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ON REGULAR POINTS OF CONTINUA AND 
REGULAR CURVES OF AT MOST ORDER n* 

BY G. T. WHYBURN 

1. Introduction. In this paper it will be shown, as a conse­
quence of some more general results, that if n is any integer 
5^2, the set of all points of order n of any continuum I f in a 
locally compact metric and separable space is punctiform, 
that is, contains no continuum; and hence there exists no con­
tinuum every point of which is of order exactly n. 

The ordinary notation and terminology of point set theory 
will be employed. For example, 'X = X+Xf

1 where X' is 
the set of all limit points of the set X\ KH means the set 
of points common to K and H; K c H means that K is a 
subset of H and KDH that K contains H\ S(itf) denotes the 
diameter of the set M\ p(X, Y) denotes the minimum dis­
tance between the sets X and F; if R is an open set, F(R) 
denotes the boundary of R relative to the whole space, and 
if R is an open subset of a set M, Fm(R) denotes the boundary 
of R relative to M, that is, the set of all those points of M—R 
which are limit points of R. By a continuous curve is meant 
any connected im kleinen continuum. A neighborhood of a 
point is an open set containing that point. A point ? of a 
continuum M is called a Menger regular pointf of M, or 
simply a regular point of ikf, if for each €>0, P can be e-
separatedj in M by some finite subset of M, that is, a finite 
subset U of M exists such that M— U=Mi + M2, where Mi 
and M2 are mutually separated, Mi D P , and ö(Mi) <e . If an 
integer n exists such that, for each e>0 , the e-separating set 
U can be chosen of power n, but cannot, (for every e), be 

* Presented to the Society, Southwestern Section, December 1, 1928. 
f See K. Menger, Grundzuge einer Theorie der Kurven, Mathematische 

Annalen, vol. 95 (1925), pp. 277-306. 
% P. Urysohn, Sur la ramification des lignes Cantoriennes, Comptes 

Rendus, vol. 175 (1922), p. 481. 
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chosen of power <n, P is said to be a point of order n of M. 
A continuum all of whose points are regular points is called 
a Menger regular curve, or simply a regular curve; and a con­
tinuum M such that for some integer n> all the points of M are 
of order ^n, is called a regular curve of at most order n.* 

DEFINITION. The point P of a continuum M will be said 
to separate locally a given subset N of M in M if there exists a 
compact neighborhood G of P such that if R is any neighbor­
hood of P lying in G, then Af • P — P is separated between some 
two points of N-R, that is, MR — P = Mi + M2, where Mi 
and Af2 are mutually separated and Mi-N-RT^O?*M2N• R. 

The point P of a continuum M is called a /ö^aZ separating 
point\ of .Af if a compact neighborhood R of P exists such 
that M-R — P is separated between some two points of the 
component C of M P which contains P . Obviously every 
local separating point of a continuum M locally separates M 
in M. However, the converse is not necessarily true unless 
P is a regular point of M. 

2. THEOREM 1. If for the closed subset N of a continuum M 
there exists an integer n such that the set K of points of N which 
are points of order ^n of M and which locally separate 
N in M is dense in N, then the points of M of order ^n/2 + 1 
are dense in N. 

PROOF. Let R be any open subset of N. By hypothesis 
K-R contains a point Pi . There exists a compact open sub­
set P i of M containing Pi and such that NRicR, 8 (Pi) < 1, 
Pm(Pi) is of power ^n, and Pi —Pi = Pn+Pi2 , where Pu and 
P12 are mutually separated and Rn-NRi^O^Rn-N-Ri. 
There exists at least one of the sets P u and P12, call 
one such set Du such that Di-Fm{R\) is of power ^ w / 2 . 
Then since P m ( A ) c P + A - P m ( P i ) , it follows that Fm{Dx) 

* See K. Menger, loc. cit., and K. Menger, Zur allgemeinen Kurven-
theorie, Fundamenta Mathematica, vol. 10 (1927), pp. 96-115. 

t See my paper, Local separating points of continua, presented to the 
Society October 27, 1928, appearing in Monatshefte für Mathematik und 
Physik,vol.36(1929),No.2. 
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is of power g » / 2 + l. Clearly DxNcR and 5(A) < 1 . 
Let Ni denote the set of points DX'N. By hypothesis, there 
exists a point P 2 in K-Ni- [Di~Fm(Di)]. There exists an 
open subset P 2 of M containing P 2 and such that P2c£>i 
-Fm(Di), 5 ( P 2 ) < l / 2 , PW(P2) is of power g « , and X , - P 
= P 2 i+P 2 2 , two mutually separated sets with R2i-NR2 

