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T H E PLANE FIGURE OF SEVEN REAL LINES* 

BY H. S. WHITE 

1. Introduction. A set of real lines, finite in number, in the 
plane of projective geometry, divides the plane into convex 
polygons, each bounded by segments of those lines. If no three 
lines meet in a point, then three lines form 4 polygons (tri­
angles); four lines, 7 polygons; n lines, (n2 — n + 2)/2 polygons. 
For any given diagram of this sort, the triangles, quadrilaterals, 
etc., may be counted; then if the lines are allowed to move freely 
in the plane, every polygon will retain the same number of sides 
until three or more points of intersection (or two pairs) come to 
coincide. Exclude this situation, and we have as invariants the 
integers showing the numbers of polygons of 3, 4, 5, • • • , n 
sides; also a scheme showing contiguities. We shall exhibit such 
schemes for a set of 7 lines; and inquire how many kinds of (non-
equivalent) sets exist, when a one-to-one relation between lines 
and polygons of two sets constitutes equivalence. 

2. Unique Sets, n=-3, 4, 5. Since central projection is a par­
ticular kind in the group of transformations that we here admit, 
and since four lines in a plane are projective to any other set of 
four—barring cases where three lines are copunctual—the ar­
rangement of any such set is typical of all. Three lines form four 
triangles; three of them have infinitely long boundaries, but 
that is projectively of no account; and each is adjacent to all the 
others. A fourth line intersects three segments exterior to one 
of these triangles, say 7\, and divides each of the other trian­
gles into a quadrilateral adjacent to T± and a triangle having no 
sides, but only one vertex, in common with 7Y Otherwise stated 
(Fig. 1), four lines in a plane, no three in any point, constitute 
twelve segments bounding four triangles and three convex quadri­
laterals. Each quadrilateral is adjacent to all four triangles, but 
two triangles have in common only one vertex, while two quadri­
laterals have in common two opposite vertices. 

Five lines are not necessarily projective to an arbitrarily se-

* Presented to the Society, October 31, 1931. 
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lected set of five, but they are equivalent under the group here 
considered. For a fifth line intersects the four above mentioned 
upon four segments, each of which separates a triangle from a 
quadrilateral. Hence the fifth line crosses two triangles and two 
quadrilaterals; say in cyclic order T±QiT2Q2. The two sides of 
7\ and the two of T2 which it meets contain all 5 termini (ver-

FIG. 1. Lines 4 ; Quadrilaterals 3, Triangles 4. 

tices) ; hence two sides, one in each triangle, contain the common 
vertex. But those two must be adjacent sides of either Qi or Q2, 
say of Ci; and the other two segments cut by the fifth line have 
no terminus in common, and are therefore opposite sides of Q2. 
Accordingly Q2 is divided into two quadrilaterals, and Qi m t o a 
triangle and a pentagon. The triangles 7\ and T2 are divided, 
each into a triangle and a quadrilateral. 

Among the 11 convex polygons whose boundaries, but no interior 
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points, lie in five straight lines of a plane with 10 distinct inter­
sections, there are 

1 pentagon) 
5 triangles, each adjacent to the pentagon) and 
5 quadrilaterals, each adjacent to two triangles and adjacent 

to two other quadrilaterals. 
This description is most easily visualized by the aid of a regu­

lar pentagon with sides produced indefinitely. In such a figure 
all 10 intersections are in the finite plane. 

For convenience of allusion, the 20 segments of the 5 lines 
may be assigned to 3 classes, viz. : 

5 primary, separating the pentagon from triangles, 
10 secondary, separating the triangles from quadrilaterals, 
5 tertiary, separating each, two quadrilaterals. 

Note also that each of the 3 classes forms a single continuous 
broken line, two of five parts, both of even character, one of ten, 
of odd character. Each quadrilateral has two adjacent sides 
secondary segments; and two tertiary, adjacent. 

3. More than Five Lines. By selecting any five lines of a set as 
the initial five, we have a unique description for their relative 
situation. Adding a sixth line, we shall find four different ar­
rangements possible. When there are seven in a set, there are 
five to be selected at random, and afterward reasons may be 
found for discriminating the sixth from the seventh. From the 
diagram of any five lines we may safely write down two observa­
tions: 

I. As no two triangles have a side in common, no sixth line 
can cross three triangles. It can cross either two or one. 

II . There are lines that meet only tertiary segments, crossing 
no triangle. 
Hence a sixth line will fall into one of the following 4 species (see 
Fig. 2). 

(a) A line cutting 2 primary segments, 2 secondary, 1 ter­
tiary. This species will be divided according as the primary seg­
ments are consecutive or not, on the pentagon boundary. 

(b) A line cutting 4 secondary segments and 1 tertiary. The 
two triangles must have one vertex in common. 

(c) A line cutting 2 secondary and 3 tertiary segments. This 
crosses one triangle and four quadrilaterals. 
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(d) A line cutting 5 tertiary segments. (See II above.) 
ad(a) In Fig. 2, line a is shown cutting consecutive sides of 

the pentagon, thus forming one hexagon. 
ad(b) Choosing line x for the sixth or secant line, and pqrsb 

for the pentagon, we have a secant cutting non-consecutive 
sides of the pentagon, a case under (a). 

ad(c) Exchange roles of x and c. Again case (a). 

J 

\Penta\/> 
gon 

FIG. 2 

ad(d) The sixth line cuts adjacent sides in each of the 5 quad­
rilaterals, forming 5 new pentagons. Every segment is now a side 
of some one pentagon. Therefore any seventh line will necessarily 
cross 3 pentagons, and a new choice of the initial five lines and 
the sixth will reduce this to case (a). 

