
124 S. LEFSCHETZ [February, 

ON SINGULAR CHAINS AND CYCLES 

BY S. LEFSCHETZ 

1. Introduction. The theory of the topological invariance of 
the absolute or relative combinatorial characters of a complex, 
as developed in our Colloquium Lectures on Topology (Chapter 
II) , was based, following Alexander and Veblen, upon the con­
cept of singular chain. Our presentation, and indeed any known 
to us, appears to give rise to many misconceptions which it is 
proposed to clear up in the present note. Unless otherwise stated 
the notations are those of Topology. 

2. Singular Cells. Let ^ be a topological space and let ev be a 
simplicial oriented cell such that there exists a continuous single-
valued transformation ( = c.s.v.t.) T of the point set ep into a 
subset Ep of î^, where Ep= Tep. The symbol (ep, T, Ep), associ­
ated with the set Ep is called a singular oriented p-cell on ^ . 
If ep is another ep, there exists a barycentric transformation 
U of ëp into ëp: UëJ —ëp. If we set T' = TU, it is evident that 
(ej, T1', Ep) defines also a singular oriented p-cel\ on ^ . We 
shall agree to consider it as identical with the first: 

(1) (*;, T',EP) = (ep,T,Ep). 

This has the advantage of freeing the notion of singular cell 
from a too narrow connection with a specific image ep. 

3. Singular Chains. The singular ^-chain Cp on ^ is now de­
fined as the association of a symbol 

(2) Cp= Zti(eJfT\EJ) 

with coefficients / belonging to one of the three rings (rational 
numbers, integers, integers mod m) considered in Topology, to­
gether with the set of all sets E\ corresponding to / ' s^O. As a 
special case the e's might be cells of a finite complex k such that 
there exists a c.s.v.t. T of k into a subset of ^ . Then the chain 
symbol may take the form 

\o) L,p = 2^*i\€p%i *> Ep), 

and Cp may be considered as the image of the subchain 
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(4) cp = J^kej 

of k, but that is not essential. In this instance we might have 
represented Cp by the symbol (^UeJ, T, ^2tjEJ ) analogous to 
the cell symbol. Observe also that we may find for any chain (2) 
an equivalent representation (3). For we may take the cells eJ 
to be simplexes in some Sn whose closures do not meet, then 
define T as coincident with T{ on ej. The closure of the sum of 
the cells eJ will then be k, and (2) will assume the form (3). 

If we have several singular chains CJ, then ^SiCJ , where the 
coefficients Si belong to the same ring as those of the chains, 
defines a ^-chain which is called the linear combination with 
coefficients Si of the chains CJ. We have thus moduli of singular 
^-chains wholly analogous to the moduli of subchains of a 
complex. 

4. Boundary Relations. Returning to (ep, T, Ep), let the 
boundary relations for ep be 

(5) ep -> X ^ / - i = F(ep) • 

Since T is a transformation of ëp into S p , it transforms ej-i 
into a subset EJ-i of Ep and hence (ej-i, T1 JEJ_I) is a singular 
(p — l)-cell on ^. The singular (p — 1)-chain 

(6) F{e„ r , Ep) = ^(e*, T, EPU) 

is called the boundary of (ep, T, Ep) and we write here also 

(7) (ep,T,Ep)-^F(ep,T,Ep). 

The boundary of the chain (2) is now by definition 

(8) F(CP) = T,tiF{ei,T*,Ej), 

for which we also write 

(9) CP->F(CP). 

Owing to (1) this boundary depends solely on Cp but not on the 
particular transformations Tl that occur in (8). Let Cp be in 
the special form (3) with an associated non-singular image (4), 
and let the boundary relation for cp be 

(10) Cp * / ^i^p—-1 » 



126 S. LEFSCHETZ [February, 

Then we have well denned singular cells (e/-i, T, E/_i) and 
we find that 

(u) cp-> 2><to-i, r,£pLi), 
which may be described by the statement: the boundary of a 
singular image of a chain is the singular image of the boundary 
of the chain. 

