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ON T H E SEPARATION OF T H E PLANE 
BY IRREDUCIBLE CONTINUAf 

BY W. A. WILSON 

1. Introduction. This question was investigated by A. 
Rosenthal^ in 1919. His principal results may be stated 
as follows. If F is the union of two bounded continua, 
G and G, which are irreducible between the points a and b 
and have no other common points, then the complement of 
F with respect to its plane consists of two principal compon­
ent regions (Hauptgebiete), each of which has T^as its frontier, 
and possibly of a number of secondary component regions 
(Nebengebiete), each of which has its frontier wholly in 
either G or G. 

It is a simple matter to construct two irreducible continua 
which together constitute the frontier of precisely two of 
the complementary regions, but which have more than two 
points in common. For example, let bmc and bnc be two 
complementary arcs of a circumference, and let am* and 
an* be two wavy lines intersecting only at a and approaching 
asymptotically bmc and bnc, respectively. Then Ci=am*+bmc 
and C2 = an*-{-bnc are both irreducible between a and b 
and divide the plane into three regions, of which two only 
have C1+C2 as their frontier. But G and G have in common 
three points, not two. 

In this particular case, to be sure, Rosenthal's theorem 
can be used, for G + G can be expressed as the union of two 
continua, irreducible between a pair of points and inter­
secting only in these points. This is possible here because 
G and G can each be separated into two irreducible continua 
having only one common point. Such a decomposability, 

t Presented to the Society, October 30, 1926. 
J (A) A. Rosenthal, Teilung der Ebene dutch irreduzibele Kontinua, 

Sitzungsberichte der Münchener Akademie, 1919, pp. 91-109. 
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however, is not a general property of irreducible continua, 
even when no indecomposable continua are involved. There­
fore a removal of the requirement that the two irreducible 
continua have but two points in common is a real extension 
of the theorem quoted above. 

I t is the purpose of the present article to give some 
general conditions under which this extension is possible and 
also to investigate the frontiers of the secondary regions. The 
principal results will be found in §§ 5 and 8. 

In certain parts of the work free use is made of the 
oscillatory set of a continuum about a point and its proper­
ties, which have been developed by-the author in the papers 
listed below.* The notation of these papers is also used. 

2. Some Generalizations. For what follows it is convenient 
to extend the notion of a continuum irreducible between 
two points in two ways which must be kept distinct. 

DEFINITION I. If A is a closed sub-set of the continuum C, 
then C is irreducible about A if no proper sub-continuum of C 
contains A. 

DEFINITION I I . If a and /3 are closed sets without common 
points and the continuum C contains one or more points of 
both sets y then C is irreducible between a and /? if no proper 
sub-continuum of C contains points of both sets. 

The second définition is due to Miss Anna M. Mullikin.f 
I t is readily seen that if A or a+/3 consists of two points, 
both definitions yield the ordinary continuum irreducible 
between two points. The following properties will be used. 

LEMMA I. If C is a bounded continuum irreducible about 
the sum of the two continua A and B, which have no common 
points, then C—-(A+B) is connected. 

* (B) On the oscillation of a continuum, Transactions of this Society, 
vol. 27. 

(C) Some properties of the irreducible continuum, ibid., vol. 28. 
(D) On the structure of the irreducible continuum, American Journal, 

vol. 48. 
t (E) Anna M. Mullikin, Certain theorems relating to plane connected 

sets, Transactions of this Society, vol. 24. 
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The proof given by Rosenthal (loc. cit., p. 104) for the 
case where A and B are points is immediately applicable. 

LEMMA I I . Let C be bounded and closed and contain points 
of both the closed sets a and /?. Let a • /? = 0. Then C can be 
separated into two closed sets Ci and C2, such that & • C2 
=a - C2=j3 • Ci = 0, or else C contains a sub-continuum 
irreducible between a and /3. 

This theorem is stated and proved in an equivalent form 
by Miss Mullikin (loc. cit., p. 147). 

