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SINGULAR POINTS OF FUNCTIONS WHICH SATISFY 
T H E PARTIAL D I F F E R E N T I A L EQUATION 

OF T H E FLOW OF HEAT* 

BY D. V. WIDDER 

1. Introduction. It has frequently been pointed out that the 
function 

1 
U(x, y\ a, b) = —• e», (y > 6), 

(1) V / 

= 0, (yûb), 

where JJL= — (x — a)2/ [4(;y —&)], plays a rôle in the theory of 
the solutions of the equation 

d2u du 
(2) = 0 

dx2 dy 
which is quite analogous to that played by the function 

(3) log [ ( * - a)2+ (y-b)2Y'2 

in the theory of harmonic functions. One would expect, there­
fore, to find a characterization of the function (1) similar to 
that given by Bôcherf for (3). It is the purpose of the present 
note to obtain such a characterization. 

For brevity we designate a function as regular in a given 
region if it is continuous with its first derivatives there. The 
results to be proved are the following. 

THEOREM 1. Iff(x, y) is a single-valued solution of (2) regular 
in the neighborhood of a point (a, b) except at (a, 6), and is bounded, 
then f (x y y) becomes regular at (a, b) if its definition at this point 
is properly adjusted. 

* Presented to the Society, December 27, 1929. 
t M. Bôcher, Singular points of functions which satisfy partial differential 

equations of the elliptic type, this Bulletin, vol. 9 (1903), p. 455. See also O. D. 
Kellogg, On some theorems of Bôcher concerning isolated singular points of 
harmonic functions, this Bulletin, vol. 32 (1926), p. 664. Professor Kellogg has 
informed the author tha t Bôcher 's principal theorem was also known to 
Schwarz. 
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THEOREM 2. Iff(x, y) is a single-valued solution of (2) regular 
in the neighborhood of a point (a, b) except at (a, b), and iff(x, y) 
is bounded on one side only, then f (x, y) —LU(x, y;a,b) is regular 
at (a, b) provided the constant L is properly chosen and the func­
tion is properly defined at (a, b). 

Our proof, like Bôcher's, employs a Green's function; but 
the method of proof must necessarily differ considerably from 
that of Bôcher since the level curves 

1 O - a)2 

-eM = c o n s t a n t , JJL = — (y - b)l<2 4(;y - b) 

do not in this case consist of closed curves bounding regions 
with (a, b) in the interior, but all pass through this point. 

2. Green1 s Formula and Green's Function. In the present 
section we shall recall certain results from the classical theory 
of equation (2). Set 

F(u) -
d2u 

dx2 

du 
; 

dy 
G{u) --

d2u du 
= — + dx2 dy 

Then G(u) is the adjoint of F(u) and the equation 

(4) GO) = 0 

is the adjoint of equation (2). Let D b e a regular* region with 
boundary C. If u(x, y) and v(x, y) are two functions continuous 
with their first and second derivatives in and on the boundary 
of D, then Green's formula is 

n r (du dv\ 

[vF(u) — uG(v) ]dxdy = I uvdx + ( v u — )dy. 
Jc \ dx dx) 

Here the contour integration is in the positive sense, f We now 
define the Green's function corresponding to a given rectangle. 

DEFINITION. Let the vertices A, B, F} E of a rectangle R have 

* For present purposes the boundary may consist of a finite number of 
straight-line segments. 

t Most of the results of this section will be found in E. Goursat, Cours 
d'Analyse, 1923, vol. 3, Chap. 29. In applying this formula to regular solu­
tions of (2) and (4) we make use of the fact tha t such solutions are known to 
have continuous second derivatives. 
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coordinates (x0, 3>o), O c + £ , 3>o), Oo+£, yo+q), (x0, Jo + q) 
respectively, p and q being arbitrary positive constants, and 
let (£, 77) be an arbitrary interior point. By the Green's func­
tion of this rectangle we mean a function G(x, y; £, 77) which, 
considered as a function of x and y : 

(a) satisfies (2) and is regular in the closed region R except 
at (£, 77); 

(b) has the form 

G(x, y\ £, ri) = U(x, y; £, rj) + u(x, y) 

at (£, 77) where w(#, j ) satisfies (2) and is regular in the closed 
region R\ 

(c) is zero on the line segments E A, AB, BF. 
The existence and uniqueness of this function follows from 

known results concerning a familiar boundary-value problem.* 
It may also be shown that G satisfies the adjoint equation (4) 
considered as a function of (£, 77), and is regular except at the 
point (x, y), where it has the form 

U(x, y;£,v) + v(£,y), 

v(Zy 7]) being a solution of (4) regular throughout R. Moreover, 
G vanishes on the sides AE, EF, FB when considered as a func­
tion of (£, 77). 

3. Three Lemmas. 

LEMMA 1. If </>(x, /) is a solution of (2) regular in R except 
perhaps at an interior point (a, b), then the integral 

r d</> 
I —dy + <t>dx 

Jc d% 

has a constant value K when extended in the clock-wise sense over 
the contours C of all rectangles lying in R and containing (a, b) 
as an interior point. 

