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Therefore ]C£i l a ^ \p converges for every k and (36) is a trans­
formation on the space (#»•), where 22^ i k* lp/(î>_1) converges 
and p/(p —1)^2. For any such (xi)> we have 

r - I ( P - I ) / P r » " I ( P - I ) / P 

(38)1 Zly*!"'^1'! ^1 El*!"**-"! 

[ / oo p oo - u / ( p - i ) \ (p-i)/î>n 

, + {S[S1-1 '] I ]• 
and hence the (yk) is in the same space. On the other hand, 
given (yk) in this space, we find an equivalent system (26') 
as in I having an absolutely convergent determinant and ob­
tain the solution from (26') by Cramer's rule as in II, (6) of 
the lemma being used. The discussion of the inverse of the 
transposed system follows that of III . 
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EXAMPLES OF SURFACE TRANSFORMATIONS 

BY P. A. SMITH 

The purpose of this note is to illustrate by examples certain 
points in the structure analysis of surface transformations, 
and at the same time to point out certain unsolved problems 
which appear to be fundamental in this connection. 

Every (1-1) continuous transformation of a surface 5 into 
itself admits* a closed invariant set of central points which 
possesses certain properties of regional recurrence and which is 
determined essentially as follows : the points of S move under 
indefinite iteration of T and its inverse T_i, toward a certain 
closed invariant set M1 which in general is a proper subset of S; 
M1 contains a proper subset M2 related to M1 as M1 is to 5. 
Continuing thus, we finally arrive at a first set Mr such that 

* The definitions and theorems used implicitly in this note are to be found 
in detail in Birkhoff and Smith, Structure analysis of surface transformations, 
Journal de Mathématiques, vol. 7 (1928). With regard to regular regions, 
see also P. A. Smith, Regular components of surface transformations, to appear 
shortly in the American Journal of Mathematics. 
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Mr+i = Mr (*=1, 2, • • • ) and Mr is the set in question. The 
number r is a sort of measure of the structural complexity 
of T, and may perhaps be a transfinite ordinal. The fact is, 
however, that as yet no examples are known for which r>2. 
Examples with r=l are simple to construct; a sphere, for 
example, may be rotated through 180°. Then Ml = S and hence 
Mi = 5, i > 1, and Mr = 5, r = 1. Transformations with r = 2 can 
also be effectively constructed ; to show this will be the purpose 
of our first example. It would be of considerable value for struc­
ture analysis to know whether or not r can be greater than 2. 

For the set M1 we may take the totality of non-wandering 
points of 5,—they are defined by the property that an arbi­
trarily small neighborhood <r of any of them is intersected by 
images of <r under sufficiently great powers of T and TLi. Or, 
we may start with N1 for our initial set, N1 being the totality 
N of a- and w-limit points of T, together with the ordinary 
limit points of N. Here we may ask if N is not itself closed, 
and our second example is constructed to show that such need 
not be the case. Each point of N1 is non-wandering and hence 
there can exist non-wandering points which are not a- or co-limit 
points. I t would be of considerable interest to go a step farther 
and learn whether or not there can exist non-wandering points 
not contained in N1. A closely related unsolved problem is 
the following: the sequence N1, N2, • • • leads eventually 
to a final set Ns which is identical with Mr\ it is known that s 
is not greater than r,—must s = r? 

The set S—M1, if it is not null, may contain certain regular 
regions, that is, regions of uniform approach toward M1 

with respect to indefinite iteration of T. The question arises 
as to whether such regions must exist. We shall describe briefly 
a transformation in which the open set S — M1 contains no 
regular regions. 

The Transformations. Let 5 be a sphere and 6 = const., 
0 = const. ( — 7r /2^0^7r /2 , 0 ^ 0 ^27T) be its parallels and merid­
ians respectively. We shall first describe three preliminary 
transformations of S. 

A. Let / be a (1-1) continuous transformation of the equator 
(6 = 0) into itself, leaving invariant the point 0 (0 = 0, 0 = 0) 
and increasing the 0-coordinate of every other point by an 



574 P. A. SMITH [August, 

amount less than w/2. If / is represented by 0i = 0 + / ( 0 ) , 
the first transformation A of S will be defined by 

0i = 0, (/>! = 0 + ƒ(«). 

Thus 4̂ leaves invariant the poles 0=±7r /2 , and the points 
of the meridian 0 = 0, and increases the 0 of all other points 
by amounts always less than w/2. 

B. The transformation B is given by 

$1 = $ - x sin 20, 0i = 0, 

where the positive constant X is chosen, as it can be, so small 
tha t B shall be (1-1). The only invariant points here are the 
poles and the points of the equator. The general motion of all 
other points on iteration of B is toward the equator. In fact 
if • • • C-i, Co, Ci, • * - represent the successive images of the 
parallel Co in the upper (lower) hemisphere, the sequence 
Co, Ci, • • • has the equator for its only limit circle, and the 
sequence Co, C_i, • • • closes down on the pole 0 = 7r/2,(0 = —w/2). 