LEMMA I I I . Let C be a bounded continuum irreducible 
between the closed subsets a and j8, which have no common 
points. Let A be the oscillatory set of C about some point a 
of a. Then A contains a and, if D is a sub-continuum of C 
containing a point x of C—A and a point a' of a, D contains A. 

PROOF. We omit the trivial case that Cis indecomposable. If 
A is complete, C — A is a semi-continuum by a theorem proved 
elsewhere.* Obviously it contains /? and hence can contain 
no point of a. Let E be a sub-continuum of C—A joining 
x and /3. Then D+E joins a and /3, and hence equals C. 
As A • £ = 0, D contains A. 

If A is not complete, it is indecomposable and is not a 
continuum of condensation.! Then C—A is a proper sub-
continuum J of C and contains /3. Hence it contains no point 
of a. Thus A contains a in this case too. As x is a point 
of C—A, D + C—A =C; hence D contains C-C-A. Since 
C—C—A is a sub-continuum of A and contains all points 
of A whose distance from a is less than some positive ô, 
it is identical with A. Thus D contains A. 

3. A Special Type of Frontier Set. Let F = Hi+H2, 
where Hi and H2 are bounded continua and F—H2 — H1 

* See reference (C), p. 543. 
t See reference (D), p. 155. 
% (F) C. Kuratowski, Théorie des continus irréductibles, Fundamenta 

Mathematicae, vol. 3, Theorem 3. 
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—Hi -Hi and F—Hi = H2 — Hi • H2 are connected sets. 
Certain properties of this type of set and its complementary 
regions are easily deduced. 

If Z denotes the plane, it follows from the fact that F—Hi 
is connected that F—Hi lies in some one component G\ 
of Z — Hi. Likewise, F—H2 lies in one component G of 
Z ~ H*. 

Now let G' be any other component of Z — Hi and G" any 
other component of Z —H?. We first show that, if G' • G ^ O , 
then G contains G''. For otherwise Gf would contain points 
of H2, the frontier of G2, since G' is connected. This is 
impossible, for Gi is the only component of Z—Hi con­
taining points of H2. Likewise, either Gn • G = 0 or Gi 
contains G". 

A second property regarding these components is that 
either G' • G" = 0 or else G' = G" and the frontier of G' 
is a part of some component of Hx • H2. To prove this let 
us assume that G' • G " T ^ 0 . Then, if G" contained points 
not in G7, it would contain points of the frontier of G', 
which is a part of Hi, This is impossible by the second 
paragraph above. Likewise, G' contains no point not in 
G" and hence G' = Gn. Let g' denote the frontier of G'. 

Then g'£HiH2. As g' is a continuum, it is a part of some 
component of H1H2. 

With these preliminaries, we are in a position to prove the 
following lemma. 

4. LEMMA IV. Let F be the union of two bounded continua 
Hi and H2 having these properties: F—Hi and F—H2 are con­
nected;* Hi • H2 = A+B, where A and B are continua and 
A • B = 0; Hi and H2 contain sub-continua G and C2, re­
spectively, such that a=Ci - C2 • A 5*0, /3 = G • C2 • B, G and 
G (ire irreducible between a and /3, and F = G + G. Then 
F cuts the plane and is the frontier of exactly two components 
of its complement. 

* In view of §2, Lemma I, this requirement may be replaced by the 
hypothesis that Hi and Hi are irreducible about A and B. 
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PROOF.* I t was shown in §3 that, if Z denotes the plane, 
one component G\ of Z—Hi contains H2 — (A+B) and one 
component G2 of Z—H2 contains Hi — (A+B). Let 
K\ = Z — G\ and K2 = Z — G2. Then Ki and K2 are continua 
which do not cut the plane. 

Now consider K\ • K2. As K\ consists of H\ and the com­
ponents G' of Z — Hi differing from d , and K2 is similarly 
constituted, it is evident from §3 that K\ • K2 consists of 
A+B and such components G' of Z — Hi as coincide with 
components Gn of Z—H2. In §3 it was shown that, if 
G' = G", then g', the frontier of G', is a part of either A or B. 
In consequence of these facts Ki • i£2 is the sum of two con­
tinua, which may be denoted by A' and B', where A' con­
tains A and may contain one or more regions whose frontiers 
form a part of A, B' contains B and may contain one or 
more regions whose frontiers form a part of B, and A ' • B' = 0. 