This follows from formula (5) by taking u — <py v = l, and D 
the region between two of the rectangles considered. In particu­
lar, if 0 is regular at (a, b), K is zero. 

LEMMA 2. If cj>(x, y) satisfies the conditions of Lemma 1, is 

* E. Goursat, loc, cit., p. 316. 
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bounded at least on one side, and vanishes on the sides EA, AB, 
BF, then 

J
» a+k 

4>(x, b + h)f(x)dx = Kf(a) 
- - a-k 

for any function f (x) continuous in (a — k, a+k) and for any k 
such that the points (a — k, b), (a + k, b) lie in R. 

PROOF. Since cj>(x, y) is bounded on one side it is possible to 
find a constant II such that the function \[/(x, y) — (f)(x, y)+II 
is a function of one sign in R. For definiteness we suppose it 
positive. As a result of Lemma 1 we have 

/

a+k rb+hd(j) 

4>(x, b + h)dx + I —(a — k, y)dy 
a-k Jb dX 

+ I — (<*+ k,y)dy = K. 
J b+h dx 

We have here chosen the contour C as the boundary of the rec-
tangle whose vertices are (a — k, b — h),(a-\-k, b — h),(a+k, b+h), 
(a — k, b+h). I t was unnecessary to include the complete 
contour since </> vanishes identically for y<b. This follows* 
since 0 is zero on the sides EA, AB, BF, and is regular for 
y<b. It h tends to zero we clearly have 

J» a+ 

a-k 

/

• a+k 
\p(x, 

- - a-k 

• a+k 
<£(#, b + h)dx = K, 

-k 
or 

» a+k 

+ h)dx = K + 2kH. 
h-

We shall first show that 

» a+ k p a+ k 

m I 
h-
lim f iK*, b + h)f(x)dx = Kf(a) + H ( f(x)d* 

H-+0+ J a-k J a-k 

The desired result will follow from this equation by noting that 

/

» a+ k /» a+ k /» a+ k 

4>(xyb + h)f(x)dx = I \p(x, b + h)f(x)dx — H I f(x)dx. 
a—k J a-k ^ a-k * E. Goursat, loc. cit., p. 309. 
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We employ the following identity: 

J
* a+ k /» a+ k 

x/s(x, b + h)f(x)dx - Kf(a) - H I f{x)dx 
a-k Ja-k 

/

a+a s*a+a 

U(%) -f(a)]4'(x,!) + h)dx+f(a) I ^{x,b + h)dx 
. a—a *J a—a 

ƒ• a+k 
<j>(x, b + h)f{x)dx 

a+a 

J» a—a /» a+a 

<j)(x, b + h)f(x)dx — H I f{x)dx. 
a-k J o,-a 

Here ce is an arbitrary number for which 0<a<k. Given an 
arbitrary positive number e, we determine a so small that the 
following inequalities hold :* 

/

» a+a 
ƒ(*)<*• 

a-a 

I f(x) - f(a) I < 

< ; (a) 

(b) I f(x) - fid) I < — ;; \ x - a I ^ a, 

(c) a < r -- • 
10H\f(a)\ 

With this choice of a equation (6) gives the inequality 

Ih\ ^ 
5(K + 2kH) J a-a /

• a+a 
\j/(x, b + h)dx 

a—n 

\p(x, b + h)dx — K 

(7) 
H/(«)l| f 

I J a- „ 

+ I cj)(x, b + h)f(x)dx 

I /» a—a; 
I 0(x, & + h)f(x)dx 

J n.4-h 
+ 

We can now choose h so small that the right-hand side of this 

* H may clearly be chosen positive and so great that K-\-2kH is posi­
tive. If f (a) = 0, condition (c) becomes superfluous. 
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inequality will be less than e. For we have shown that we can 
choose h so small that the integral 

I 
a+a 

\j/(x, b + h)dx 

differs as little as we like from K + 2aII, and hence is less than 
K + 2kH. For such values of h the first term on the right-hand 
side of (7) is less than e/5. The second term may be made to 
differ as little as we like from 2aH \f(a) | by choice of hf and 
hence made less than e/5 by virtue of (c). The two remaining 
integrals of (7) approach zero as h approaches zero since they 
are continuous functions of h in the neighborhood of h = 0 and 
since 4>{x, b) = 0 in the intervals a+a Sx^a + ky a — k^x^a — a. 
We may therefore determine h so that each is in absolute value 
less than e/5. I t follows that \lh \ <e for h sufficiently small, 
and the lemma is established. 

LEMMA 3. If <p(x, y) satisfies the conditions of Lemmas 1 and 2, 
and ifv(x, y) is a solution of (4) regular in R, then 

C r d0 
(8) I <t>{x, y)v(x, y)dx + v(x, y)—(x, y) 

Jc0 L dx 
dv "1 

- </>0, y)—(x, y) \dy = Kv(a,b), 
ox J 

where Co is the contour of any rectangle in R with its sides parallel 
to the axes and including (a, b) as an interior point, and where the 
integration is in the clockwise sense. 

