
558 H. V. CRAIG [August, 

From the above and from (8), we obtain 

and from (7) it follows that 

r^1 s 1 (mod p2). 

As before, a similar proof obtains when y is divisible by p. 

OTTAWA, CANADA 

ON T H E SOLUTION OF T H E EULER EQUATIONS 
FOR T H E I R HIGHEST DERIVATIVES* 

BY H . V . CRAIG 

1. Introduction. J. H. Taylor f has given two elegant methods 
of solving for their highest derivatives the Euler equations 
associated with the integral fF(x, x)dt. In this paper these 
two methods are modified so as to apply to the more general 
case in which the Euler equations contain derivatives of order 
higher than the second. 

2. Notation. Throughout this paper we shall employ vector 
notation and shall use dots and enclosed superscripts to indicate 
differentiation with respect to the parameter. Thus X j X ) X 
will stand for the sets 

dx' dx2 dxn dmxl dmx2 dmxn 

XX,X2, • • • , Xn] ; ; • • •) ; ) ; • • • ; ) 

dt dt dt dtm dtm dtm 

respectively. Partial derivatives will be denoted by means of 
subscripts, thus 

* Presented to the Society, September 7, 1928. This paper is a part of a 
thesis written at the University of Wisconsin under the direction of Professor 
J. H. Taylor. 

f J. H. Taylor, The reduction of Euler1 s equations to a canonical form, this 
Bulletin, vol. 31 (1925) p. 257. 
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dF(x,x, • • • , x<m)) dF(x,x, • • • , xim)) 

dx% dxl 

dF(x,x, • • • , x(m)^ 

dxl Ff 

However, if the differentiation is with respect to the highest 
derivatives present we shall further abbreviate by omitting the 
m, that is, 

dF(x,x, • • • , #(m)) 
— - — - - = Fi. 

Summations are to be understood when repeated indices occur. 

3. The Calculus of Variations Problem and the Euler Equa­
tions, We consider a function F(x, x, • • • , x(m)), w > l , with 
properties to be specified and seek among all curves of class 
2m lying in a certain region of an w-space and satisfying cer­
tain boundary conditions, the one which gives the integral 

F(x,x, Am) )dt 

its minimum value. 
As a first hypothesis on F we suppose, as just implied, that 

the solution of this problem exists uniquely. The additional 
hypotheses are: (a), that F is of class ra + 1; (b), that the 
classical F\ function* associated with F does not vanish along 
the solution; and (c), that I is independent of the choice 
of the parameter. 

Zermelo has shown f that this invariance of I implies the 
following identities 

(1) xlFi == 0, i ranges from 1 tow, 

(2) xi{a)Eai s== F , a ranges from 1 t o w , 

* We have used J?i to avoid confusion with Fi=dF/dx1(>m\ For a discus­
sion of the Fi function, see Oscar Bolza, Vorlesungen iiber Variationsrechnung, 
Leipzig, Teubner, 1909, p. 13. Oscar Bolza, Lehrbuch der Variationsrechnung, 
p. 196. 

f See Adolph Kneser, Lehrbuch der Variationsrechnung, Leipzig, Teubner, 
1925, p. 217. 
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where Eqi is defined by the equation 

Eqi = (— iyFfiiQ+fi, (granges from 0 to m—q) . 

We observe from this definition that Eoi=^0, i= 1, 2, • • • , nf 

are the Euler equations associated with F. These equations are 
not independent, but satisfy the relation 

(3) x*£0 i = 0. 

This may be established as follows. Differentiating (2) we 
obtain 

If in this we replace the second term by its value as given by 
the formula 

Eqi — F{q — Eq+H 

the relation becomes 

F = **<«>[FV*-1 - Ea-u] + x^+^Eai. 

