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INTEGRAL FUNCTIONS OBTAINED BY
COMPOUNDING POLYNOMIALS*

BY J. F. RITT

1. Introduction. We consider a sequence of polynomials
P,(z), (m=1,2, - - -), where the degrees of the P, do not exceed
a fixed integer m and where each P,, ordered in ascending powers
of z, starts with the term z. We shall study the sequence of
polynomials Q,(z) defined by

(1) Q1(2) = P1(2); Quta(2) = Qn[Pn+1(2)]: (n=1,2,--+),
and also the sequence of polynomials R,(z) defined by
(2) Rl(z) = -Pl(z); Rn+l(z) = Pn+1[R"(z)]a (”’ = 1: 2) tte )-

If the coefficients, after the first, in P,, are sufficiently small,
these sequences will converge to integral functions. For in-
stance, sin 3 can be obtained, in many ways, as a limit of a se-
quence (1). In what follows, our chief object will be to estab-
lish conditions under which the sequences converge to integral
functions.

2. The Sequence of Q.(2). Let
Po(z) =24 anez® + - - - + Gamz™, (mn=1,2,...),
where m is an integer independent of .
THEOREM 1. Let a convergent series of positive numbers,
3 ateat-ctat,

exist such that |am- <c¢n, for every n and for =2, - - -, m. Then
the sequence of polynomials Q.(2) converges to an integral func-
tion, the convergence being uniform in every bounded domain.

ProoF. For every #,
4) Un(z) = 2 4 cala®+ - - - + 2™

is a majorant of P,(z). Let
Vi= U Vapr = Vn(Un-l-l): (mn=1,2,---).

* Presented to the Society, April 14, 1933.
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Then V, is a majorant of Q,. Also, if we let

an = Cn(z2+ v +zm)’

we have
Vn+1 - Vn = Vn(z + an+1) - Vﬂ
AVa 1 4V, , "
TR R ’

from which it follows easily that V,.— V, is a majorant of
Qny1— Qn. For every positive 2, Vy11(2) > V,(2). These considera-
tions show that our theorem will be proved if we can show that
the sequence of V, converges for every positive 2.

Let b be any positive number. Let

5 b= 2b+ 40 + - - - + 2m1pmL,

Then the infinite product (1+h¢1) - - - (1+4he,) - - - converges.
Let p be a fixed integer such that

(6) (1 + hepr)(X + hepra) - - - < 2.

Let

W, = UZI+1; Wn+1 = Wn(Up+n+1)7 (”’ = 1’ 21 e )'

It will plainly suffice to show that the sequence of W, con-
verges for z2=>50. For any #, by (4) and (5),

Upn(d) < b(1 + kepyn),
so that, by (6), U,.(b) <2b. Hence

Up+n—l[Up+n(b)] = Upa(d) [1 + cotn1(Uptn(d) + - - - )]
< Upa(b) [1 + k0p+n—1]
< b(l + h6p+n—1)(1 + hcp+n):

and the last quantity, by (6), is less than 2b. Continuing in
this fashion, we find that, for every #,

W < b(1 + hepa) -+ - (1 + heppn) < 20.

This shows that the W,(d), which increase with %, approach a
limit. The theorem is proved.

That the condition placed on the P, is critical with respect
to the convergence of the Q,, is seen on taking P, =2+ c,2™ with
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¢,>0 and (3) divergent. The coefficient of z” in Q will be
&+ -+ - 4cqand Q, will tend towards infinity with # for every
positive z.

The function sin z can be expressed as a limit of polynom-
ials Q,. Let

3

(7) P”(Z) =3 -

32n+1

The formula
z z
sing = 3 sin—é- — 4 sin®—

gives then
sin 2 = Q,(3” sin 37"32).

From (7) we see that the Q, converge to an integral function.
This integral function must be sin 2, since 3" sin 3~"z approaches
z as n increases.*

3. The Sequence of R,(z). We shall study the sequence of
R,(2) defined by (2).

THEOREM 2. Let the P,(2) all be of degree at most m >1. Let a
sequence of positive numbers c, exist such that

(8) lim sup ¢ /™ < 1,
n—r0
and'such that, for every n, the moduli of the coefficients of 22, - - - , 2™

in P, are all less than c,. Then the R.(3) converge to an integral
Junction, the convergence being uniform in every bounded domain.

Proor. Let 7 be a number which lies between the two mem-
bers of (8). Then, for » large,

g4+ ™24 4 3m)
will be a majorant of P,(z). A fortiori, since m>1,
(9)  Uale) = 2+ rmg2 4 p2m7g8 .00 o p(m=Dymnmlgm

* In the same way, one can express as limits of polynomials Q. a large class
of the functions with rational multiplication theorems introduced by Poincaré
(Journal de Mathématiques, vol. 55 (1890)).
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will be a majorant of P,(z) for n large. We see now readily
that it will suffice, for the proof of our theorem, to show that
the sequence of V,(z) defined by

(10) Vi= Uy Varr = Unpa(Va), (n 2 1),

converges for every real and positive z.1
Let p be any non-negative integer. Putting

(11) Wi = Upt1; War1 = Uptnrr(Wa), (nz1),

we shall show that the sequence of W, converges for z <hr—m?,
where h=1—7.