C. This transformation is represented by 

0i = 0, 0i = 0 + g(0), 

where g(6) is defined as follows: assume C0 of the preceding 
paragraph to lie in the upper hemisphere, and let Cn be given 
by 0 = 0n,(» = O,± l , • • • ). Then let g(0n) =TT( \n \ + \)~\ 
g(0) =g(/jr/2) = 0 ; on each interval (0n, 0w-i-i), gW 'ls to vary 
linearly between the values taken at the end points. This 
defines g(6) for O^0^7r /2 and the definition is now completed 
by putting g ( - 0 ) = g ( 0 ) . 

Consider now the product transformation T = ABC; we shall 
show that for T, r = 2. We note first that T may be represented 
in the form 

0i = 0 - X sin 20, 0i = F(0,0). 

Hence, as for B, motion in the two hemispheres is uniformly 
toward the equator on iteration of T, and toward their respec­
tive poles (which are invariant points) on iteration of r_ i . 
Hence the set M1 is contained in the set P ^ J ^ + equator, 
P 1 and P 2 being the poles. The equator transforms under T 
just as it does under A, since its points are invariant under B 
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and C. Hence its points move toward the invariant point O 
on iteration of T and T_i. Hence M2 contains only the points 
0, P\ P2. Thus Mr = M2, and r ^ 2 . To show that r = 2, we 
must show that M2 is a proper subset of M1. We shall show in 
fact that all points of the equator are in M1. 

Let a be a small neighborhood of an arbitrary point P of the 
equator. For m positive and sufficiently large, a will be inter­
sected by Cm; let Q be a point of intersection. Now the 0-coordi-
nate of Q receives non-negative increments from A and B; 
hence its increment from T is at least as great as that due to C, 
namely 7r(l +m)~1. Hence the </> of Q is increased by an amount 
= ] 0 = d 7r(m + 1 + f ) - 1 on k applications of T, and is therefore in­
creased without bound on infinite iteration. Thus Q describes, 
so to speak, infinitely many circuits about the sphere in the 
neighborhood of the equator, whereas P converges directly to 0. 
Hence the successive images of a tend to wind themselves 
around the sphere, and are at the same time drawn constantly 
closer to the equator. Clearly an must intersect cr for large 
positive values of n, and P is therefore non-wandering, hence in 
M1. This completes the proof that r = 2. 

Consider next the transformation AC; we shall show that the 
set N defined above is not closed. We remark first that AC 
transforms into itself every circle Q — c according to the relation 

Since ƒ(</>) ̂ 0 for all 0, and g(c) > 0 except for c = 0, ±7r/2, the 
only invariant points are the poles and 0. The function \c(<t>) 
undergoes continuous modification as c varies continuously and 
hence the rotation number* p(c) associated with \c(</>) is a con­
tinuous function of c as one can readily verify. Since 0 is in­
variant, p(0) = 0 and hence an arbitrarily small non-zero value 
c' of c can be chosen such that p{c') is commensurable with w. 
Because of a property of rotation numbers, there exist on the 
circle d = c (which is arbitrarily near the equator) a number of 
periodic points. Let one of them be U. Since U can not be 
invariant, it is at least of order 2, and iterates periodically 

* For a definition of rotation numbers and an account of their properties, 
see Birkhoff, Surface transformations and their dynamical applications, Acta 
Mathematica, vol. 43 (1920), p. 87. 
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through a finite group of two or more periodic points on repeated 
application of A C. Hence the ^-coordinate of U increases with­
out bound. But the successive increments of <j> are <T/2. This 
is due to the definition of A and the fact that near the equator 
the influence of C is minute. I t follows that there exists at 
least one periodic point on every quarter-circumference of 
8 = c'. Clearly the totality of periodic points must therefore 
have at least four limit points on the equator. Since each 
periodic point is an a- and co-limit point, and since the only 
a- or co-limit point on the equator is 0, we have at least three 
points which are not a- or co-limit points, but are limit points of 
such points. Hence N is not closed. 

In our final example* we shall let 5 be represented by the 
x y plane with a single point at infinity. Each point of S not 
contained between the two lines y = 0 and y = 1 is to be in­
variant. The only further invariant points are those of the set 
(±p/q, l / s ) , where p and a are positive integers and q>l. 
All the remaining points are to move vertically downward 
(xi = x, y 1 <y) on iteration of T, and hence vertically upward on 
iteration of 7"_i. Clearly the set Ml consists of the invariant 
points only. 

Let <T be a small connected region in S—M1. We can choose 
in <T a point P (a, b) where a = m/nt b>\/n, and a point 
P ' (a', b') where a ' is irrational. Under iteration of T, all points 
of a move vertically downward. The sequence P , Pi, P2 , • • • 
converges to V{rn/n, 1/n), while the sequence P', P{, P2 ' , • • • 
converges to (a', 0). Now V is an isolated point of M1 and is at 
a non-zero distance 5 from the remaining points of-Af1. Hence 
no image of a under positive powers of T can lie entirely within 
a distance e of Ml, if we take e < ô/2. Thus there are no regions of 
uniform approach toward M1 and all points of S-—M1 are 
co-irregular. 

BARNARD COLLEGE, 

COLUMBIA UNIVERSITY 

* Certain details of this construction will be omitted; they are not difficult, 
however, and have been carefully verified. 


