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ON T H E THEORY OF FOURIER TRANSFORMS 

BY EINAR HILLE AND J. D. TAMARKIN 

1. Introduction. Let g(s) c l 2 over ( — oo, oo). Let 

ƒ a 

e~iusg(s)ds. 

According to the classical result of the Plancherel theory of 
Fourier transforms, G(u; a) tends in the mean of order 2 to a 
function G{u) cL2 as a—><*>. This function is designated as the 
Fourier transform (in L2) of g(s). We shall write 

(1) T{u; g(s)} = G(u) = l.i.m G(u; a). 
a—>oo 

The functions g(s) and G(u) are reciprocal in the sense that 

(2) g(s) = T{s;G(-«)}, 

which means that 

ƒ a 

eiusG(u)du. 
-a 

As an immediate consequence of the convergence in the mean of 
G{u\ a) and g(s\ a), we have, almost everywhere, 

d f °° 1 g—ist 

(4) G{u) = ( 2 T ) - I " - g{s) : ds, 

du J „oo ts 

d s* °° 1 eius 

(5) g(s) = ( 2 T ) - > / » - G(U) —du. 

dsJ-.*) — IU 

The reciprocity between g and G is expressed here in terms not 
involving the convergence in the mean. 

Assume now that g(s) c L P , 1 <p<2. Denote by p' the con­
jugate exponent, p'=p/(p — l), l/p + l/p' = l. Titchmarsh* 
showed that Plancherel's theory can be extended, at least in 
part, to the present case. Indeed he proved that G{u\ a) con-

* E. C. Titchmarsh, A contribution to the theory of Fourier transforms, Pro­
ceedings of the London Mathematical Society, (2), vol. 23 (1925), pp. 279-289. 
We have slightly modified Titchmarsh's notation inasmuch as he deals with 
cosine- and sine-transforms, while we use exponential transforms. 



1933-1 FOURIER TRANSFORMS 769 

verges in the mean of order p' to a. function G(u) cLP', which 
satisfies the same reciprocity relations (4), (5). Titchmarsh did 
not prove, however, that, conversely, (3) holds. On the basis of 
the material developed by Titchmarsh we do not know whether 
g(s; a) tends in the mean of order p to g(s)'y hence we do not 
know whether g(s) is the Fourier transform (in Lp) of G( — u). 
A scrutiny of the literature reveals the unexpected fact that this 
question has never been investigated,* which, in our opinion, 
represents an undesirable gap in the theory of Fourier trans­
forms. The purpose of the present note is to fill in this gap and 
to prove (3) in the case 1 <p ^ 2. An analogy between the theory 
of Fourier transforms and that of Fourier series should be 
pointed out here. We may consider the Fourier transform G(u) 
of g (s) as an analog of the sequence of Fourier coefficients \Gn} 
of g(s) (in the case where g is periodic and is being expanded 
in Fourier series). Then g(s; a) appears as an analog of the 
nth partial sum sn(s] g) of g(s) which is known to converge to 
g(s) in the mean of order p. This analogy goes even further. I t is 
known that if g(s) cL i , over ( — x, T), sn(s; g) does not neces­
sarily converge in the mean of order 1 to g(s).f We shall prove 
that this is also the case for the Fourier transforms. 

I t will be essential for our discussion to consider the class of 
functions c Lp over ( — °°, °° ) as a linear vector metric complete 
space with the metric defined by 

p /» oo "11/2? 

lklU = [J_ \i(s)\pdsj . 
By Sp we shall mean the limit in the mean of order p. Some 
known properties of linear transformations of such spaces will 
be used in the sequel. J 

* Contrary to our unfounded statement in a recent paper. See E, Hille and 
J. D. Tamarkin, On the summahility of Fourier series, III , Mathematische 
Annalen, vol. 108 (1933), pp. 525-577 (p. 530). According to results of the 
present note, however, this statement is correct. 

f The case p=l goes back to H. Hahn, Ueber die Darstellung gegebener 
Funktionen durch singuldre Intergrale, II , Denkschriften Wiener Akademie, 
Math.-Nat . Kl., vol. 93 (1916), p. 557-692 (p. 681). For p>\ see M. Riesz, 
Sur les fonctions conjuguées, Mathematische Zeitschrift, vol. 27 (1927), pp. 
218-244 (p. 230). M. Riesz states at the end of his paper that to his results con­
cerning Fourier series there correspond similar results for Fourier integrals. 