By (9),
Sn(z)=——__z_—_’ (”=1’2)"')1

1 — rm”’L"'lz
is a majorant of Upy,. If, then,
Tl = Sl, T’n+1 = Sn+1(Tn)-y (n g 1)’
T, will be a majorant of W,. Now an easy calculation shows that

3
1— (@™ 4 - vy .

T.(z) =

For any positive 2 less than the reciprocal of the infinite series
rmp+rmp+1+...’

which reciprocal we shall denote by %, the 7,.(2) form a se-
quence of numbers which increase towards kz/(k—3z). Also, if
0<2<k, Tu(z) > W,(2), so that the W,(z) will form a bounded
sequence of increasing numbers and will converge to a limit.
Nowasm>1,
r—mP
k= = hr—mP,
14+r4+r24---
and our statement with respect to (11) is proved.
Thus Theorem 2 will be established if, putting Vo(z) =2, we
show that for every positive z there is a p such that V,(z) <hr—m",

1 The fact that U, may not be a majorant of P, for # small is of no signifi-
cance. One may suppress a finite number of P, and then add a finite number of
polynomials (9) to the beginning of the resulting sequence of U,.
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Let us assume that there is a positive z for which no such p
exists. In what follows, we work with a fixed 2 of this type. We
have, by (9) and (10), for any =0,

Vigr = Vo rmV,2 o Oy

12
(12) Va(l 4 rmm7,)m=1,

IIA

Now, for every #,

(13) Vo= br—m",
so that
™V,
1= )
h

and, if we put a=(1+1/h) ™, we have, by (12),
Vir1 S ar(m—Dmrm < gpmnm,
We have thus

3
Vi £ arz™, Vi S amtlptmgm? o < gmitmtly3migm®

and, in general,

Vn+1 < gmtte oy (ntl) miyg mntl

As m>1, we have m*+ - - - +1 <m*!, Then, because ¢ >1,
(14) Var1 < [r(n+1)/maz]mn+1'

As zis fixed, r(»tD/mgz is small for # large, so that, by (14), Va4
approaches 0 as » increases. This contradicts (13). The theo-
rem is proved.

The condition (8) is a critical one. That we cannot let the first
member of (8) be as great as unity is seen on taking P, =32z-+2z™,
The coefficient of 2™ in Q, will be #» and the Q, will diverge for
every positive z. That m in the first member of (8) cannot be
replaced by any smaller positive number «, is seen, taking
m =2, for instance, on putting P, =3z+42"°"32, For any positive
2, we have

P, > 2732,

Then
Ry > 27232, Ry > 2~ (a¥2a)gd
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and, in general,

Rn > Q—(an+2an~14. o omla) gon
Now

amtl — 2ng
— (a4 201 4 .. 4 2771g) = o > — b2n,

-

where b=0a/(2—a). Thus

2 2n
R, > <——> ,
2b
so that the R, diverge for 2>2°,

Let f(2) be an integral function obtained as a limit of poly-
nomials R,(z), the approach being uniform in every bounded
domain. Unless P,(z) =z for every #, f(z) will not be linear, for
if some R,(2) is of degree greater than unity, f(2), like that R,(z),
will assume certain values at more than one place. In what fol-
lows, we shall assume that f(z) is not linear.

We are going to prove that, between any two branches of the
inverse of f(2), there exists an algebraic relation of a simple type.

Let ¢ and b be two distinct points such that f(e) =£(b) and
that the derivative of f(2) does not vanish at @ or at b. Let 4 be
a circle with @ as center such that, in the interior of 4, f(2)
assumes no value twice. Let B be a similar circle with center at
B. We can find a neighborhood M of f(a) =f(b) such that, both
in 4 and in B, R,(2) with = large assumes all values in M. If n is
large enough, R,(a) will be in M. In what follows, we deal with
a fixed R,(3) for which both conditions just described are
realized.

If 2z, is a point in 4, very close to a, there will be a 2z, in B
such that f(z3) =f(2.), and, furthermore, R,(z,) will lie in M.
We shall prove that R,(z.) =R.(2b). As R.(2,) is in M, there is
a { in B such that R,({) = R.(2.). Now { must coincide with 25,
for f(§) =f(24) =f(2s) and f(2) assumes no value twice in B.

Thus, of we put w=f(2) and if a(w) and B(w) are two branches
of the inverse of f(z), then, for n large, R,Ja(w)]=R.[B(w)].
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