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ALL POSITIVE INTEGERS ARE SUMS OF VALUES
OF A QUADRATIC FUNCTION OF «*

BY L. E. DICKSON

1. Introduction. Fermat stated that he was the first to
discover the beautiful theorem that every integer 4 =0
is a sum of m+2 polygonal numbers

(1) Pmpa(x) = tm(x? — x) + x

of order m-+2 (or m—+2 sides), where x is an integer =0. The
cases m=1 and m =2 state that every 4 is a sum of three
triangular numbers p3(x) =1x(x+1), and also a sum of four
squares p4(x) =x2.

Cauchyt was the first to publish a proof of Fermat’s
statement and showed that all but four of the polygonal
numbers may be taken to be 0 or 1.

In this paper and its sequel we shall give a complete
solution of the following more general question.

ProBLEM. Find every quadratic function f(x) which takes
integral values =0 for all integers x=0, such that every
positive integer 4 is a sum of ! of these values, where /
depends on f(x), but not on 4.

2. LEmMMA 1. A guadratic function of x is an integer
for every integer x =0 if and only if it is of the form

2) flx) = tma? + nx +¢c, m-+n even,
where m, n, and c are integers.

Consider ux?*-+vx-+c. By its values for x=0, 1, and 2,
¢, u+v, and 4u-+2v are integers. Subtract the double of the

* Presented to the Society, September 9, 1927.

t Oeuvres, (2), vol. 6, pp. 320-353. Pepin gave a modified proof, Atti
dei Lincei, vol. 46 (1892-93), pp. 119-131. His proof requires a separate
examination when 4 <110m. For the simpler proof in §5, the limit is
A <44m+32.
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second from the third. Hence 2# is an integer m. Since
$m-v is an integer, v is half an integer ».

3. Positive Quadratic Functions Representing 0 and 1.
Let (2) be =0 for every integer x=0, whence >0, ¢=0.
Then

fle+1) — f(x) = ma + 5(m + n)

increases with x. Hence f(x) does not represent every
positive integer 4. Thus I>1 in our problem, and a sum
of two or more values of f(x) must give 4 =1. Hence f(u) =1,
f(k) =0 for certain integers #=0, k=0. We assume that
k has its least value. Then

Jtx) = f(&) — f(k) = 3(x = &) [m(x + &) + #].
Since f(u) =1,

n=s—mu+k), s=2/(u—=Fk),

where s is an integer. Thus #—k= 41 or +2, and

f(@) = §(x — &) [m(x — u) + s].

If u—k=+1,
f(®) = 3(a— B)[m(x — F F 1) £ 2] = pmge(E 2 F £).
Ifu—Fk=2,

f(k+1) =31 —m) = Ogivesm = 1, f(x) = ps(x — k& — 1).

Finally, if u—k=—2, then k=2 and f(k—1)=31(1—m) is
zero, since it is not negative. But this contradicts the defi-
nition of £ as least.

THEOREM 1. The funciions derived from (1) by replacing
x by x—Fk or k—x are the only quadratic functions of x which
are integers 20 for every integer x =0, and which take the values
0 and 1 for certain integers x=0.

The values of p3(—x)=%(x—1)x coincide with the tri-
angular numbers. Hence if m =1, our problem is the same
when 2= 1 as when k=0. This is evidently true also if m=2.
Without loss of generality, we may then henceforth takem > 2.
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4. Polynomials with an Excess. Let f(x) have an integral
value =0 for every integer x =0, and let one value be zero.
Let M,(4) denote the maximum sum =<A4 of s values of
f(x), and write E,(4) for A —M,(4). In case E,(4) has a
finite maximum E, for all integers 4 =0, every integer
A =01is asum of E, numbers 0 or 1 and s values of f(x). Then
E, is called the s-excess of f(x). We shall drop the subscript
4 from E,.

Let «, B3, v, 6 denote the four integral values =0 of x
and write

3) a = Za?, b =Za.

Take (2) as f(x) and insert the four values of x. Thus

(4) A = ima + Inb 4+ 4c + r, 0=r=<E,

for a suitable integer . Cauchy proved the following result.

LEMMA 2. If a and b are positive odd integers such that
b2 <4aand

(5) b2+ 2b + 4 > 3a,
equations (3) have solutions o, B, v, 6 in integers =0.

Multiply (5) by m and replace ma by its value from (4).
The resulting inequality follows from that obtained by sup-
pressing 67. Multiplication by 4m now yields the equivalent
inequality

6) @mb+ 12> U, U=1244m(64 — 24c — 4m),
where 7=2m-+3n. This inequality holds if
) b> (UY2 —1)/(2m), U z 0.