Î We refer for these properties to the recent book by S, Banach, Théorie 
des Opérations Linéaires, Warsaw, 1932. 
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2. The Case Kp^2. If g(s) cLpy l<p^2,we have 

J a 

g{t)e-iutdt. 
—a 

Here we may multiply by any function c Lp and integrate under 
the integral sign. Thus 

/

a 

G(u)ei9Udu 
—a 

g(t)dt I eiu<9-»du 
...on J —a 

1 r °° sin a (5 

= - * w — -
7T J _oo 5 — 

sin a (5 — t) 
-dt. 

t 
Let f(s) be any function c Lp. The integral 

i r 0 0 «0 

exists (in the sense of Cauchy's principal value at / —s) almost 
everywhere and is designated as the function conjugate to ƒ(s). 

Moreover, ƒ (s) cLp whenever f (s) cLp. Furthermore, there ex­
ists a positive constant Mp depending only on p and such that* 

(7) ll/IU £ MJi\j\\p-

Upon introducing the functions 

ga{t) = g{t) cos at, g/(t) = - g(t) sin at 

and their conjugates gd(s), g"(s),1[ we may rewrite (6) in the 
form 

g(s; a) = g0' (s) sin as +~ga"(s) cos as. 
By (7), 

Ilia'||„ ^ Mp||g(/) C O S ^ I P S Mp\\g\\p, \\ïar'\\p è Mp\\g\\p. 

* M. Riesz, loc. cit., p. 234. 
t For the analogous procedure in the case of Fourier series, see M. Riesz, 

loc. cit., p. 230, and A. Kolmogoroff, Sur les fonctions harmoniques conjuguées 
et sur les séries de Fourier•, Fundamenta Mathematicae, vol. 7 (1925), pp. 23-28. 
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Hence 

(8) |U(*; a)\\p =g \\g'\\p + HS.'II, £ 2Jf,||«||1>. 

For each a, the expression g(s; a) constitutes as a linear trans­
formation on Lp to Lp, and (8) shows that the family of these 
transformations, obtained when a varies, is uniformly limited. 

Now assume that g(s) is a step function of a finite number of 
steps, vanishing outside of a finite interval ( — N, N). For such 
a function we shall prove directly that 

IkO; a) - g(s)\\p -> 0 as a -> oo . 

Since our function g(s) is a linear combination of step func­
tions defined by 

itside (a, /5), 

f 1 if a = - = r , 

10 outs 

it will be sufficient to prove our assertion for a function of this 
type. For such a function, however, 

J a 

& sin a(s — /) 
-dt. 

s - t 

It is readily seen that 

g(s;a) = 0[(s - m-io-i], (s ^ 2N). 

Since g(s) = 0 for \s\ >N, we have 

J 2N L J 2N (S ~ N)PA 

as a-^oo. Similarly 

ƒ 
-2JV 

U W -g(s;a)\vds = 0(ar*). 

On the other hand the integral 

1 r P sin a(s - t) 1 f 2N sin a(s - /) 
- — ^ _ ^ = _ g * w — < _ j 

7 T « / a S — t TV J -2N S — t 

dt 

may be considered as the classical Dirichlet integral of the func­
tion g*(s) which is periodic, of period 4iV, and coincides with 
g(s) in the interval ( —2iV, 2iV). I t is well known from the theory 
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of Fourier series, and also can be proved directly, that this 
Dirichlet integral converges to g*(s) in the mean of order p, over 
the interval ( -2iV, 2N). Hence 

2N-

I g(s) ~ g(s; *) fds 
-2N 

IN 

I g*(s) ~ g(s', a)\ ds —> 0 as a —» <x> . 
-2iV 

Consequently 

ƒ 00 •» 2AT /» —2JV /» oo 

| g(s) - g(s; a) \Pds = • • • + • • • + • 0 
-oo J -2N J -oo J 2N 

a s a - ^ o o , which is the desired result. 
Since the family of transformations represented by g(s; a) is 

uniformly limited, and since the step-functions constitute a 
dense sub-set of Lp, it follows immediately that 

\\g(s) - g(s; a ) | | p - > O a s 0 - > oo, 

for an arbitrary function g(s) cLp. We may therefore state the 
following addition to the results of Titchmarsh mentioned above. 

