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INTEGRAL FUNCTIONS OBTAINED BY 
COMPOUNDING POLYNOMIALS* 

BY J. F. RITT 

1. Introduction. We consider a sequence of polynomials 
Pn (z), {n = 1, 2, • • • ), where the degrees of the Pn do not exceed 
a fixed integer m and where each PM, ordered in ascending powers 
of z, starts with the term s. We shall study the sequence of 
polynomials Qn(z) defined by 

(1) Q1(z) = P1(z); Qn+1(z) = Qn[Pn+i(z)l (» = 1, 2, • . . ), 

and also the sequence of polynomials Rn(z) defined by 

(2) R1(z) = P1(z); Rn+1(z) = Pn+1[Rn(z)], (n = 1, 2, • • • ) . 

If the coefficients, after the first, in P n , are sufficiently small, 
these sequences will converge to integral functions. For in­
stance, sin z can be obtained, in many ways, as a limit of a se­
quence (1). In what follows, our chief object will be to estab­
lish conditions under which the sequences converge to integral 
functions. 

2. The Sequence of Qn{z). Let 

Pn{z) = z + an2z
2 + • • • + anmzm

} (n = 1, 2, • • • ), 

where m is an integer independent of n. 

THEOREM 1. Let a convergent series of positive numbers, 

(3) ci + c2 + - - - + cn + • • • , 

exist such that \ani\ <cn,for every n and for i = 2, • • • , m. Then 
the sequence of polynomials Qn{z) converges to an integral func­
tion, the convergence being uniform in every bounded domain. 

PROOF. For every nt 

(4) Un(z) = z + cn(? + . . . + s») 

is a majorant of Pn(z). Let 

Vl = Ui', Vn+1 = Vn(Un+l), (» = 1, 2, - - - ) . 

* Presented to the Society, April 14, 1933. 
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Then Vn is a majorant of Qn. Also, if we let 

Otn = Cn(z
2 + • • • + Zm), 

we have 

Vn+l ~ Vn = Vn(z + <Xn+i) — Vn 

dVn 1 dWn 2 

from which it follows easily that Vn+i — Vn is a majorant of 
Qn+i — Çn. For every positive z) Vn+i(z) > Vn(z). These considera­
tions show that our theorem will be proved if we can show that 
the sequence of Vn converges for every positive z. 

Let b be any positive number. Let 

(5) h = lb + 4b2 + • • • + 2™-1ôw-1. 

Then the infinite product (1+hci) • • • (l+hcn) • • • converges. 
Let p be a fixed integer such that 

(6) (1 + hcp+1)(l + hcp+2) • • • < 2. 

Let 

Wx = Up+1; Wn+1 = Wn(Up+n+l), (» = 1, 2, • • • )• 

I t will plainly suffice to show that the sequence of Wn con­
verges for z = b. For any n, by (4) and (5), 

Up+n(b) < b(l + hcp+n), 

so that , by (6), Up+n(b)<2b. Hence 

Up+n-.x[Up+n(b)] = Up+n(b)[l + Cp+n-xCUp+nib) + • • • ) ] 

< Up+n(b)[l + hCp+n-i] 

< b(l + hcp+n-i)(\ + hcp+n), 

and the last quantity, by (6), is less than 2b. Continuing in 
this fashion, we find that, for every n, 

Wn < i ( l + hcp+1) • • • (1 + hcp+n) < 2b. 

This shows that the Wn(b), which increase with n, approach a 
limit. The theorem is proved. 

That the condition placed on the Pn is critical with respect 
to the convergence of the Qni is seen on taking Pn = z+cnz

m with 
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cn>0 and (3) divergent. The coefficient of zm in Q will be 
Cl _j- . . . JrCn a n d Qn will tend towards infinity with n for every 
positive 2. 

The function sin 2 can be expressed as a limit of polynom­
ials Qn. Let 

(7) P K ( 2 ) = 2 _ _ ± _ 2 S . 

The formula 

gives then 

z z 
sin z = 3 sin 4 sin3 — 

3 3 

sins = Qn(3w sin 3~n2). 

From (7) we see that the Qn converge to an integral function. 
This integral function must be sin z, since 3 n sin 3~nz approaches 
z as n increases.* 

3. The Sequence of Rn(z). We shall study the sequence of 
Rn(z) defined by (2). 

THEOREM 2. Let the Pn(z) all be of degree at most m>\. Let a 
sequence of positive numbers cn exist such that 

(8) limsupcn
1 /wn < 1, 

n—»oo 

and"such that, for every n} the moduli of the coefficients of z2, • • • , zm 

in Pn are all less than cn. Then the Rn{z) converge to an integral 
function, the convergence being uniform in every bounded domain. 

