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A CLASS OF TRANSCENDENTAL NUMBERS
BY S. MANDELBROJT

The purpose of this short note is to determine a class of
transcendental numbers by considerations relating to series
of powers. I shall give here a theorem quite different from
those that I have given previously.* I shall prove the follow-
ing theorem.

THEOREM 1. Let Y a.x"=F(x) be a power series having
singularities only within the circle with center at the point
1 and radius 1/(K—1), K an integer, there being at least one
essential singularity within the circle, not at the center.

If there exists a number ¢ and an integer K' <¢ such that the
quantities

1
K'"<a,,+ >=N,, n=1,2,---)

g—n+1

are integers, then ¢ is a transcendental number.
I have given elsewhere the following theorem.f}

THEOREM I1. If the series D b.x"=f(x) represents a func-
tion having singularities only within the circle with center at
1 and radius 1/(Ki—1), where K is an integer, and if the
quantities

(1) an1" = N,.’
are integers, then we have
P(x)
x) = —
@) =

in which h is an integer and P(x) a polynomial.

From this theorem, I then proved the following theorem.

* Comptes Rendus, Feb. 1, 1926; Journal de Mathématiques, 1926.
t Journal de Mathématiques, 1926.
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TuroreM III.  If a series Y c.x"=¢(x) has at least one
singular point distinct from the point 1, and if an integer
K exists so that the quantities

K, = N, @, (n=1,2,.-")

are also integers, then, if we denote by x, the argument of
the singularity of ¢(x) which is farthest from the point 1,
we shall have

(2) I %o 1| > X -1 .

In these theorems, the point at infinity was counted with
the other points; that is, in Theorem II, we assumed the
point at infinity to be a regular point for Y b,x". Likewise
in Theorem III, if the point at infinity happens to be a
singular point, the inequality (2) is devoid of meaning.
But we can now generalize Theorem II by adding that if
the point at infinity is a pole for f(x), and if the other singu-
larities be within the circle above mentioned, we shall still
have

P(x)
(1=t
if the property (1) is satisfied.

The proof in this case will be almost the same as for
I1*. We will only remark that Hurwitz’s theorem can be
generalized to series of the form

@ = T e = T

0 x'n—m

f@) =

viz., that the series

Am A
—+ -+ =+ 4
x™ x

+ Z an+mﬁm+1 - Cn, an+m~lﬂm+1 + R ("‘ 1)”,Bm+n05n+1

xn

* See Journal de Mathématiques, 1926.
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has as singularities, besides the point at infinity, only
points of the form a+fB, where a is a singular point of
f(x) and B a singular point of ¢(x).

A. We can therefore see that if the series ) a,x" is such
that there exists an integer K so that the quantities ¢,K*
are integers, then if P(x) is a polynomial with integral
coefficients, the function

P(x) Zanx" = anx"

is such that there exists an integer K;<K, so that the
quantities K{ b, are integers. This results immediately from
the form of the coefficients b,:

bn = anAO + an—-lAl + e + an—pAp,
where
Plx) = Ao+ Aix + - - - + A,z

We write then, returning to the theorem to be proved,

D™ = Z(an + —l—)x" = F(x) + L .
" §—x
If we suppose that ¢ is an algebraic number, there will be
a polynomial with integral coefficients such that P(x)/({ —x)
will be regular in the entire plane except for the point at
infinity. Hence the function 0(x) = P(x) - F(x) has singulari-
ties only within the circle with center at the point 1 and
radius 1/(K’—1), except for a pole at infinity.

This results from the remark A, that there is an integer
K;=K’, such that the quantities ¢,K are integers, and
also from the fact that the singularities of 6(x), except
for the point at infinity, lie within the circle with center
at 1, and radius 1/(K1—1). Accordingly, by Theorem II,
as generalized above, it follows that 6(x) must be of the
form P(x)/(1—x)* But this is impossible, since we as-
sumed 0(x) to have a singularity at some point other than
the center of the circle. Hence { must be a transcendental
number.
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