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ON T H E POTENTIAL OF CERTAIN SURFACE 
DISTRIBUTIONS 

BY HILLEL PORITSKY* 

The surface distributions that are commonly studied in 
potential theory are those known as single and double layers, 
or as surface distributions of poles and doublets. A. Wangerinf 
first investigated potentials of what he called triple layers 
(dreifach belegte Flâchen), that is, potentials of the form 

(1) v{P) = „(n) ~ J 4 ~ ^ ~ - ds. 

Here r (P , II) is the distance between a point II of the surface 
S and a point P in space, dS is the element of area of S a t II, 
ix(ir) is a given function along S (the density function), and 
d/dn indicates differentiation along the normal toward a 
specified side of S that might be called its positive side.J 

He showed that both v and its first derivatives are discon­
tinuous at 5. M. Freund§ studied more complex distributions 
over a spherical surface of the form 

(2) v{P) = M(n) L ; ; ds. 
J dnk 

I t is the object of this paper to point out that by means of 
certain integrations by parts these integrals may be replaced, 
in case the surface S is closed, by other surface integrals 

* National Research Fellow in Mathematics. 
t A. Wangerin, Über das Potential dreifach belegter Flàchen, Jahresbericht 

der Vereinigung, vol. 29 (1920), p. 174. 
Î The considerations that lead to the name triple layers are analogous 

to the ones that suggest the double layer nomenclature: if the derivative 
is replaced by the limit of a proper quotient, v is seen to be the limit of the 
potential of three single layers spread over three nearby surfaces. 

§ M. Freund, Über das Potential mehrfach belegter Flâchen, Dissertation, 
Universitât Halle (1922). 
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that represent the potential of certain single and double 
layers; if, however, the surface 5 is open, these integrations 
by parts lead to a replacement of the original distributions 
by curve distributions over the boundary of S in addition to 
the above single and double surface layers. Similar conclu­
sions apply to the more general integrals 

(3) v(P) = M(n)^7 [ ds, 
J dhidh2 • • • ohk 

where d/dhu i = l, 2, • • • , &, indicate differentiations in 
k specified directions at each point II of 5, so that for a 
fixed II the integrand is a spherical harmonic of degree 
— (jfe + l) in the coordinates of P when the origin is at II. 
From this it would appear that except for features presented 
at the boundary, if any, of 5, the surface distributions of 
the above types introduce no new element into potential 
theory. 

This reduction to simpler surface distributions may be 
carried out as follows. Introduce a triply orthogonal family 
of surfaces of which 5 is one by taking for one family the 
surfaces parallel to 5 and for the other two the developable 
surfaces consisting of the normals to S through its lines 
of curvature. Let uy v be the parameters along the latter, 
while n is the (directed) distance from S\ u>v,n may be used 
as parameters for the above surfaces or as curvilinear coordi­
nates for points near 5. Let the element of distance be given 
by 

ds2 = gi2du2 + g2
2dv2 + dn2 ; 

gu gz are completely determined by their values for w = 0. 
Indeed, 

(4) gi(u,v,n) = gi(«,»,0)(l + n/Ri(u9v)), (i = 1,2,) 

where 2?i, R2 are the radii of curvature along v = const., 
u = const, respectively, measured positively if the correspond­
ing centers of curvature are on the side of negative n. Using 
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the well known expression for the Laplacian in orthogonal 
coordinates, we get 

KgigiLdu\gi du/ dv\g2 dv/J) 

\gig2 dn\ dn/ j 

If using (5) we form the equation V2(l/V) =0, where r is the 
distance from a fixed point P not on 5, we obtain an equation 
solvable for d2(l/r)/dn2 in terms of first and second order 
derivatives of 1/r among which not more than one n-differen-
tiation occurs. In a similar way, by the use of this equation 
and of the equations that are obtained from it by differenti­
ating it with respect to n once, twice, • • • , (k — 2) times, 
one could express dk(l/r)/dnk in terms of w-, ^-derivatives 
of 1/r and of d(l/r)/dn. Likewise, the spherical harmonic 
dk(l/r)/dhi • • • dhk in the integrand of (3) may be expressed 
in terms of such differentiations as follows. Introduce 
rectangular Cartesian coordinates xf y, z and replace d/dhi 
by cos (xhi)d/dx+cos (yhi)d/dy+cos (zhi)d/dz (the paren­
theses denote angles between the direction hi and the posi­
tive x} yf z axes), and transform to u-, v-, ^-derivatives by 
means of elementary formulas for change of derivatives 
under a transformation of variables. The ^-derivatives of 
second or higher order may now be eliminated from the re­
sult by the use of the equations obtained from V2( l / r)=0 
(expressed in the form (5)) by differentiating it the requisite 
number of times with respect to u, v, n. 