Two cases must now be considered : (a) one of the regions 
Gi and G2 is unbounded; (b) neither G\ nor G2 is unbounded. 
We shall complete the proof for the first case and then 
return to the second. 

If G\ is unbounded, K\ is bounded. For otherwise a point 
in. K\ could be joined to one in G\ by a broken line not cutting 
the bounded set Hi, which is the frontier of &. Likewise K2 

is bounded, if G2 is unbounded. Thus either Ki or K2 is 
bounded. We have seen that neither of these continua 
separates the plane and that their divisor is two continua 
without common points. We can therefore apply a theorem 
of Miss Mullikin,f which shows that Ki+K2 cuts the plane 
into exactly two regions, Ri and R2. Let Fi and F2 be the 
frontiers of these regions. If we can show that Fi — F2 = F, 
the theorem is proved. To this end we first observe that, 
since no point of Fi or F? can be an inner point of Ki or K2y 

then Fi and F2 are parts of Hi+H2 = F= G + C 2 . 

* (G) This proof is a modification of the proof of Rosenthal's theorem 
given by S. Straszewicz in his paper Über die Zerschneidung der Ebene 
durai abgeschlossene Mengen, Fundamenta Mathematicae, vol. 7, p. 187. 

t See reference (E), p. 160; also reference (G), §§18, 19. 
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I t is easily seen that P i + P 2 = G • G2. Now if m is a point 
of Ri and n is one of R%, there is a broken line in Gi joining 
m and n and not cutting H\, for G • Hi = 0. Thus i7i (and 
in like fashion H2) is not an S{m1 n)* 

There are two sub-cases: either Fi contains G or G, 
or it does not. To fix the ideas, let G c Fi. Then Fi • C2 
is not void by the previous paragraph. Since G is irreducible 
between a and /3, it follows from §2, Lemma II, that, if 
Pi - CIT^CI, then Pi • G is the sum of two closed sets M 
and N, such that M • N = M • /3 = iV • a = 0. (One of these, 
but not both, may be void.) Then Fi = M+Ci+N. Since 
M+A £H2 and -4+ & £ # ! , neither M+A nor 4 + G is an 
5(m, n). Hence by a theorem of Janiszewskif M+A + Cu 
and consequently M+&, is not an 5(m, n). Likewise, 
Ci+iV is not an S(tn, n) and a second application of the 
theorem referred to gives the contradiction that F\ is not an 
S(m, n). Hence Fi • C2 = C2, and j p 1 =Ci+C 2 = JP. 

Now suppose that neither G nor G is a part of -Fi. Since 
G is irreducible between a and jo, Fi • G is the sum of two 
closed sets M and N, such that I f • N = N • a = Af • j3 = 0. 
Either M or iV, but not both, may be void. For the same 
reason Fi • C2 = P+Q, where P and Q are closed and 
p . Q = p . 0 = <2 . a = o. Then ^ i = ( M + P ) + (iVr+(2) and 
(ikf+P)(iV+<2) =0 , which is a contradiction, as Fi is a 
continuum, unless both M and P , or N and <2> are void. 
If M = P = 0, F! = N+Q£N+B + Q. As neither N+B 
nor -5 + Q is an S(m, n), this is a contradiction. 

Thus in both sub-cases P i = G + G = P, and in like fashion 
P2 = P. 