PROOF. Consider the function 4>(x, y+h) where h is a small 
positive constant which, in the course of the proof, will be 
allowed to approach zero as its limit. This function is a solution 
of (2) regular in the rectangle whose vertices are (a — k, b), 
(a+k, b)} (a + fe, b + r), (a — k, b + r) provided r, h and k are 
chosen positive and sufficiently small; for, the point (a, b — h) 
at which <j>(x, y+h) may fail to be regular lies outside the 
rectangle. We may now apply Green's formula to this rectangle 
taking u(x, y) =4>(x, y + h) and v(x, y) =v(x, y). Then 

ƒ. <ƒ>(#, b + h)v(x, b)dx 
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rh+r r d</> av "i 
= I \v(a—k,y)—(a— k, y+h) — 4>{a— k, y+h)—(a—k,y)\dy 

Jb L dx dx J 

J» a-\-k 

0(x, b + r + h)v(x, b + r)J# 
a - A 

f6 r 60 3» "1 
+ I ï<a+&, y)—(a+k, y+h)—(j>(a+k, y+h)—(a+k, y) dy. 

Jb+rL dx dx J 

Now let h approach zero. By Lemma 2 the first integral tends 
to Kv(a, h). The integrals on the right are continuous functions 
of h in the neighborhood of h = 0, so that their limits are ob­
tained by setting h = 0 in their integrands. 

I t is now an easy matter to complete the proof. By Green's 
formula the integral (8) extended over Co is equal to the same 
integral extended over the rectangle whose vertices are (a — k, 
b — r), (a + k, b — r), (a+k, b + r), (a — k, b + r), where r and k 
are so chosen that the rectangle lies in R. But we have seen 
that 4>(x, y) = 0 if y <b so that the part of the contour for which 
y<b may be neglected. The integral extended over the re­
mainder of the contour, as we have just seen, is equal to Kv(a, b). 
The equation (8) is thus established. 

4. Proof of the Theorems. Let f(x,y) be a solution of (2) 
regular in the neighborhood of (a, b) except at (a, b). Choose 
the rectangle R of Section 2 so that ƒ (x, y) is regular throughout 
R except at (a, b). Determine a solution f(x, y) of (2) regular 
throughout R and assuming the same values as f(x, y) on the 
sides EA, AB, BF. If f(x, y) is bounded at least on one side, 
then the function cj>(x, y) =f(x, y) —f(x, y) has the same prop­
erty, and may be taken as the function (/> of the lemmas. 

Let (xi, yi) be an arbitrary interior point of R not the point 
(a, b). Surround (xi, yi) by a small rectangle with boundary G, 
with sides parallel to the axes, lying entirely in R, and such that 
(a, b) is an exterior point. In a similar way construct a rectangle 
with boundary Co about (a, b) and so small that all points of C± 
are exterior points. Let C be the boundary of R. Form the 
Green's function G(x, y; J, rj) for the region R. Fix the first 
pair of arguments at (x\, yi), and let the second pair be variable. 
The functions <fi(x, y) and G(x\, y±\ x, y) are regular in the region 
D bounded by the curves C, Co, &, the former a solution of (2), 
the latter a solution of (4). If we apply Green's formula to 
these two functions in the region D we obtain 
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+ 

r / d<t> dG\ 
I (j>(x, y)G(xh yX) x, y)dx + [G <t>— )dy 

Jc0 \ dx dx/ 
r ( d$ dG\ 
I 4>(x, y)G(xh yi; x, y)dx + [G </>— )dy = 0. 

J C\ \ dx dx/ 
The integration is in the same sense over Co and Ci. The in­
tegral extended over C disappears since either 0 or G vanishes 
on each side of the rectangle. By Lemma 3, the first of these 
integrals has the value ± KG(xi, yi \a,b). The second may easily 
be evaluated by known theory. For, we recall that, in the neigh­
borhood of (xi, yi),G(xi, 3/1 ; x, y) = U(x\, yi\ x,y) +v(x,y), where 
v(x, y) is a solution of (4) regular in the region bounded by 
Ci. Moreover. 

J / d(f> dv\ 
<j>vdx + ( v <t> — )dy = 0 , 

Ci \ dx dx/ 

r / du a</>\ 
I 4>{%, y)U(xh yr, x, y)dx + I -<j> h U-) 

J a \ dx dx/ 

and 

d y 

± 2TT1/2 <t>(xi} yi). * 

Hence 2wl/2<f>(xi, yi) = ±KG(xi, y±] a, b). As a function of 
(%u yd, G is a solution of (2), and we have 

K 
0 0 , y) = ± ~~-~U{xy y; a, b) + u(x, y), 

K 
(9) f(x, y) = ± —— U(x, y; a, b) + u{x, y) + j(x, y). 

2TT1IZ 

We see that if f(x, y) is bounded on both sides K must be zero, 
for, otherwise the right-hand side of (9) would be unbounded, 
and we should have a contradiction. On the other hand, if 
f(x, y) is unbounded on one side, K can not be zero. If we choose 
the constant L of Theorem 2 as ±K/(2TT1,2)} equation (9) serves 
to prove that theorem. Both theorems are thus completely 
established. 

BRYN M A W R COLLEGE 

*E. Goursat, loc. cit., p. 311. 