Incidentally we may tabulate the sets of polygons formed by 
five or six lines, convex polygons having no points of the lines 
in their interior. 

6 5 4 3 Polygons of 
Five lines 
Six lines a 

b 
c 
d 

0 
1 
0 
0 
0 

1 
0 
2 
3 
6 

5 
9 
8 
6 
0 

5 
6 
6 
7 

10 | 

sides formed by 
as in Figure 2. 
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Division of the subject. When, in a set of seven lines, any six 
form a hexagon, the discussion may utilize that hexagon as 
unique initial figure. This part of the subject has been investi­
gated by Miss L. D. Cummings. I shall survey only sets of seven 
lines in which no six form a convex hexagon. 

4. Notation and Method. Let there be given a pentagon and 
a secant crossing two segments of its boundary, not coterminous 
(consecutive), since then a hexagon would be formed. This 
secant must cross one and only one tertiary segment at a point 
which we shall call A, and two secondary segments belonging 
to two triangles. Of those triangles, one or both must have seg-

A ^ -

FIG. 3 

ments in their boundary collinear with that unique tertiary 
segment, since otherwise their four secondary boundaries would 
lie in the other four lines of the pentagon and the two triangles 
would have one vertex in common, whence the primary sides 
would be consecutive. Call the secant line a\ when it crosses only 
one triangle with a side collinear to A ; call it a2 when it crosses 
both triangles having secondary sides collinear with A. (See 
Fig. 3.) 

The Secant is a\. Designate by 12 the secondary side, collinear 
with A, of the first triangle crossed by the secant; by 23 its other 
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secondary side, crossing the secant at B. Mark the other inter­
sections of the secant so that the five are in order on that secant, 
ABCDE. Two vertices of the pentagon are already marked; let 
the five vertices in order on the boundary of the pentagon be 
1,3,5, 7, 9. On the broken line of secondary segments insert 4, 6, 
8, 0 in due order between odd digits. Now arrange in continuous 
broken-line divisions the segments that cross the secant, be­
ginning with any point terminating only one such segment. 
Thus the secant a\ will be recorded by 8231.576. 

The Secant is a2. Proceed in the same way. The choice of point 
1 is in this case ambiguous, and there are two admissible sets of 
marks. If the one set is 

1234;567890ABCDE, 

then the other set is 

98765432KL4££>C£. 

We may call this the symmetric case, the other unsymmetric. 
Fora2 , the recorded position will be 978231. 

I t remains to form all possible records for a seventh line which 
shall not cut consecutive sides of this pentagon, using both 
numerals and letters. Every set of seven lines can be separated 
in 21 ways into five-and-two; then whenever both lines of the 
two cross the pentagon of the others, two records will be per­
mitted by exchange of sixth and seventh line roles. Conceivably, 
therefore, 42 records might denote a single set of 7 lines. Always 
there will be at least one record, since at least one choice of five 
lines from the seven will leave a secant ax or a2. 

5. Experimental or Observational Geometry. Since a definite 
order is essential to an exhaustive census, I have taken small 
sets of positions for the seventh line; five for case ah three for 
case a2 (symmetric), collecting together those that cut the same 
segment of the sixth line. Each position is derived from one 
already obtained (starting from coincidence with the sixth 
secant) by sweeping over one of the ten vertices of the complete 
pentagon. This is not complicated, and after the list is filled out 
for each segment, AB, BC, • • • , then I erase all that show two 
consecutive segments from the boundary of either pentagon— 
the fundamental one; or, for ai, that second one with vertices 
.4£348; or the third, CD791. In this way reduced lists are 
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fixed. For example, in case #1, where the sixth secant designated 
by 8231.576, if the seventh crosses the segment AB, it may be 
any one of the following: 

2AB.34:56E 62,4 £.109.84 6048. ,4 £21 

BA260.345 4897.C1.4J32 60.345.4J521 

S4062AB 48.AB2109 S40.56E.2AB. 

For each of these in turn 21 duplicate diagrams are made, 
beginning with the first. Each diagram has a pentagon and two 
secants outlined in colored crayon. When hexagons appear, six 
or ten to any set, or in one case the heptagon, those are laid 
aside; as are also the sketches in which both secants are external 
to the pentagon (cases (c) or (d)). For each sketch not eliminated, 
either one or two records are determined on the basis of §4, and 
these are checked off on the list and classed as equivalents. 

By this means, three systems and no more are found in which 
no hexagon occurs. Representative descriptions of those three are the 
following : 

8231.576 and 62AB. 109.84, 8231.576 and 2AB.M56E, 

8231.576 and 84062,4 _£. 

This work though laborious is not tedious. Mistakes and 
omissions occur, but the multitude of equivalences makes their 
discovery almost certain. Aside from the intrinsic interest of 
such a catalog, we have undertaken the problem for the pur­
pose of studying Aronhold sets of seven double-tangents of a 
plane quartic curve. As to polygonal division of the projective 
plane by lines, we note for n = 5, 6, or 7 the contrast between 
our results and the much larger number of systems that satisfy 
Euler's equation. The polygons in these three non-hexagonal 
sets of seven lines are as follows, in order as above. 

No. of sides 

1 

2 

3 

7 

0 

0 

0 

6 

0 

0 

0 

5 

3 

4 

6 

4 

12 

10 

6 

3 

7 

8 

10 
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