I t now remains to take care of the situation that arises 
when neither G\ nor G2 is unbounded. If v is a point of G 

* A set H is an S{mf n) if every continuum joining m and w cuts H. 
t (H) Z. Janiszewski, Sur les coupures du plan faites par des continus, 

Prace Matematyczno-Fizyczne, vol. 26, Theorem A: "If P and Q are bounded 
closed sets, if P • Q is connected, and neither P nor Q is an 5(w, n), then 
P + Q is not an S(m, n)." See also Straszëwicz, Fundamenta Mathemati-
cae, vol. 4, p. 129. 
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not on H% and the plane is inverted with respect to v as a 
center, the image F* of F will satisfy the conditions of the 
first case. This follows from the facts that the correspondence 
between F and F* is homeomorphic, that the image &* 
of Gi is unbounded, that the images of the frontiers of the 
component regions of Z — F are the frontiers of the images of 
these regions, and that the property of irreducibility is an 
invariant of analysis situs. Then by the proof given above 
there are precisely two components, Ri* and R2*, of Z — F* 
which have F* as their frontier. Inverting again, we have 
the inverse images Ri and R2 of i?i* and R2*, respectively, 
as the only components of Z — F which have F as a frontier. 

5. A General Theorem. I t is obvious that Rosenthal's 
theorem is the special case of the above lemma obtained 
when A and B are points, in which case Hi=Ci and H2 = G. 
We can, however, obtain from this lemma the following 
theorem, which is, aside from one exceptional case, more 
general than the theorem in question. 

THEOREM I. Let F be the union of two bounded continua 
Ci and C2 having these properties: G • G = a+j3, where a 
and /? are closed and a • /3 = 0 ; both G and G are irreducible 
between a and /3; and either G and G are both decomposable, 
or G is indecomposable and G is decomposable and not the 
union of two indecomposable continua. Then F cuts the plane 
and is the frontier of exactly two components of its complement. 

PROOF. This theorem is a corollary of §4. If we let A\ 
and A 2 denote the oscillatory sets of G and G, respectively, 
about some point a of ce, and let B\ and B2 have the same 
meaning for a point b of /3, it follows from §2, Lemma III , 
that a = -41 • A2 and /3 = i?i • B2. 

If both continua are decomposable, take A =A2 and B = Bh 

and set Hi = A + &+B=A2+Ci and H2 = A + C2+B 
= C2+BX. Then Hx • H2=A+B=A2+B1. If G is indecom­
posable, take A=A2 and B — B2f and set Hi~A + Ci+B=A2 

+ C1+B2 and H*=A + Ci+B = Ci. Again Hx • H2 = A+B. 
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In both cases A • B = 0, Hi and H2 are irreducible about 
A+B, and F = Hi+H2 = G + G . Hence §4 gives the theorem. 

6. 77*e Secondary Regions. Let i^i and R2 be the two prin­
cipal regions, which have the frontier F = G + G, and let 
R' denote any one of the other components of Z — F, that is, 
one of the secondary regions defined by F if any exist. 

Since J?' is a component of Z — F, it is a part of a component 
of Z — Hi and of a component of Z—H2. I t is not a part of 
both G\ and G, for, as seen in §4, G • G2 = Ri+R2> To fix 
the ideas let R'£G', where G' is a component of Z — H\ 
different from G\. By definition of G' and G, G' • #2 = 0; 
hence G' • ^£jy 1 # Then, if 7?' is the frontier of R', F'£Hi. 
Likewise, if R' is a part of some component of Z — H2 different 
from G, F'£H2. 

Since F' c F and i?i • i£' = 0 by hypothesis, it follows that, 
if m is a point of i£' and /z one of Ui, then F' is an S(m, n). 
It is also an irreducible S(m} n).* For, if K is a closed sub-set 
of F' and x is a point of F' — K, then for a sufficiently small 
positive ô there is a circular region Us containing x and 
points of both R' and i?i, but no point of K. Then m and 
/z can be joined by a broken line not cutting K. Thus no 
proper closed part of F' is an S(rn, n). 

If F' £Hi, but T7' is not a part of G, there are two cases 
to consider. If G is decomposable, it follows from the 
definition of Hi (§5) that F' contains points of A2 not in G. 
If F' - (CI—A^T^O, we have a contradiction. For then 
by §2, Lemmas II and I I I , F' D A X . Then F' • G and 
F 7 • {A i+^4 2) have in common the continuum 4 i . As both 
of these sets are proper closed parts of F'y neither is an S(my 

ri), which gives the contradiction that F' is not an S(tn, n). 
Thus we have F' • (G—-4i) = 0 and in this case F'£Ai+Ai. 

