## A CLASS OF TRANSCENDENTAL NUMBERS

## BY S. MANDELBROJT

The purpose of this short note is to determine a class of transcendental numbers by considerations relating to series of powers. I shall give here a theorem quite different from those that I have given previously.\* I shall prove the following theorem.

THEOREM I. Let  $\sum a_n x^n = F(x)$  be a power series having singularities only within the circle with center at the point 1 and radius 1/(K-1), K an integer, there being at least one essential singularity within the circle, not at the center.

If there exists a number  $\zeta$  and an integer  $K' < \zeta$  such that the quantities

$$K^{\prime n}\left(a_n+\frac{1}{\zeta^{n+1}}\right)=N_n \qquad (n=1,2,\cdots)$$

are integers, then  $\zeta$  is a transcendental number.

I have given elsewhere the following theorem.†

THEOREM II. If the series  $\sum b_n x^n = f(x)$  represents a function having singularities only within the circle with center at 1 and radius  $1/(K_1-1)$ , where  $K_1$  is an integer, and if the quantities

$$(1) b_n K_1^n = N_n'$$

are integers, then we have

$$f(x) = \frac{P(x)}{(1-x)^h},$$

in which h is an integer and P(x) a polynomial.

From this theorem, I then proved the following theorem.

<sup>\*</sup> Comptes Rendus, Feb. 1, 1926; Journal de Mathématiques, 1926. † Journal de Mathématiques, 1926.

THEOREM III. If a series  $\sum c_n x^n = \phi(x)$  has at least one singular point distinct from the point 1, and if an integer  $K_2$  exists so that the quantities

$$K_2^n c_n = N_n^{(2)}, \qquad (n = 1, 2, \cdots)$$

are also integers, then, if we denote by  $x_0$  the argument of the singularity of  $\phi(x)$  which is farthest from the point 1, we shall have

$$|x_0-1|>\frac{1}{K-1}.$$

In these theorems, the point at infinity was counted with the other points; that is, in Theorem II, we assumed the point at infinity to be a regular point for  $\sum b_n x^n$ . Likewise in Theorem III, if the point at infinity happens to be a singular point, the inequality (2) is devoid of meaning. But we can now generalize Theorem II by adding that if the point at infinity is a pole for f(x), and if the other singularities be within the circle above mentioned, we shall still have

$$f(x) = \frac{P(x)}{(1-x)^h},$$

if the property (1) is satisfied.

The proof in this case will be almost the same as for II\*. We will only remark that Hurwitz's theorem can be generalized to series of the form

$$f(x) = \sum_{0}^{\infty} \frac{\alpha_n}{x^{n-m}}, \ \phi(x) = \sum_{0}^{\infty} \frac{\beta_n}{x^{n-m}},$$

viz., that the series

$$\frac{A_{m}}{x^{m}} + \dots + \frac{A}{x} + A_{0} + \sum_{n} \frac{\alpha_{n+m}\beta_{m+1} - C'_{n}\alpha_{n+m-1}\beta_{m+1} + \dots + (-1)^{n}\beta_{m+n}\alpha_{n+1}}{x^{n}}$$

<sup>\*</sup> See Journal de Mathématiques, 1926.

has as singularities, besides the point at infinity, only points of the form  $\alpha+\beta$ , where  $\alpha$  is a singular point of f(x) and  $\beta$  a singular point of  $\phi(x)$ .

A. We can therefore see that if the series  $\sum a_n x^n$  is such that there exists an integer K so that the quantities  $a_n K^n$  are integers, then if P(x) is a polynomial with integral coefficients, the function

$$P(x) \sum a_n x^n = \sum b_n x^n$$

is such that there exists an integer  $K_1 \leq K$ , so that the quantities  $K_1^n b_n$  are integers. This results immediately from the form of the coefficients  $b_n$ :

$$b_n = a_n A_0 + a_{n-1} A_1 + \cdots + a_{n-p} A_p$$

where

$$P(x) = A_0 + A_1 x + \cdots + A_p x^p.$$

We write then, returning to the theorem to be proved,

$$\sum c_n x^n = \sum \left(a_n + \frac{1}{\zeta^n}\right) x^n = F(x) + \frac{1}{\zeta - x}.$$

If we suppose that  $\zeta$  is an algebraic number, there will be a polynomial with integral coefficients such that  $P(x)/(\zeta-x)$  will be regular in the entire plane except for the point at infinity. Hence the function  $\theta(x) = P(x) \cdot F(x)$  has singularities only within the circle with center at the point 1 and radius 1/(K'-1), except for a pole at infinity.

This results from the remark A, that there is an integer  $K_1 \leq K'$ , such that the quantities  $c_n K_1^n$  are integers, and also from the fact that the singularities of  $\theta(x)$ , except for the point at infinity, lie within the circle with center at 1, and radius  $1/(K_1-1)$ . Accordingly, by Theorem II, as generalized above, it follows that  $\theta(x)$  must be of the form  $P(x)/(1-x)^n$ . But this is impossible, since we assumed  $\theta(x)$  to have a singularity at some point other than the center of the circle. Hence  $\zeta$  must be a transcendental number.

THE RICE INSTITUTE