PROOF. Let r be a number which lies between the two mem­
bers of (8). Then, for n large, 

z + rmn(z2 + h zm) 

will be a majorant of Pn(z). A fortiori, since m > 1, 

(9) Un(z) = z + rmn-xz2 + r2mn~hz + • • • + fC*-!)»*-1** 

* In the same way, one can express as limits of polynomials Qn a large class 
of the functions with rational multiplication theorems introduced by Poincaré 
(Journal de Mathématiques, vol. 55 (1890)). 
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will be a majorant of Pn(z) for n large. We see now readily 
that it will suffice, for the proof of our theorem, to show that 
the sequence of Vn(z) defined by 

(10) Vi = Ui; Vn+1 = Un+1(Vn), in ^ 1), 

converges for every real and positive z. f 
Let p be any non-negative integer. Putting 

(11) Wi = Up+l; Wn+1 = Up+n+l{Wn), (n è 1), 

we shall show that the sequence of Wn converges for z<hr~mP, 
where h = 1 — r. 

By (9), 

S»M = ! - fl,+n-,2 ' (» - 1, 2, • - • ), 

is a majorant of Up+n. If, then, 

Tx = Si; Tn+1 = 5n+i(rn), (n ^ 1), 

Tn will be a majorant of Wn- Now an easy calculation shows that 

z 
Tn(z) = 

For any positive z less than the reciprocal of the infinite series 

which reciprocal we shall denote by k, the Tn(z) form a se­
quence of numbers which increase towards kz/(k—z). Also, if 
0<z<k, Tn(z) >Wn(z), so that the Wn(z) will form a bounded 
sequence of increasing numbers and will converge to a limit. 
Now as m > 1, 

y— mP 

k > = hr~mP, 
1 + r + r2 + • • • 

and our statement with respect to (11) is proved. 
Thus Theorem 2 will be established if, putting VQ(Z) =Z, we 

show that for every positive z there is a p such that Vp(z) <hr~mP. 

f The fact that Un may not be a majorant of Pn for n small is of no signifi­
cance. One may suppress a finite number of Pn and then add a finite number of 
polynomials (9) to the beginning of the resulting sequence of Un. 
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Let us assume that there is a positive z for which no such p 
exists. In what follows, we work with a fixed z of this type. We 
have, by (9) and (10), for any ^ ^ 0 , 

Vn+1 =Vn + r™nVn* + • • • + r(»r-»«nv? 

^ 7»(1 + r™nVn)
m~1. 

Now, for every n, 

(13) Vn ^ hr~™n, 

so that 

rmnV„ 

and, if we put a = (1 + 1 A ) m - 1 , we have, by (12), 

We have thus 

and, in general, 

Vn+i è amn+'"+1r^n+1)mnzmn+1. 

A s m > l , we have mn+ • • • + 1 <tnn+1. Then, because a > l , 

(14) Vn+l < [fCM-D/m^]*^ 

As 2 is fixed, r(n+1)lmaz is small for » large, so that, by (14), Vn+i 
approaches 0 as n increases. This contradicts (13). The theo­
rem is proved. 

The condition (8) is a critical one. That we cannot let the first 
member of (8) be as great as unity is seen on taking Pn = z+zm. 
The coefficient of zm in Qn will be n and the Qn will diverge for 
every positive z. That m in the first member of (8) cannot be 
replaced by any smaller positive number ce, is seen, taking 
m = 2, for instance, on putting Pn = z + 2~anz2. For any positive 
z, we have 

Pn > 2 -«V. 

Then 

Ri > 2-"z\ R2 > 2-<*2+2«>s4, 
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and, in general, 

^ > 2~(an+2an"1+'"+2n~la>>z2n. 

N o w 

an+i — 2na 

- (an + 2a"-1 + • • • + 2n~la) = > - b2n, 
2 — a 

where b = a/ (2 — a). Thus 

«• > (i)'"-
so that the Rn diverge for z > 26. 

Let f(z) be an integral function obtained as a limit of poly­
nomials Rn(z)y the approach being uniform in every bounded 
domain. Unless Pn(z) =z for every n,f(z) will not be linear, for 
if some Rn(z) is of degree greater than unity, f(z), like that Rn(z), 
will assume certain values at more than one place. In what fol­
lows, we shall assume that ƒ (z) is not linear. 

We are going to prove that, between any two branches of the 
inverse of/(s), there exists an algebraic relation of a simple type. 

Let a and b be two distinct points such that f (a) =f(b) and 
that the derivative oîf(z) does not vanish at a or at b. Let A be 
a circle with a as center such that, in the interior of A, f(z) 
assumes no value twice. Let B be a similar circle with center at 
B. We can find a neighborhood M of f (a) =f(b) such that, both 
in A and in B, Rn(z) with n large assumes all values in M. If n is 
large enough, Rn(a) will be in M. In what follows, we deal with 
a fixed Rn{z) for which both conditions just described are 
realized. 

If za is a point in A, very close to a, there will be a Zb in B 
such that ƒ (Zb) = ƒ (z «), and, furthermore, Rn(za) will lie in jlf. 
We shall prove that i?w(2a) =2?»(s6). As Rn(za) is in M", there is 
a f in B such that 2?w(r) =-Rn0so). Now f must coincide with Zb, 
for/(f) =f(za) =f(zb) and/(s) assumes no value twice in 5 . 

Thus, i / we put w =f(z) and if a(w) and fi{w) are two branches 
of the inverse of f(z), then, for n large, Rn[a(w) ] =Rn [j3(w) ]. 
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