If G is indecomposable, then G is decomposable and not 
the sum of two indecomposable continua. Then ^42 • #2 = 0 
and the argument used in the previous paragraph shows 

* A set P is called an irreducible S(tn, n) if no proper closed part of P 
sian S(m, w). 
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that we arrive at a contradiction if we assume that F' 
contains points of both A2 and B2 not in C\. As G is inde­
composable, Ai = Bi=Ci; hence either F'S.A1+A2, or 
F'£Bi+B2. 

The same sort of discussion is employed if F' S H2. Thus 
we have found that, if R' is a secondary region defined by the 
continuum F of §5, then the frontier of Rf is a part either 
of G, or of C2, or of Ai+A2y or of Bx + B2. For a closer deter­
mination of this frontier we need the following theorem. 

7. THEOREM I I . Let C be a bounded plane continuum 
irreducible between the points a and b. Let m and n be two 
points not on C and let K be a closed subset of C which is an 
irreducible S(m, n). Then K is a part or the whole of the oscil­
latory set of C about one of its points*. 

PROOF. CASE I. K is a continuum of condensation. Let 
Ka and Kb be the saturated semi-continua of C — K containing 
a and b, respectively, and let neither be void. Since K is a 
continuum of condensation, C~ Ka+Kb- Then K • X« 
and K • Kb have a common point c, which is a limiting point 
of both Ka and Kb. Then the reasoning in §13 of the paper 
mentioned in reference (C) shows that K is a part of the 
oscillatory set about c. Similar reasoning establishes the 
theorem for the case that either Ka or Kb is void. 

CASE I I . K is not a continuum of condensation. Let us 
assume that K contains neither a nor b. Then there are sub­
continua A k and Bk, irreducible between K and a and b> 
respectively, and Ak • Bk = 0* Then L = C— (Ak+Bk) is 
irreducible} between Ak and Bky and L£.K. We first show 
that L is indecomposable or is the union of two indecom­
posable continua. For, if not, there is an irreducible de-

* If every oscillatory set of C is complete, the theorem can be deduced 
easily from Theorem 9 of a paper by R. L. Moore, Concerning upper semi-
continuous collections of continua, Transactions of this Society, vol. 27 
(1925), pp. 416-428. 

t See reference (F), Theorems II and IV. 
% See reference (C), §4. 
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composition* of L into two proper sub-continua M and N 
such that 

M • Bk = N -Ak = 0 

and either M or N, say N, is decomposable. Obviously 
N is irreducible between Ak + M and Bk and there is an ir­
reducible decomposition of N into two proper sub-continua 
P and Q such that 

P • Bk = (Ak + M) • 0 = 0. 
Then we have 

C = (Ak + M + P) + (P + Q + Bk), 

(Ak + M + P) -{P + Q + Bk)=P. 
Since K^Ly 

K = K(Ak + M+P)+K(P+Q+Bk) 
is a decomposition of i£ into two closed proper sub-sets whose 
common part is a continuum. This is a contradiction, by 
reference (H). There are, then, two sub-cases to discuss: 
(a) when L is the union of two indecomposable continua; 
(b) when L is indecomposable. 

(a) Let L = M+N, where M and N are indecomposable 
and M - Bk = N - Ak = Q. Reasoning similar to the above 
shows that in this case K contains no points not on L. 
Let x be a point of M • N; then it is not a point of A k or 
Bk, I t is easily seen that Ak + M is irreducible between a 
and x, and N+Bk between x and b. Then, since M and iV 
are indecomposable, M and N are the oscillatory sets of 
Ak + M and N+Bk respectively about x. Hence 

K=L = M+N 

is the oscillatory set of C about #.f 
(b) Let L be indecomposable. From the definition of 

oscillatory sets it is evident that L is the oscillatory set of 
C about any point of C—(Ak+Bk); hence the theorem 
holds if K = L. If K^Lj it follows by reasoning similar to 

* See reference (D), p. 156. 
t See reference (D), p. 153. 