5. Degenerate Case. Let %_ undergo a c.s.v.t. U into a new 
space %!. Then the singular cell (ep, T, Ep) will go over into a 
singular p-ce\l (ep, UT, UEP) and Cp into 

(12) UCP = 2 > W , tfr«, tf£p*). 

To different representations of the same singular ^-cell on %_ 
there will merely correspond different representations of the 
same singular p-cel\ on 3^', and to F(CP) there will now cor­
respond F(UCp). In particular also if C p =0, likewise UCp = 0. 

The preceding observations have an immediate application 
to degenerate cells. Let (ep, T, Ep) be a singular cell on ^ , and 
let us suppose that there exists a simplex aqj q<p, and two 
c.s.v.t/s T', T", such that T' is a simplicial transformation of 
ep into <rq and that T"'• T' = T. The cell (ep, T, £ p ) is called a 
singular degenerate p-cell on ^ and chains made up exclusively 
of such cells are called degenerate chains. If %.' = £7^ as above, 
the degenerate cells and chains of % go over into degenerate 
cells and chains of CBJ. 

According to Topology, Chapter II , No. 2, F(ep, T', <rq) is a de­
generate (p — l)-chain, and hence when (ep, T, Ep) is degenerate 
so is its boundary. Hence this holds likewise as regards degener­
ate ^-chains. Let us agree to consider all degenerate chains as 
identically zero. By the observation just made degenerate chains 
will then completely disappear from all boundary relations. 

6. Homologies. From the preceding section it appears clearly 
that when ^ and %! are homeomorphic, the homeomorphism 
between them associates respectively to one another their 
moduli of ^-chains, of bounding ^-chains and their degenerate 
^-chains. These are therefore topological and the homology 
characters derived from the moduli are topological invariants. 

Regarding these homologies, we introduce them exactly as 
for complexes. In particular if A intersects B in a set A -B closed 



1933-1 SINGULAR CHAINS AND CYCLES 127 

relatively to B, the neglect of the singular cells (ep, T, Ep), such 
that Ep c A, leads to the characters of B mod A. 

7. Invariance of the Combinatorial Homology Characters, Sup­
pose now that ^ itself is a finite simplicial complex K and let 
ej designate its cells. They can be considered as the singular 
cells (ej, 1, ej) and it is readily seen that the formal singular 
boundary relations involving these cells alone are the same as 
the combinatorial relations between the cells ej themselves. 
Therefore whenever only singular cells of this type are involved, 
the singular boundary relations (7) for K are reduced to the 
combinatorial relations. 

The invariance of the combinatorial homology characters of 
K is established by identifying them with the corresponding 
topological characters. The steps in the proof are as follows. 

(a) Let Cp be a singular chain on K which we assume hence­
forth in the simplified form (11) with T and the non-singular 
prototype cp fixed. There exists an rj>0 depending on K but 
not on Cv, such that when mesh Cp<rj, the chain can be homo-
topically deformed into a subchain Cp' of K, the deformation 
keeping each cell on the closure of the cell of K that carries it. 
This is the deformation theorem (Topology, p. 86). It implies 
(loc. cit., p . 78) that there are deformation chains, all singular, 
indicated by D, such that 

<DCp-*Cp' -Cp -VF(CP), 
(13) « - £ . , « . 

(b) If mesh Cp>rj the chain has a subdivision chain Cp whose 
mesh is suitable. Subdivision is defined as in Topology (p. 85), 
by reference to a subdivision of cp. 

(c) Suppose that Cp possesses certain cells (not necessarily 
^-cells) which belong to K and whose sum is therefore a sub-
complex Kq of K. Then the subdivision and deformation in (b) 
may be so chosen as to leave Kq fixed point for point. The proof 
indicated in Topology (p. 87, Remark I) only shows that Cp 

