmative answer to our question
is that, on any tube of (.S), either all or none of the transversal
curves should be closed.
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1. Introduction. In a recent paper* Williamson has considered
matrices whose sth compounds are equal. The present paper
considers the somewhat analogous problem of finding the condi-
tions that two Zehfuss matrices be equal.

Suppose that R is a matrix of #; rows and m; columns whose
ijth element is 7;;, and that P is another matrix of #, rows and
ms columns. Now, if the matrix Q of ny# rows and mm, columns
can be partitioned into submatrices each of #, rows and m,
columns such that the 4jth submatrix is 7;;P, then Q is a Zehfuss
matrixt or the direct product matrixi of R and P. We shall write

Q = R(P) = (P)R.

In general, however, R(P)=(P)R.
It is the purpose of this paper to find out under what condi-
tions the matrix equation

A(B) = C(D)
is true. That is, we shall find the most general form of the mat-
rices 4, B, C, D when the above equation holds.
2. The Simplest Case. We shall begin by considering the sim-

plest case, where 4, B, C, D are row vectors, where 4 and D
are of order m;, where B and C are of order m,, and where

(m1, ma) = 1;

that is to say, m; and m. are prime to one another. Suppose that

* J. Williamson, this Bulletin, vol. 39 (1933), p. 109.
t G. Zehfuss, Zeitschrift fiir Mathematik und Physik, vol. 3 (1858), p. 298.
1 L. E. Dickson, Algebras and Their Arithmetics, p. 119.
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4= [(11, az, am;]) B = [bly b2; Ty bm2]y
C= [61, 62:"')67"2]7 D= [dlxd%"’)dm]
and let me>m;. From definition, we have

A<B> = [a'lbl: ‘1’162; ) albm2; a2b1, e

)

a2bmz’ R a’mxblr ) amxb"'z]
and
C(D) = [Cldl, Cldz, tty Cldm,, C2d1, oty

Cde” Ty Cm,dly R Cm,dmll'

Identifying these two row vectors element by element, we get
mimg equations, determining the relations which must hold be-
tween the elements of 4, B, C, D. Amongst these mm; equa-
tions, consider the following:

aiby = vidy,
azby = 7v2d;
(1) ’
am,—ml—{—lbmz—mﬁ—l = 'sz—m1+1d1,
where each « represents some one of a1, - + -, @m,, and each ¥
some one of ¢1, - -+, Cm, A little consideration will show that

no two o's represent the same a and no two v’s represent the
same c. It is obvious that oy =a; and v, =¢;. From equations (1)
and from the construction of 4(B) and C(D) it follows that

al[bl, oy, bml] = ’Yl[dls T dmx])
(2) az[bz, ) bm1+1] = 72[d1: ) d"‘x]?
am,—ml+l[bm2—m,+1, Tty bm,] = Ymg—m+1 [db ] dmx]‘

From equations (2) we deduce

71 Y2 ds  70a
by = —dy = —d,;, whence — = —— = s, say,
oy [o2] 1 Y12
and
Y2 V3 do Y302
by = —dy = —d;, whence — = =5,
o2 ag 1 Y203

and so on. In this way we can show that



1933.1 ZEHFUSS MATRICES 803
3) s= e Ymemchi%mem

V12 Yols Y mg—m Xmg—m 41
Again, from equations (2), we find that

71 Y2 ds v
ba = '—d3 = —‘dz, Whence _— =

oy 223 ds Yixe

=3J.

By a repetition of such an argument, we can show that
_ d3 _ dml
dl dz dm,-l

D =dy[1,s,s2 -, smml],

ds
§=—

Hence

Equating the last elements in each of the matrix equations (2),
we find that by equations (3), since dn, =dis™™ !,

Ye Y201 Y1 71 C1
b1 = —ldp, = —— — dis™m 1 = —dis™ = —d;s™
1+ 1 )
az Yioe o) (231 a1
] Yz Y2001 Y1 Y1 C1
bmrs = —dm, = — dis™l = — gsmitl = — (gl
1+ 1 )
£} Yoz Yikz Q) ay a;
Ymg—my+1 Y1 C1
by = ———dm, = -+ = —ds™l = —dsmL,
Omyg—m 1 (251 ay
Hence, since
Y1 C1
[bl) ) bm:] = —dl[l: Syt sm‘—l] = _dl[ly Syt sm,—l]’
231 a
we may write