1927.] SEPARATION OF THE PLANE 743 

that used above that either (K — L) - Ak or (K — L) • Bk 

is void, say the latter. Then K£Ak+L. Let y be a point 
of Ak - L; then Au is irreducible between a and y, and 
L-\-B]c is irreducible between y and &. Let Y' be the oscil­
latory set of Ak about y. Since y does not lie on Bk, the 
oscillatory set of L+Bk about y is L. Then F = Yf+L 
is the oscillatory set of C about y* 

If K£Y, the theorem is proved; if not, we arrive at a 
contradiction. For K will contain a point z on 4̂ >fc — 1 '̂. 
Then, if Y I is the saturated semi-continuum of Ak—Y' 
containing a, Fa ' ^ Ak — Y' D 3.f Then Fa =-4A, since -4* 
is irreducible between a and K. Hence Y' is complete^ 
and z is a point of F a ' . As K joins F« and £&, this shows 
that K 3 F ' . Then i£ • -4* and Yr+L are closed proper 
parts of K and their divisor is the continuum F ' . This is a 
contradiction, as their union is K, which is an irreducible 
S(m, n). 

Thus the proof is complete, except for the special cases 
where K contains a or &, or both. The above demonstration 
holds for these cases, if we merely replace Ak by a if K 
contains a and Bk by b if K contains b. 

8. THEOREM I I I . Let F be the union of two bounded continua 
C\ and C2 having these properties: G • C2 = a+/3 , where a 
and j8 are closed and a • ]8 = 0 ; both G awc£ C2 are irreducible 
between a and (3; and either G and G are both decomposable, 
or G is indecomposable and G is decomposable and is not the 
union of two indecomposable continua. Then the frontier of 
each secondary region determined by F is a part or the whole 
of some oscillatory set of G or G, or it is a part or the whole 
of the union of the oscillatory sets of G and G about some point 
of a or j8. 

PROOF. Let R' be any secondary region and let F' be its 

frontier. Let Ai, A2, B\, and B2 be the oscillatory sets of G 

*See referrence (D), p. 153. 
t See reference (C), §10. 
Î See reference (C), §15. 
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and C2 about a point a of a and a point b of j3, respectively. 
I t was shown in §6 that, if F' is not a part of A1+A2 

or B1+B2, then Ff is a part of C\ or C2. Since Ci and C2 

are each irreducible between a and /3, each of them is irre­
ducible between a point a oî a and a point & of /3. Hence, if 
F''£ Ci, the theorem of §7 shows that Fr is a part of some 
oscillatory set of G. Thus the theorem is proved. 

9. Conclusion. A consequence of the previous theorem 
is that under the hypotheses there stated the frontier of a 
secondary region is a part of either a continuum of conden­
sation, an indecomposable continuum, a pair of indecom­
posable continua, or the union of a continuum of conden­
sation and an indecomposable continuum. This follows at 
once from the proof of §7 and the fact that the oscillatory 
set of a bounded irreducible continuum about one of its 
end points is either a continuum of condensation or an inde­
composable continuum.* Obviously there are no secondary 
regions unless A1+A2J or B1+B2, or some oscillatory set of 
C\ or C2 cuts the plane. 

The conditions imposed on the character of the continua 
Ci and C2 in §5 take care of all possible cases with two ex­
ceptions. These are that both continua are indecomposable 
or that one is indecomposable and the other is the union of 
two indecomposable continua. With regard to the first 
it has been shown by Kuratowskij and Knasterf that the 
extended theorem of Rosenthal (§5) need not hold in this 
case. Whether or not it holds in the second case remains to 
be proved. 
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* See reference (D), p. 155. 
t C. Kuratowski, Sur les coupures irréductibles du plan, Fundamenta 

Mathematicae, vol. 6, p. 138. 
X B. Knaster, Quelques coupures singulières du plan, Fundamenta 

Mathematicae, vol. 7, p. 281. 