Since Emi = Fi, this may finally be written 

F = x^Fi*-1 + x^m+l)Fi - ±iEoi + x^Ea-u - x^Ea-u) 

hence x\E0i = 0. 
Since (1) evidently leads to 

(4) **F$7 = 0, (j = 1,2, • • • , » ) , 

it follows that the determinant | F a | (and this is the deter­
minant of the coefficients of x(2m) in the Euler equations) 
vanishes. Accordingly, the problem of solving the Euler equa­
tions for their highest derivatives requires special consideration. 
We shall make it a part of our hypotheses on F that the rank 
of this determinant be n — 1. 

For use in determining the rank of certain determinants 
which will appear presently, we insert here a few miscellaneous 
observations. As a consequence of equation (4) and the rank 
of the determinant | F a |, the cofactors Fi3' of the latter satisfy 
the following relations : 

fil pi2 pin 
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If we note that the quantities Fil are symmetric in their indices, 
these equalities are seen to be expressible in the form 

•A/ *v •'V 

(5) = , 
pij phi 

where i, j , k, I may each be any number of the set 1, 2, • • • , n 
and no summation is to be understood. The reciprocal of the 
common value of the members of (5) is the Fi function of our 
problem. 

4. The First Method of Solution.* Let H(x, x) be any function 
of class 2m — 1, homogeneous of degree plus one in x, and non-
vanishing along the solution of our problem. With these re­
strictions we may so select the parameter that H will maintain 
the value unity along the solution. Differentiating the equation 
H=l, 2m —1 times with respect to /, yields the relation 

(6) xW^Hi + r = 0. 

Here we have written explicitly only the terms in x(2m) and have 
represented by r the remaining terms. This equation we ad­
join to the system 

(7) xW^Fij + wH3 + Rj = 0, 

Rj being so chosen that these relations reduce to the Euler 
equations for w = 0. The system (6, 7) is linear in the variables 
x(2m) a n ( j Wf j i a s a non-vanishing determinant, and determines 
the same set of values for x(2m) as the Euler equations. To prove 
this last statement we multiply the equations of the set (7) 
by xj and sum. Because of (3) and the conditions imposed 
on H (the homogeneity of H implies xiHi = H) the result is 
w = 0. The determinant of the system (6, 7) is equal to 

± HiHjF^ = ± F&WHiHj = ± Fx ^ 0. 

5. The Second Method of Solution. Let us replace the function 
F(x, x, • • •, x(m)) of our calculus of variations problem with a 
new function f(x, x, • • •, x (m)), which we define as follows: 

* Taylor points out the incidence of this method in an article entitled 
The properties of curves in space which minimize a definite integral, by Mason 
and Bliss, Transactions of this Society, vol. 9 (1908), p. 443. 
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1 (dm~lH(x,x)\2 

ƒ ( * , * , • ' ' , * ( m ) ) s H*,*, • • • , * ( m ) ) + —< —— f • 

We restrict the function H as in the preceding section and select 
the parameter as before so that H maintains the value unity 
along the unique solution C. 

For such a parameter it is evident that 

/
ƒ(*,*, • • • , %{m))dt = I F(x,±, • • • , x^m))dt, 

and 

jfdt > I Fit, 

if C is any other admissible curve. Therefore the curve C is 
also an extremal of the integral Jfdt. (The problem associated 
with ƒ is not a Weierstrass problem since / has a special mean­
ing.) Furthermore the determinant \fa\ (fa = Fij+HiHj) is 
different from zero since 

| fij | = HiHjF" = T&WHiHj * 0.* 

Hence the values of the quantities x(2m) along any extremal 
may be obtained by solving the Euler equations associated 
with ƒ by Cramer's rule. 

I t can be shown that the left members of the Euler equations 
in the unsolved form are the components of a covariant vector. 
The method of solution outlined above gives us a simple contra-
variant description of this vector. 

THE UNIVERSITY OF TEXAS 

* See J. H. Taylor, loc. cit. p. 261, for the development of a similar deter­
minant. 