C1

B = [bl, ceey, bmz] = dl[l, Sy ’smz—l] = b1[1,8, .. -’smz"l].

a1
We have now shown that with the possible exceptions of the
elements asby, asby, - - -, @m,by, every element of 4(B) is s times

the preceding element; that is, every element, with the possible
exception of the
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elements. But this is also true of C{D) with the possible excep-
tion of the

elements. But, since (m4, ms) =1, no member of the set (4) is a
member of the set (5); and since the elements of 4 (B) are iden-
tical with those of C(D), there are no exceptions and every ele-
ment of A(B) or C(D) is s times the preceding element.
Hence
dgbl = Sd1bm2 = salblsmz”l,

so that
ag = als"‘z,

and similarly
@3 = @as™: = @182™,

A, = Q8™ (D)
It follows that
4 = 01[1, §™a, 82’”2’ cee sm2(m1_1)]’
and similarly
C= 61[1, $™y s2m1’ ce Sml(mz“l)].

We have not yet considered all the mm, equations connecting
the elements of 4, B, C, D; but, since the above values of
4, B, C, D give a solution for any values of the arbitrary quanti-
ties a1, ¢1, d1, s, they also give the most general solution.

3. A More General Case. We shall now consider a more general
case, where 4 and D are rectangular matrices of #; rows and
m, columns, where B and C are rectangular matrices of #, rows
and m. columns, and where (11, #2) =1, and (my, ms) =1. Let

[~ Q11, QGi2,* ", Qim; ] B bu, bi1s y b1mz
A= T A R I
— anﬂ, a'n,2, Tty anlml - L bn,l, bn22, Y bn,m, -
[~ C11y, C12 5" ' 5 Cimy, | — di1, dig, - ,dlml .
C= , D=\ - .
— Cn,l, Cng2: Tty Cngm, - L dml, dn12, R dn‘m, -
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By equating the first rows of 4 (B) and C(D) we obtain from §2
the relation

(6) [bll, b12, t blm,] = bu [1, Syttt sm,—l]'

Similarly, by equating the second rows of 4(B) and C{D) we
deduce that

(7) [bzl, bZZ, I b2mz] = b21[1’ s} I sz—l],

for the a's and ¢’s occurring are the same in both rows and hence
the s must be the same in (7) as in (6). Proceeding in this way
with the rows of 4(B) and C(D), we obtain eventually

b
blly b12 y "t blmz |7 H

b
B=| « ... ... /=™ [1,s,- -, sm1].

bngl; bng2; ) bnzmz bn21
We shall find it more convenient to denote the first factor on the
right hand side by {bn, box, - - -, b,,zl},as is frequently done,
that is, the curly brackets denote a column vector.

Now, by equating the first columns in 4(B) and C(D), we
obtain, in the same manner as (6) was obtained, the relation

{bu, boy, - - -, bm} = bu{l, L tnz—l}’
where ¢ is a new arbitrary quantity. Hence

B = bll{l’ A ) t"r‘l} [1; Syttt sz_l];
and in the same manner

D = dll{l; Byer o, tn‘—l} [1: S Sml*l];
A4 = 1111{1, fre f2ne ... tnz(n,—l)} [1’ s™ sTma .. sm,(ml—l)]’
C — 611{1, tm, thl’ cee, t”x("z"l)} [1’ Sml, S2ml, S, Sm‘(mz——l)]’
where a0y =cudy. It follows that since the above values of

A, B, C, D give a solution of 4(B)=C(D), for any values of
au, ¢, du, S, ¢, they give the most general solution.

4. The Most General Case. We shall now consider the most
general case and show that its solution is dependent upon the
one just obtained. Suppose that the matrices 4, B, C, D have
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N1, Ng, N3, Ny rows and my, me, my, m4 columns respectively. Since
A(B)=C(D),
(8) Wiy = nany, and mime = mymy.
Let the highest common factor of #; and #3 be k. We write this
(’ﬂl, ng) =k;. Let n,=rk; and ’ﬂ3=V3k1, where (Vl, V3) =1. Simi-
larly, let ns=wsks and ns=viks, where (vo, vs) =1; let my =il
and m;=pushi, where (u;, us) =1; and let my =uzhe and m4=pshs,
where (us, us) =1. From equation (8) viveok ks =vsvikiks and there-
fore viwa =v,. Now since (v, v3) =1, »; must be a factor of »4, and
since (ve,74) =1, v4 must be a factor of »;. Hence v; =vsand vy =v;,
also (v1, vo) =1. Similarly ui=ps and us=ps, also (ui, u2) =1.
The procedure is now duite simple, although it is somewhat diffi-
cult to explain in writing. Consider the very simple case
[a'ly a2, A3, A4, A5, aﬁ] ([bl; bﬂy b3’ b4]>
= [61, Co, C3, C4]<[d1, da, ds, d4, ds, de]>‘