9*0T*RWN-R2. For at least one of the sets P 2 i and P22, 
call one such set D2, it is true that D2-Fm(R2) is of power 
^n/2. Then, just as in the case of D\, it follows that Fm(D2) 
is of power ^n/2 + 1 and that D2cD1 — Fm(D1) and 
5 ( D 2 ) < l / 2 . Let N2^DJi'N: Then N2cNu and there 
exists a point P 3 in KN2- [D2 — Fm{D2)]. Just as above it 
follows that there exists a subset D% of J92 containing P3 
and such that DrN2?*0, 5(A) < 1/3, ~DscD2-Fm(D2), and 
Fm{Dz) is of power gw/2 + 1. Let this process be continued 
indefinitely, giving a sequence A , £>2, ^ 3 , • • • , of subsets of 
M such that, for each i, ö»CjDt-_i —Fm(J9<«i), 5(J9<)<l/i, 
O^Di-NcR, and Pm(£>i) is of power ^ n / 2 + 1. There 
exists a point P which belongs to every set Dit Then clearly 
P is a point of order ^ n / 2 + 1 of M. And since P i s a limit 
point of N and N is closed, then P belongs to iV and hence 
to P . Thus every open subset of N contains a point of order 
^n/2 + 1 of My and our theorem is proved. 

COROLLARY la . If for a continuum M there exists an integer 
n such that the local separating points of M of order S n are 
dense in M, then the points of order ^ n/2 + 1 are dense in M. 

THEOREM 2. If M is a Menger regular curve, and if for some 
integer n, all the local separating points of M are of order £n, 
then points of M of order ^n/2+1 are dense in M. 

By a theorem of the author,* the local separating points 
in a regular curve M are dense in M. Then since every local 
separating point of M locally separates M in M, it follows by 
hypothesis and Theorem 1 that the points of M of order 
g n/2 + 1 are dense in M. 

* See my paper, Concerning points of continuous curves defined by certain 
int kleinen properties, offered to Mathematische Annalen. 
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COROLLARY 2a. If for some integer n, every point of a contin­
uum M is of order ^ n, that is, if M is a regular curve of at most 
order n, then the points of M of order ^ n/2 + 1 are dense in M. 

COROLLARY 2b. There does not exist an integer n?*2 and a 
continuum M every point of which is of order exactly n. 

COROLLARY 2C. The simple closed curve is the only continuum 
of at most finite order every point of which is of the same order. 

THEOREM 3. If Nis any connected set of regular points of a con­
tinuum M, the set K of all those points of N which are local sepa­
rating points of M and locally separate N in M is dense in N. 

PROOF. Let R be any open subset of N, which we will 
suppose is ?*N, and let P be a point of R. Since P is a regular 
point of M, there exists a compact open subset D of M con­
taining P and such that Fm(D) is finite and D • N c R. Since 
N is connected and D-N^O^N^M-D), it follows that 
Fm(D) contains a point X of N which is a limit both of N- D 
and of N'(M-D). And since N is connected im kleinen, 
it follows that there exist compact connected subsets A and 
B of N s u c h that . 4 - 5 = X , A-XcD, and B-XcM-D. 
Let G be a compact neighborhood of X such that 
G> [Fm(D)-X]=Q. Then if V is any_neighborhood of X 
lyingjn G, M-V-X=V-D + V-(M-D); and since D and 
M—D are mutually separated, it follows that V-D and 
V-(M-D) are mutually separated. Clearly these two sets 
contain points of A and B respectively. Therefore X is a 
local separating point of M which locally separates N in M, 
and hence it belongs to K. Thus, since X c R, it follows that 
K is dense in N. 

THEOREM 4. If M is any continuum and n is any integer 
> 2, the set Kn of all points of M of order n is punctiform, that 
ist contains no continuum. 

PROOF. Suppose, on the contrary, that for some integer 
n>2, Kn contains a continuum N. Now by Theorem 3, the 
set K of points of N which locally separate N in M is dense in 
N. Then ; since every point of K is a point of order n of M, it 
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follows by Theorem 1 that N contains at least one point of 
order ^n/2 + 1 of M. But since n>2, the greatest integer 
which is less than or equal to n/2 + 1 is less than n. Hence N 
contains a point of order <n of M, contrary to supposition. 

NOTE. Menger (loc. cit.) has shown that the set K1 of 
all points of order 1 (end points) of any continuum M is null 
dimensional, that is, each of its points can, for each e>0 , 
be e-separated in K1 by a null set. Hence, using Theorem 4, 
if ny^2, the set Kn of points of order n of any continuum is 
punctiform. It would be interesting to determine whether 
or not, for n?£2, the set Kn is always null dimensional as well 
as punctiform. I will remark that the set Kw of points of 
order w (that is, regular points which are of no finite order) 
of a continuum, or even of a regular curve, is not necessarily 
punctiform, as can be shown by the curve obtained by mak­
ing some simple additions to the Sierpinski regular curve.* 

THEOREM 5. In any regular curve M of at most order n, the 
set H of points of order > n/2 + 1 is null dimensional. 

