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BLOCH'S T H E O R E M FOR MINIMAL 
SURFACES* 

BY E. F . BECKENBACH f 

The following theorem was first proved by Bloch.J 

BLOCH'S THEOREM. There exists a positive absolute constant B 
with the following property. Let Z =f(z) be analytic for \z | g 1, 
with |/ '(0) | ^ 1 ; then in the Z-plane there is an open circle of 
radius at least B, which is the uniplanar\ map of a portion of the 
circle \ z \ < 1. 

Other proofs of greater simplicity have been given. The 
present generalization follows the proof given by Landau and 
by Valiron.|| In this paper we shall prove the following theorem. 

THEOREM. There exists a positive absolute constant B with the 
following property. Let the circle u2-\-v2^l be mapped confor-
mally on a minimal surface, with £ o ^ l , where £0 denotes the 
area deformation ratio at the origin ; then on the minimal surface 
there is an open geodesic circle of radius at least B, containing no 
singular points, which is the one-to-one map of a portion of the 
circle u2 + v2<l. 

That is, there is a point on the surface such that no curve 
on the surface, issuing from this point and of length less than B, 
comes either to the boundary of the map or to a point where 
the conformai character of the map breaks down. 

In order that the real analytic functions 

Xj = Xi(u, v), (j = 1, 2, 3 ) , 

* Presented to the Society, February 25, 1933. 
t National Research Fellow. 
J Les théorèmes de M. Valiron sur les fonctions entières, et la théorie de 

Vuniformisation, Comptes Rendus, vol. 178 (1924), pp. 2051-2052, and 
Annales de la Faculté des Sciences de l'Université de Toulouse, (3), vol. 17 
(1925), pp. 1-22. 

§ German schlicht. 
|| Landau, Über die Blochsche Konstante und zwei verwandte Weltkonstanten, 

Mathematische Zeitschrift, vol. 30 (1929), pp. 608-634; Valiron, Sur le thé­
orème de M. Bloch, Rendiconti del Circolo Matematico di Palermo, vol. 54 
(1930), pp. 76-82. 
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shall give a conformai map of the domain of definition, the 
parameters must be isothermic; that is, 

(1) E = G, F = 0. 

With this choice of parameters, by a theorem of Weierstrass, a 
necessary and sufficient condition that the surface be minimal 
is that the Xj be harmonic. This being so, these functions are the 
real parts of analytic functions of a complex variable, 

(2) Xj = ^ / / ( z ) , z = u + iv. 

Equations (1) now are equivalent to 

(3) E//2 = 0. 
*=1 

We shall let these functions (2) represent the mapping in the 
above theorem. It is no restriction on the generality that we 
take//(O) =0 , so that 

oo 

The minimal surface defined by the equation yj=Jfj(z), where 
Jfi(z) designates the imaginary part of f3-(z)f is called the ad­
joint of the minimal surface defined by (2). The surface and its 
adjoint are applicable to each other, the element of length on 
each being given by 

t 3 -11/2 

*ZI// M 1*1 . 
LEMMA 1. Let the circle \w\ <R be mapped conformally on a 

minimal surface, with £o>0 , where £o designates the area defor­
mation ratio at the origin. Then it is possible to choose rectangular 
axes, with origin at the image of w = Q, so that in the coordinate 
functions of the surface, 

oo 

*ƒ = ^ / ( w ) = 31 ]£*ƒ.««", w = p + iq, 
<=i 

we have 

(4) | ii .i | = | b2>11 = | 63,i I = (f £0)1/2 = a > 0. 
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Since £o > 0, the surface has a definite tangent plane and nor­
mal at the image of w = 0. We choose coordinate axes, with 
origin at the image of w = 0, in such a way that the normal at 
this point has equal components on the three coordinate axes. 
For these axes, let the coordinate functions of the surface be 
given by 

00 

Xj = <R&i(w) = 31 ! > / . « < \w\ < R; 

then, as in (3), 

(5) Eg/2 = 0. 

Let Xj(w), (j = 1, 2, 3), denote the direction cosines of the nor­
mal to the surface at the point corresponding to w. Because of 
our choice of axes, we have 

(6) X,(0) = X2(0) = Xa(0) 5* 0. 

Now 

ax, # dXj 

dp dq 

multiplying this equation through by Xj and summing with re­
spect to j , we get 

(7) IX-g/ = 0. 

Evaluating (7) at ^ = 0, and using (6), we obtain 

(8) Zg / (0 )=0 . 