To satisfy 4% <4a, multiply by m? and replace ma by its
value from (4). The resulting condition evidently follows
from that with 7 replaced by E, and hence from

(8) (mb + 2n)2 < 4V, V = n® 4+ m(24 — 8 — 2E).
This inequality holds if
9) b< @QVit— Ym, Vz0,
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and if mb+21n=0. For =0, the latter evidently holds if
b>0. For #<0, it holds by (7) if

(10) 4n — 7+ U2 =0
and hence if
(11) 34 2 12+ 2m — 2n — n¥/m (ifn < 0).

We desire that >0. By (7), this will be true if UY2=r.
If <0, this follows from (10). But if =0, whence 7>0,
it holds if and only if U =72, and hence if the quantity in the
last parenthesis of (6) is =0:

(12) Az4c+3m (ifn20).

There will be at least d positive integers between the limits
on b stated in (7) and (9) if

(13) 4Vvz — yyvz > P, P = 2md — 2m + n.
The left member is =0 if
(14) 16V =z U,

and then (13) holds* if its square holds and hence if
(15) F=QV+ W) —VU>0, 8W=U— P2, P2O0.

By the minor conditions we shall mean Uz=0, V=0,
the inequality (14), and (11) or (12). Since

(16) 16V — U = 3(2m — n)? + 4n? + 8m(4 — 4c — 4E),
it follows that (14) holds if

) 4 = 4c + 4E.
The latter implies V=0. Evidently U=0 if
(18) A = 4c+ Zm.

Hence the minor conditions all follow from (17) and (18)
if =0, but from these two and (11) if » <0. We shall speak
of these as the reduced minor conditions.

* Automatically if P<0.
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5. Polygonal Numbers. We take (1) as the function (2).
Thus n=2—m, c=0. By Table I, E2m+3) =m—2. Hence
E is not smaller than the value in

THEOREM 2. For the function (1), Es=m—2 if m=3.

The reduced minor conditions are all satisfied if 4 =4m.
Here (4) is A=mg+b+r, g=%(a—b). If b takes the odd
values B and B+2, while 7 takes the values 0,1, .-,
m—2, the values of b+7 are 8+j(j=0, 1, - - -, m). These,
with j=m omitted, form a complete set of residues modulo
m. Hence for any A, the preceding equation yields an
integral value of g and hence an odd integral value of a.

If there are at least d =4 integers between the limits for b,
there will exist the desired two odd values for 5. Then (6),
(8), (13), and (15) give

U= 24mA — 15m? — 12m 4+ 36, V = 2mAd — m?* + 4,

P=5n+2, W=23md — 5m?— 4m + 4,

F = m?4? — 44m34 — 32m?4 4 34m* + 44m® — S56m?
— 48m > 0.

Evidently F>0if 4 =244m+32.

Next, let 4 <44m-+32. Then A <M =48m-+21. In Table
I the entries involving the same multiple of m, together with
all intervening integers, will be said to form a block. We
suppress 29m—+10—12 and 45m-+10—13. Down to M,
the difference between any two consecutive numbers in
any abridged block is now =2, whence E(4) =1 for every
4 within a block. For every 4 <M not within a block,
E(A4)<m—2. This will follow if proved when 4 +1 is the
first number of any abridged block. Then 4 is the sum of
m—2 and a number ¢ occurring explicitly in the abridged
table except as follows. If 4 =10m-+4, 26m-+12, 27m-+10,
or 28m-+12, then A=m—3+¢t. If A=6m+3, 21m--6,
28m~+7, 30m-+11, 34m—+11, or 42m—+12, then 4 =m—4-}¢;
while, if m =3, 4 is equal to the 4 for the next smaller m.
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TABLE 1.
Sums oF Four PoLyGONAL NUMBERS