may be so modified as to leave the cells of Kq invariant indi­
vidually but not point for point. The more accurate result, 
which is of interest for its own sake, is proved as follows. We 
show by induction as in Topology (p. 86) that the deformations 
there indicated leave Kq invariant point for point provided that 
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any cell of Cv without vertices on Kq is of diameter < rj, and that 
a cell having a face in common with Kq has all its points not 
farther than 77 from that face. If Cp does not fulfill these con­
ditions we find by reference to cv that a suitable subdivision of 
Cp without new vertices on Kq will behave as required. For if 
cp is a subchain, say of k, there is a subcomplex k' of k such that 
T-k'^Kq. We can then apply to k a series of subdivisions 
differing from regular subdivisions only in so far that no new 
vertices are ever introduced on k'. Given any f we can thus ob­
tain a subdivision cp* of cv whose cells fulfill relatively to k' and 
f the two conditions that we wish to impose upon the cells of 
Cp relatively to Kq and 77. Since T is continuous the required 
result follows for Cp. 

Consider now the boundary relations mod L, where L is a sub-
complex of K. Let Tp be a (singular) cycle mod L. By (a) there 
is a subdivision Tp' of Tp homotopically deformable into a sub-
cycle Tp* of K, its points on L remaining on L, and TJ ~TP mod 
L on Tp itself (Topology, p. 87) and hence a fortiori on K. By (c), 
if Cp+r-»iy mod L, there is a subdivision Cp' +1 of Cp+i with the 
same boundary Tv

r, deformable into a subchain Cp*+i by a 
homotopy leaving i y invariant, so that Cp*+i—»rp' mod Z,. 
Therefore if the initial cycle^O modL in the topological sense, 
the reduced cycle^O mod L in the combinatorial sense. From 
this follows immediately as in Topology (p. 88), that the topo­
logical and combinatorial homology groups of the same types 
are simply isomorphic and hence have the same numerical in­
variants. Therefore the combinatorial homology characters are 
topological invariants. 

8. Remarks. I. Once the notion of singular cell has become 
familiar one will naturally abandon the explicit (too explicit) 
(e, T, E) notation in favor of the simpler E of Topology. 

II . The following circumstance may arise in connection with 
our definition of singular cell. Taking for the sake of simplicity 
p = 2, let e2=ABC be an (oriented) isosceles triangle with AB 
= AC and let AD be the altitude issued from A. Let U be the 
symmetry about AD and T a transformation = 1 on ADB, 
= U on ADC. If we set T' = T-U, e{ =ACB, we have 

(e2, T, E2) = (ei ,TU,ES) = (- e2, TU, E2) = ( - e2, T, E2) 
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and therefore 

202, r, E2) = o. 

Owing to this, E. Cech, who pointed out this circumstance to 
us, suggested that in the present and in the similar instance for 
any p, the singular cell be also considered as degenerate. The 
more extended meaning to be thus attached to degenerate cells, 
while justifiable, is not however essential. 

PRINCETON UNIVERSITY 

VARIABLES CORRELATED IN SEQUENCE* 

BY A. T. CRAIG 

1. Introduction. If each of n variables, Xi, x2, • • • , xn, repre­
sents a quantitative character of an individual, and if the vari­
ables are correlated in sequence, that is, Xi is correlated with 
#2, #2 is correlated with x3, • • • , and in general Xi is correlated 
with Xi+i, it seems natural to inquire about the correlation be­
tween a character, say xi, of one individual and a character, say 
Xz, of a second individual, with the condition imposed that the 
two individuals have identical measurements with regard to the 
character #2. It is this problem with which we shall be primarily 
concerned in the present paper. As we proceed, we shall place 
appropriate restrictions upon the nature of the correlation 
which exists between the variables. We shall, however, make no 
assumptions regarding the correlation between the variables 
other than that between them in adjacent pairs. 

In order to provide a convenient point of departure and to 
exhibit a set of variables correlated in sequence, we shall first 
consider a rather elementary problem which arises when meas­
urements are made under a constant law of probability. 

2. The Correlation between Measurements under a Constant 
Law of Probability. Let the variable t obey a constant law of 
probability f(t) = l/a, OSt^a. Let successive sets of n in­
dependent measurements each, say ti, h, • • • , tn, be made 
upon /. We may, without loss of generality, suppose the meas-

* Presented to the Society, April 8, 1932, under the title Some properties of 
correlated variables. 