We have 

( Eg/Y= £«ƒ* +2 £*/«»', 

so that, by (5) and (8), 

(9) Z « / ( 0 ) ^ ( 0 ) = 0 . 
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Let a3+mice2+m2ce+m3 = 0 be the equation whose roots are 
£i(0), g*(0), gi(0). Then, by (8) and (9), ml = m2 = 01 so that 
a3 +mz = 0. That is, g( (0), gl (0), g( (0) lie on a circle with center 
at the origin, or, what is the same thing, |&i,i | = |ô2li | = |&3,i |. 
From 

we therefore obtain (4). 
LEMMA 2. Let the f unctions 

oo 

(10) giiw) = T,bittw; (j = 1, 2, 3), 
« - = 1 

be analytic for \w | < R, with 

Zf/' = o, i È | i/.i |2 = £o > o, 
1 - 1 2 = 1 

(11) | g,-(w) | ^ 2 ^ W . 

r/^ew ow the minimal surface defined by Xj = 3^gj(w) //^ere w aw 
ö^w geodesic circle whose center is the image of the origin, whose 
radius is at least i£ 2£ 0 / (6-3 1 / 2 - M), and which contains no 
singular points. Similarly, there is a geodesic circle of the same 
description on the adjoint minimal surface. 

The condition (11) necessitates that both the surface and its 
adjoint be contained in a sphere with center at the origin and 
radius 6ll2M; conversely, (11) surely is satisfied if both surfaces 
are contained in a sphere with center at the origin and radius M. 

By simply rotating the coordinate axes, we can normalize the 
functions (10) in accordance with Lemma 1, without altering 
the conditions of Lemma 2. We consider this done and still use 
the expressions (10), so that (4) holds for the functions (10). 

Landau has shown* that gj(w) gives a uniplanar map of 

, , aR 
(12) w\ ^ = ft, 

1 1 4-21 '2 .M 
and that this map contains the uniplanar open circle 

* Loc. cit., pp. 616-617. 
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\zA< 
6-2lf2-M 

the center of this circle being the image of the origin. 
The length of a curve on the minimal surface (10) or on its 

adjoint is given by the equation 

/• r 3 ni /2 

£ = J |_*£U/ I 2 J |<M. 
By Minkowski's inequality,* 

£ 2 è i E [ /U/ l •!<*«-1 J, 
the path of integration being the same throughout. We have 
just seen that, for all paths of integration, 

C\ i i a2R2 

minimum I \ g! • \ dw ^ J •/ 0 6-2^2-M 

so that, a fortiori, 

»6r 3 -j 2>li2-a2R2 R2£o 
minimum I U £ I *ƒ I2 1/21 dw I è J o

6 [ * i : u / i 2 ] i / 2 i ^ o L H J 2-6-M o ^ ^ - M 

This demonstrates the existence of the prescribed geodesic 
circle. Singular points on the minimal surface occur only where 
6 = 0; that is, where simultaneously g{ = g2' = gi =0 . But gj(w) 
gives a uniplanar map of (12) and therefore gj 5^0 in this region. 
I t follows that 6 ^ 0 in (12). 

LEMMA 3.f Let £ be a constant, |£ | < 1, and let 

£ + w 
z = 

Then, for \w | < 1 , 

1 + £w 

l - U 

* See, for instance, Pólya und Szegö, Aufgaben und Lehrsatze, vol. I, 1925, 
p. 56, §91. 

f For the elementary proof, see for instance Landau, loc. cit., p. 617. 
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We come now to the proof of the theorem. We can assume 
that E 0 = l, because if the theorem holds in this case it holds 
a fortiori for E 0 > 1. 

Let 

N = maximum^|^i(l - | z |2) U ]T) I ƒ/ M 

= maximum|«|^i(l — | z\2)E112. 

Then N ^ 1, and N is attained for some z = £, with |£ | < 1. The 
unit circle is mapped conformally on itself by 

£ + w 
z — —) 

1 + £w 
so that the functions 

gi(w) = 
TV 

are analytic for \w | ^ 1. And the real parts of these functions 
map \w\ ^ 1 conformally on a minimal surface. By Lemma 3, 
for \w I < 1 , we have 

(1 - | w\*)\g/(w)\ = (1 - | w\*)-\fj(z)\ 
dz 

dw 

= ̂ ( i - | s | 2 ) l / / « l , 

whence 

U/2 
(1 - w | 2 ) [iEU/Wl2]1 

r 3 , , i1'2 (i3) i 

so that 

[ 3 -11/2 l r- 3 -11/2 
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From (13) we obtain also, for \w | ^ 1/2, 

11/2 4, 

[èîjU/Wl2] 
so that, integrating along any radius, we have 

/ • l / 2 r 3 -11/2 1/2 p 3 -11/2 2 

< • 
3 

Therefore the minimal surfaces given by Xj = %g,{w) and 
yi^Jgj (w) for |w | g 1/2 both are contained in a sphere with 
center at the origin and radius 2/3 . 

Consequently, we can apply Lemma 2 to the functions g3-(w)t 

with JR = 1/2, Af = 2 /3 , £0 = 1. We see, namely, that on the 
map of \w\< 1/2 given by 

*i = «^y(w), O" = 1, 2, 3), 

there is an open geodesic circle of radius at least 1/(16-31/2) 
and comprising no singular points; and therefore that on the 
map of \z | < 1 given by (2) there is an open geodesic circle of 
radius at least 

N 1 

16-31 '2 " 16-31/2 

and comprising no singular points. 
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