04, m+2-5, 2m+4-6, 3Im—+3-7, 4m+5-8, Sm-+7-8, 6m-+4-9,
Tm+6-9, 8m-+8-10, Im+7-10, 10m+5-11, 11m~+7-9, 11, 12m+8-12,
13m+8-12, 14m—+10-12, 15m+6-9, 11-13, 16m-+8-13, 17m+10-13,
18m+9-14, 19m-+11-14, 20m+10-14, 21m+7-13, 15, 22m-+9-15,
23m+11-15, 24m+10-16, 25m+11-13, 15, 16, 26m-+13-16, 27m+11-16,
28m+8-11, 13-17, 29m+10-12, 15-17, 30m+12-17, 31m+11-17, 32m+
13-18, 33m+-15-18, 34m-+12-18, 35m+14-17, 36m+9-19, 37m-+11-13,
15-19, 38m—+413-15, 17-19, 39m+12-17, 19, 40m+14-20, 41m+16-20,
42m+13-20, 43m-+14-17, 19, 20, 44m-+416-20, 45m—+10-13, 16-21,
46m+12-21, 47Tm+14-17, 19-21, 48m+13-21, 49m+15-21, 50m+17-22,
Sim+14-17, 19-22, 52m—+16-22, 53m-+18-21, 54m—+417-19, 21, 22,
5Sm-+11-17, 19-23, 56m+13-23, 57m +15-21, 23, 58m+14-23, 59m 16,
17, 19-23, 60m+16-24, 61m +15-21, 23, 24, 62m+17-24, 63m+19-24,
64m-+17-24, 65m+16-21, 23, 24, 66m+12-15, 17-25, 67m +14-16, 19-25,
68m 416, 17, 19-25, 69m+15-18, 20, 21, 23-25, 70m-+17-19, 21-25,
T1m+19-25, 72m-+16-26, 73m-+18-21, 23-26, 74m+20-23, 25, 26,
T5m-+19-25, 76m-+-17-26, 7Im-+19-21, 23-26, 78m-+13-16, 20-27,
79m-+15-17, 20-25, 27, 80m+17, 18, 22-27, 81m+16-21, 23-27, 82m +18—
27, 83m-+19-25, 27, 84m-+17-28, 85m-+19-21, 23-28, 86m-+21-28,
87Tm+19-25, 27, 28, 88m+18-22, 24-28, 89m +20, 21, 23-28, 90m +20-23,
25-28, 91m-+14-17, 20-25, 27-29, 92m-+16-18, 22-29, 93m-18-21,
23-29, 94m+17-29, 95m+19, 20, 22-25 27-29, 96m +21-29, 97m+418-21,
23-29, 98m+-20-27, 29, 30, 99m +20-25, 27-30, 1007 +21-30, 101m 19—
21, 23-29, 102m +21-30, 103m +22-25, 27-30, 104m +22-30, 105m 4-15-18,
24-29, 31, 106m +17-23, 25-31, 107m +19, 20, 22-25, 27-31, 108m +18-21,
24-31, 109m+-20, 21, 23-29, 31, 110m+22-31, 111m+19-25, 27-31,
112m+21-32, 113m+23-29, 31, 32, 114m+22-27, 29-32, 115m+20-22,
24, 25, 27-32, 116m+22, 23, 25-32, 117m+23-29, 31, 32, 118m+23-32,
119m +22-25, 27-32, 120m+16-19, 21-33, 121m+18-20, 23-29, 31-33,
122m +-20, 21, 25-33, 123m +19-25, 27-33, 124m+21, 22, 25-33, 125m+-23,
25-29, 31-33, 126m-+20-31, 33, 127m+22-25, 27-33, 128m-+424-26,
28-34, 129m+-23-29, 31-34, 130m+21-23, 25-27, 29-34, 131m+23, 24,
28-33, 132m+-24-34, 133m+-23-29, 31-34, 134m+25-34, 135m+22-24,
27-33, 136m+17-20, 24-35, 137Tm-+19-21, 26-29, 31-35, 138m+21, 22,
25, 26, 28-35, 139m-+20-23, 27-33, 35, 140m+22, 23, 26, 27, 29-35,
141m+23-29, 31-35, 142m—+21-31, 33-35, 143m-+23-25, 27-33, 35,
144m+-25-36, 145m-+4-24-29, 31-36, 146m-++22-27, 29-36, 147m-+24,
25, 27-33, 35, 36, 148m +24-27, 29-36, 149m +25-29, 31-36, 150m +25-36,
151m+-23-25, 27-33, 35, 36, 152m+425-36, 153m-+18-21, 27-29, 31-37,
154m+-20-22, 26-37, 155m+22, 23, 28-33, 35-37, 156m+21-37, 157m+
23-29, 31-37, 158m+25-30, 33-35, 37, 159m+4-22-25, 28-33, 35-37, 160m
+24-37, 161m+26, 28, 29, 31-37, 162m-+25-27, 29-38, 163m-+23-25,
27-33, 35-38, 164m+25-27, 30-38, 165m-+26-28, 31-37, 166m-+26-38,
167m+-28-33, 35-38, 168m-+24-26, 29-31, 33-38, 169m+26-29, 31-37,
170m +-28-38, 171m +19-22, 27-33, 35-39, 172m+21-23, 26-39, 173m +23,
24, 28, 29, 31-37, 39, 174m+22-31, 33-35, 37-39, 175m+24, 25, 27-33,
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35-39, 176m 26, 29-39, 177m+23-26, 28, 29, 31-37, 39, 178m+25-27,
29-39, 179m +27, 31-33, 35-39, 180m +26—40, 181m+24-29, 31-37, 39, 40,
182m+26-40, 183m-+27-33, 35-40, 184m+27-40, 185m+29, 31-37,
39, 40, 186m-+25-40, 187m-+27-33, 35-40, 188m—+29, 30, 32-40, 189m
+27-29, 31-37, 39, 40, 190m+20-23, 29-31, 33-35, 37-41, 191m+22-24,
28-33, 35-41, 192m~+24-41, 193m+23-26, 28, 29, 31-37, 39-41, 194m +25,
26, 30-32, 34-39, 41, 195m+27, 20-33, 3541, 196m-+24-27, 29-41, 197+
+26-28, 31-37, 39-41, 198m+28-41, 199m 427, 28, 30-32, 35, 36.