In this example, =2, and we see that the above equation can
be split up into the two equations

[(11, as, 03] < [bh b2; b3; b‘l]) = [611 62] < [dly d27 d37 d47 dSy dﬁ] )y
[aq, as, as]([bs, bs, b3, bal) = [cs, cal([d, d, ds, ds, ds, ds]).

In this example k=2, and we can split up each of the above into
two equations and so we can reduce this case to the following
four examples of the case considered in §2:

[a, as, as]([bs, bs]) = [e1, c2]([dy, ds, ds]),
[ay, ag, as]([be, b]) = [1, c2]([ds, do, ds]),
las, as, ac]([bs, bs]) = [cs, cal([ds, ds, ds]),
lae, as, as]([b2, Ba]) = [cs, cal([ds, du, de]).
In the most general case, we can split up the equation
A(B) = C(D)
into kikehihe equations
Asy(Biu) = Cy(Deu),

where x=1, 2, - - -, ky; y=1, 2, - - -, hi; 2=1, 2, - - - | ky;
u=1,2, - -, hs, and where 4, is the matrix of »; rows and y,
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columns whose 4jth element is @ (s—1ys,+1,w—1)p,+i- T hat is to say,
A= [@¢z—1yr,45,w—1yu,+] has »; rows and p; columns. Similarly,
Coy=[Ccz—tyvpri,cv—tyugri] has vz rows and uz columns; while
Biu= [bii_tykyrs,i—1hgiu) has vy rows and g columns and
D= [d(i-1ykyre.(i~1yhptu | has »; rows and w; columns. But, since
(v1, v2) =1 and (u1, we) =1, the most general case is composed of
kikohihe examples of the case treated in §3. For brevity, let us
write

{1’ t”z SR t”z(”l—l)} [1’ Sllg’ ey, S"2(“1_1)],
{1: t) ] tyz_l} [1: Syttt S‘““‘_IL
{ t"l ceey, tl‘l(”z—'l)} [1’ sI-U’ sy, Sﬂl(ﬂz"l)]’

H = {1, Lo, tvr—l} [1, S, 0, sp,—l].
Now, solving 411(Bu) = Cu(D1) by the method of §3, we find
All = allE, Bll = bllF’ Cll = CIIG, Dll i dllH,

where @161 =cndy. Similarly solving A4 ,y(B.)=Cyy(D..), we
have

Azy = d(x—l)vl+l,(y—1)pl+lE, Bzu = bzuF,

Coy = @(a1yrpt1, (y-1)uyt1 G, D, = d.H,
where @(s—1)y+1, (=D +1020 = C(a—1)rp+1, (y—Dup+1dzu for all values
of x, v, 2, u. Hence

A (2—1)v+1, (=D g1 Qzu

Clo-1)wgt1, (y=Dug+1  Dzu

where ¢ is a constant for all values of x, y, 2, #. We notice that
E, F, G, H are the same for all values of x, v, 2, #, for otherwise
we would find some B,, having two different values at once.
It follows that

"'Au, "',Alh,
LAICII’ T ’Aklhl
— a1y, Tty 01, (k=D

L Ak ~y+1,1 7 0 Gk =1)v 41, (A=) y+1
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(258} tt oty C1,(hy=1)pgtl
=ql - - ..o B
C(k—1)vo+1,1y ° * " 5 Cby—1)wotl, (Ay—D)pgtl
Similarly
€11, * 0y C1,(h—D)pgtl
C=| - ... .. [@.
Clhy—1)wyt1,1y ° ° * 5 Clhy—1)rytl, (hy—L)ugt1

In the same way it can be shown that

bin 5, bin, by 5y b1n,
B=F< e e e e e e )andD:qH( e e e e e e >_
bk21 y T T bkzhz blc,l P bk2h2

The above values for 4, B, C, D give the most general solution
of the equation

A(B) = C(D).
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