THEOREM. If g{s) cL P 1 1 < £ ^ 2, and if 

ƒ
a 

g(s)e~iusds 

is the Fourier transform (in Lp>) of g(s),then, conversely, g(s) is the 
Fourier transform (in Lp) of G( — u), and we have 

g(s) = 2P
 (2TT)-1 / 2 I G(u)eiusdu. 

a—>» J _a 

3. The Case p = l. We now proceed to show that our theorem 
fails in the case p = 1. To do this we have to exhibit an example 
of a function g(s) c Lx, such that, if we set 

ƒ 00 

g(s)e~iusds, 
- o o 

/

a 

G(u)eiusdu, 
-a 

the function g(s; a) does not converge to g(s) in the mean of or-
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der 1. The example which we are going to construct will show 
even more, namely, that the corresponding g(s; a) does not even 
belong to L\. 

In constructing the example in question we are again guided 
by the analogy with Fourier series. It is well known* that the 
series 

* cos nx 

ƒ(*) = E -
is a Fourier series oî f(x) c L i , but that its partial sums sp(x;f) 
do not converge to ƒ(x) in the mean of order 1 over ( — ir, w). 
We now put 

cos us 
-du. (9) g(s) = (2*)-1'* f 

J n o log(2 + u) 

It is plain that this integral converges uniformly over every 
interval, finite or not, which is separated from the point s = 0. 
Moreover, it is easy to show that g(s) > 0 for s^O. It suffices to 
consider positive values of 5 only. Let s>0 be fixed. We put 

q(u) = (2 + u) log2 (2 + u), Ô, = nr/s, (v = 0, 1, 2, • • • ) . 

Then, on integrating by parts in the right-hand member of (9), 
we see that 

1 r °° sin us _2f_ 1 /* 5"+i sin us 
(10) (2iryi*g(s) = - —7Tdu = 2 — ——du. 

s J o q{u) v=0 s J Ô„ q(u) 
Put 

1 r 5"+i sin ^5 /• r sin r^r 
/,(j) = — du = ( - I)"*-2 

s J 8u q(u) JQ q(vT + r/s) 
Hence 

| A | < / , - I | I, (v = 1, 2, • • • ), 

andXI n Iv appears as an alternating series in which the absolute 
value of the general term approaches zero and the first term is 
positive. The sum of such a series is positive. Hence g{s) > 0 . An 
integration by parts applied to the middle term in (10) shows 
that, for large values of s,g(s) = 0(s~2). This ensures the integra-
bility of g(s) over every interval (e, <x>), e > 0 . Since g(s)>0, to 

* A. Kolmogoroff, Sur l'ordre de grandeur de coefficients de la série de Fourier, 
Bulletin International de l'Académie Polonaise, Classe de Sciences mathé­
matiques, 1923, pp. 83-86. See also E. Hille and J. D. Tamarkin, On the sum-
inability of Fourier series, II, Annals of Mathematics, (2), vol. 34 (1933), pp. 
329-348 (pp. 347-348). 
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establish the integrability of g (s) over (O, e) it suffices to prove 
that, for any fixed positive ce, 

f g(s)ds 

is bounded as €—»0. In view of the uniform convergence of the 
integral in (9) over (e, 1) we have 

J' 1 r™ du r1 

g(s)ds = (27T)-1/2 — — - I cos us ds 
t J o log (2 + U) J e 

(2 

log (2 + U) J e 

00 sin u du C °° sin ^ J^ U
1 °° s i n w à f 

o u log (2 + «) J 0 «log(2 + «) t/0 ^log(2 + ^ /e ) ; 

A simple application of the second law of the mean shows that 
the last integral tends to zero with e. Thus we see that g(s) is 
integrable over (0, oo), and, being even, it is integrable over 
(—oo, oo ). By the uniqueness theorem of Fourier integrals, it 
is plain that 

u) = [log (2 + | « | )] = (2TT)-1/2 I g(s) cos su ds 
J 0 

G{ 

is the Fourier transform of g(s) in L^ that is, G(u\ a) converges 
uniformly to G(u) as a—*oo. Now compute 

g(s; a) = (27T)-1/2 f G(u) cos su du = (2T)-^2 f 
J o J o 

a cos S2/ du 

o log (2 + u) 

An integration by parts shows that 

sin sa 1 C a sin s^ 
(2T)i/*g(*; a) = - r — - - — + - -—du. 

s log (2 + a) s J o g(w) 
As before, we see that the second term of the right-hand member 
is 0(s~2) for s—>oo, and since the first term is not absolutely 
integrable over (0, oo) it results that g(s; a) does not belong to 
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