PROOF. The set H must be punctiform. For suppose it 
contains a continuum N. Then since every point of N is a 
regular point of M of order ^n, by Theorem 3 the set K of 
points of N which locally separate N in M is dense in N. 
Hence, by Theorem 1, N contains a point of order ^ n/2 + 1, 
contrary to supposition. Thus H is punctiform. And since by 
a theorem of Menger,f H is an Fv (that is, the sum of a count­
able number of closed sets), it follows by a theorem of Mazur-
kiewiczj that H is homeomorphic with some linear set. 
Therefore, since H is punctiform, it is§ null dimensional. 

We note here the fact that while the set H in Theorem 5 is 
null dimensional, it is not necessarily countable; for an 

* See W. Sierpinski, Comptes Rendus, vol. 160 (1915), p. 302. 
t Grundzüge einer Theorie der Kurven, loc. cit., Theorem 4. 
% S. Mazurkiewicz, Bulletin de l'Académie des Sciences de Cracovie, 

1913. 
§ See W. Sierpinski, Sur les ensembles connexes et non connexes, Funda-

menta Mathematicae, vol. 2 (1921), p. 89. 
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example is easily constructed of a regular curve of at most 
order 3 in which the points of order 3 form a perfect set. 

3. Regular Curves of at Most Order 3. Knaster and Kura-
towski have shown* that the Sierpinski regular curve, which 
is a curve of at most order 4, contains a connected set which 
contains no perfect subset. In this section I shall show that 
no curve of at most order 3 can contain any such set, and 
indeed, that every connected subset of a continuous curve 
M, every maximal cyclic curve of which is a regular curve of 
at most order 3, contains a perfect set of local separating 
points of M. The continuous curve M is cyclicly connectedf 
if every two of its points lie together on some simple closed 
curve in M. The cyclicly connected continuous curve C is 
said to be a maximal cyclic curve of a continuous curve M if 
C is a subset of M and is not a proper subset of any cyclicly 
connected continuous curve which is a subset of M. 

LEMMA 6a. In a regular curve of at most order 3, no two 
maximal cyclic curves have a common point. 

Lemma 6a follows at once from the facts that no two 
maximal cyclic curves of a continuous curve can have more 
than one point in common and that every point of a cyclicly 
connected curve C is of order not greater than 2 of C. 

THEOREM 6. If every maximal cyclic curve of a continuous 
curve M is a regular curve of at most order 3, then every con­
nected subset H of M contains a perfect set of local separating 
points of M. 

PROOF. If every point of H is either a cut point or an end 
point of M, thenf H is arcwise connected and hence contains 

* A connected and connected im kleinen point set which contains no 
perfect subset, this Bulletin, vol. 33 (1927), pp. 106-109. 

t See my paper, Cyclicly connected continuous curves. Proceedings of 
the National Academy of Sciences, vol. 13 (1927), pp. 31-38;for the ex­
tension of the results in this paper to a more general space than the plane, 
see an abstract by W. L. Ayres in this Bulletin, vol. 33 (1927), p. 661. 

t See my paper, Concerning the structure of a continuous curve, American 
Journal of Mathematics, vol. 50 (1928), pp. 167-194, Theorem 8; see also 
an abstract by C. M. Cleveland in this Bulletin, vol. 32 (1926), p. 420. 



224 G. T. WHYBURN [Mar.-Apr., 

an arc every point of which is a cut point of M. If not, then 
H contains at least two points of some maximal cyclic curve 
C of M. Let W — HC. Then* W is connected and con­
tains more than one point. Since, by hypothesis, every point 
of W is a point of order ^ 3 of C, it follows by Theorem 3 
tha t W contains a point P which locally separates W in C. 
Then since P obviously is a point of order ^ 2 of W, it fol­
lows that a connected open subset R of C exists containing 
P and such that (1) FC(R) is of power ^ 3 , (2) R- W is con­
nected, and (3) FC(R) contains at least two points A and B 
of W which are separated in R by the point P . Now since 
I c C , R is a regular curve of at most order 3. Hence, by 
Lemma 6a, no two maximal cyclic curves of R have a point 
in common. And since A and B do not lie in the same maxi­
mal cyclic curve of i?, it follows by a theorem of the authorf 
that A and B are separated in ]R by each point of a perfect 
point set K. Now K c W- R, for W R is connected and con­
tains both A and B. Clearly every point of K is a local sepa­
rating point of M. Thus H contains a perfect set K of local 
separating points of M, and our theorem is proved. 

It would be interesting to determine whether or not, in a 
regular curve of at most order 3, every connected subset is 
arcwise connected, and whether every punctiform subset is 
null dimensional. 

The foregoing results yield immediately the following 
additional theorem on regular curves of at most order 3. 

THEOREM 7. In a regular curve M of at most order 3 the 
boundary with respect to M of every connected open subset of 
M is totally disconnected. 

THE UNIVERSITY OF TEXAS 

* G. T. Whyburn, loc. cit., Theorem 30. 
t See my paper, Concerning the cyclic elements of continuous curves, 

presented to the Society September 4, 1928. 