Having thus expressed the integrands in (1), (2), (3), we 
may then integrate the resulting integrals by parts enough 
times to make all the w-, ^-derivatives of 1/r, d(l/r)/dn 
disappear from the remaining surface integrals. The resulting 
surface integrals can be collected into the form 

(a(l/r)dS+ fb[d(l/r)/dn]dS, 

file:///gig2
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where a, b are derived from /x by operating on it with certain 
linear differential operators that depend upon the shape of 
5 near II but are independent of P . These surface integrals, 
therefore, represent potentials of a single and of a double 
surface layer. If the surface S is open, the integrations by 
parts will also introduce certain integrals over the bounding 
curves that represent potentials of poles, doublets, and more 
complex singularities (in cases (2), (3)) distributed over these 
boundaries. Such curve distributions cannot, in general, be 
reduced to simpler curve distributions.* 

For the case of the triple layers of Wangerin the above 
computations may be simplified by the use of the well 
known Green-Beltrami integration theorems. Returning to 
(5) we recognize in the first brace the second differential 
operator of Beltrami (see W. Blaschke, Vorlesungen ilber 
Differentialgeometrie, vol. I, p. 116 (121)); we shall denote 
it by B2. Expanding the second brace and using (4) we 
get for the Laplacian 

V2 = B2 + 2Hd/dn + d2/dn2, 

where H= (1/2)(1/Ri + 1/R2) is the mean curvature. The 
elimination of d2(l/r)/dn2 from the integrand of (1) outlined 
above results in the equation 

v(P) = - ÇB2{\/r)ndS- f 2Hfx[dfx(l/r)/dn]dS. 

The first integral may now be transformed by the integral 
relation of Beltrami 

ƒ (m-vjxs- ƒ (/f-sf>e 

(see Blaschke, loc. cit. p . 117 (129); we denote the element 

* It may be pointed out in this connection that the potential of a volume 
distribution of singularities of the type (3) can always, for points outside 
the region of integration, be reduced to a potential of a volume distribution 
of poles only, in addition to surface distributions of the form (3). A familiar 
instance of this is furnished by Poisson's theory of magnetism. 
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of arc length by dC and the derivative along the outer 
normal to C by 3/3£). We get 

v(P) = ~ ƒ B*n(l/r)dS - f 2#M [d(l/r)/dn]dS 

- ƒ/i[d(l/r)M]dC+ ƒ (l/r)(dM/dÖdC. 

Hence, the density of the single layer is —B2fx and that of 
the double layer —2Hfx. The results of Wangerin for the 
discontinuities in v and its derivatives at the surface 5 
readily follow from the known properties of single and double 
layers.* 

Without going through the explicit computation of the 
densities of the equivalent single and double surface layers 
in cases (2), (3), we can tell from the mere existence of 
these layers that for approach of an inner point of S along 
the normal, these potentials approach limits which depend, 
in general, upon the side of approach. This even sheds some 
light on the behavior near S of higher order derivatives (with 
respect to Cartesian variables) of the familiar single and 
double layer potentials, since such derivatives may be 
written in the form (3) ;f such a form may also be given to 
derivatives of any order of the potentials (1), (2), (3). 

We conclude with a simple example that will serve to 
illustrate the behavior of these potentials of distributions 
over open surfaces near the edge of the surface. Consider 
a distribution of the form (3) over an infinite plane strip, 
say y = 0, 0<x<a, with the k directions hu • • • , hk constant 
and ix depending only on the distance from the edge. Ex­
pressing the directional derivatives in terms of derivatives 

* But the converse is in a sense also true. Thus, if S is closed, v is 
uniquely determined if it is harmonic except on S, if it and its derivative 
along the normal approach limits for approach of 5 from opposite sides 
and if a certain behavior is ascertained at infinity. 

t The explicit values of the discontinuities for second-order derivatives 
of potentials of single layers have been obtained by Poincaré in his Théorie 
du Potentiel Newtonien, §105, etc. 
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with respect to x, y, z and integrating with respect to z 
first, we get for v a sum of terms of the form* 

ra dk log r 
I fjL(x) ax 

Jo dxldyk~l 

J /dklog (z - h)\ 
lx(x)R[ ) dx, 

o \ dxldyk~l ) 

where z is the complex quantity x+iy, h is the value of z 
at P and R(a) denotes the real part of a. But by the Cauchy-
Riemann equations for an analytic function F of a complex 
variable 

dF dF 
= T - - = / r ' ( s ) . 

dx toy 
Hence the integral becomes 

r> f V z / dk\og(z- k) 
R I ik lfx(x) dx, 

Jo dxk 

and, integrating by parts k times, we obtain an integral 
that represents a bounded function of h for \h\< const, 
and integrated terms that yield singularities at h = 0, h = a. 
The terms resulting from the lower limit of integration are 
given by R(cQ log h+ci/h+c2/h

2+ • • • +ck-i/h
k~1) where 

the Ci are constants; similar terms result from the upper 
limit. 

HARVARD UNIVERSITY 

* This furnishes an example of a two-dimensional potential of singulari­
ties analogous to those of (3) for space. The general treatment of such 
potentials could of course be given along similar lines or could be deduced 
from the above by putting 1/Ri-O. 