If A=15m+5 or 46m-+11, then A =m—5-4¢; while, if
m=3 or 4, A is £ the A for the next smaller m. Finally,
if A=36m+8, then A =m—6-+¢; while, if m=3, 4, or 5,
A=34m+14, 16, or 18, which belong to an earlier block.
This completes the proof of Theorem 2.

By that theorem, every integer 4 20 is a sum of m+2
polygonal numbers. Hence E,=0 if s=m-+2. Next, let
4<s<m+2. If a sum by s of the polygonal numbers
0,1, m+2, 3m+3, - - - is £2m+3, at most one summand
is m+2, whence the maximum such sum is m+42+4s—1.
Hence E,(2m—+3)=m—s+2. By Theorem 2, 4 is a sum of
four polygonal numbers and m—2 numbers 0 or 1. Regard
s—4 of the latter as polygonal numbers. Hence 4 is a sum
of s polygonal numbers and m—s+2 numbers 0 or 1. All
of these facts prove the following theorem.

THEOREM 3. For the function (1), E,=0 if s=2m+2, while
E,=m—s+2if4<s<m+2.

In the second case, s+E,=m-+2, so that the use of 5 or
more polygonal numbers >1 yields no gain (but rather a
loss) over the use of only four.

6. Deductions from Table I. We extended our table beyond
the limit 48m 421 required for the proof of Theorem 2 in
order to deduce interesting facts concerning E(4) for func
tion (1), which are essential to the sequel.

LEMMA 3. For 54m+17SA <74m~+28, E(A)Ssm—6 if
m=7, E(A) =14 m=5or6.

From Table I we suppress 67m+14-16. Since the
difference between any two consecutive numbers in any
abridged block is now =2, E(4) £1, for every 4 within a
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block. Let f be the term free of m in the leader gmf of
any abridged block. First, let m=5. For ¢=56, - - -, 74,
we find that f+4 is the term free of m in a number of the
preceding abridged block. Hence gm-+f—1 is the sum of
m—S5 and the number (¢—1)m-+f+4 in the abridged table.
Finally, the E of 55m+10=53m+420 is 1. Second, let
m=6. Except for ¢=355, 56, 62, 70, f+45 is the term free of
m in a number of the preceding abridged block, whence
E(A)<m—6. For the four ¢’s, we use f+6 if m>6. If
m=6, 56m—+12=55m-+418, 62m-+16=61m-+22, 70m+16
=69m-+22, which fall within preceding blocks, while
55m4-1<54m-+17.

LEmMMA 4. For 74m+20=A4A=199m+37, E(A)S1 iof
m=7T, E(A)Sm—1T if m=8, except that E(80m-+21)=m—6
if m=8 or 9.

From each block we suppress all entries down to and in-
cluding the last entry which differs by 3 or more from the
next entry. As in Lemma 3, f+6 succeeds except for g =80,
106, 156, 158, 169, 195. For m=7, a=80m-+21 equals
79m+-28, whose E is 1. For m =10, we restore the previously
excluded 80m—+417-18 and then have the permissible value
E(a)=3 and 80m~+16=m—7+79m~+23. But for m=8 or 9,
80m+18<79m+27=a’, and the full table includes no num-
ber numerically between ¢’ and @, whence E(a) =m—6.

For ¢=106, 169, 195, we may use f+6 after suppressing
106m+17-23, 169m+26-29, and 195m+27.

For m=8,b=156m+20=m—8-+155m+28. Butif m=17,
b=155m+27, which was treated under ¢=155.

Finally, let ¢=158. If m=9 we restore the previously
excluded 158m+25-30, noting that E(158m+32)=2 is a
permissible value. Then 158m+24=m—7-+t where
t=157m-31 is in the table. If m =7 or 8, the latter result is
applicable since the missing 158m—431-32 are equal to
two of 159m-+23-25.

Assistance was provided by the Carnegie Institution for
the construction of Table I and checking results by it.
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