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ON THE FUNCTIONAL EQUATION 
ƒ(*+?)-ƒ(*)+ƒ(?)* 

BY MARK KORMES 

Fréchet,f and later BlumbergJ and Sierpinski,§ have 
demonstrated that the solution of the functional equation 

(1) ƒ(* + ? ) - ƒ ( * ) + ƒ ( ? ) 

which is measurable, has the form A • x, where A denotes 
a constant. In this note the following theorem is proved. 

THEOREM I. Every solution of the functional equation (1) 
which is bounded on a set of positive measure is of the form A • x. 

The proof depends on a theorem of Steinhauslf which can 
be stated as follows. 

LEMMA. The set arising by arithmetic summation (addi­
tion of abscissas) of a set of positive measure, contains an 
interval.^ 

Since ƒ(x) is bounded on a set of positive measure, f(x+y) 
is bounded on an interval, and therefore f(x) must be of 
the form A • x according to a theorem of Darboux. 

THEOREM la. The statement of Theorem I remains true 
if f(x) is bounded on a set whose interior measure is positive. 

If the interior measure of a set A is a >0,then there exists** 
a measurable sub-set of A whose measure is equal to a (>0). 

* Presented to the Society October 31, 1925. 
t M. Fréchet, L'ENSEIGNEMENT MATHÉMATIQUE, vol.15 (1913),p. 390. 
% Blumberg, Convex functions, TRANSACTIONS OF THIS SOCIETY, vol. 20, 

p. 41. 
§ W. Sierpinski, FUNDAMENTA MATHEMATICAE, vol. 1, p. 116. 
% H. Steinhaus, FUNDAMENTA MATHEMATICAE, vol. 1, p. 99*. 
11 The proof of this lemma will be a part of a paper entitled On arith­

metic summation of point sets. 
** C. Carathéodory, Vorlesungen iiber Réelle Funktionen, p. 261. 
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To this subset Theorem I can be applied and thus Theorem 
la is established. 

Theorem I establishes a far more general condition than 
the one given by Fréchet, Blumberg, and Sierpinski. The 
following remarks show that this condition is incisive. 
The condition nii(M)*>0 is essential, since there exist non-
measurable solutions of (1) which are cohtinuous on a set jff, 
where, for every interval 8, 

mi(E • 8) = 0, me{H • S) = S. 

Let B denote a hamelian basis-set of all real numbers. If b 
is a number of B, we define a solution of the functional 
equation (1) as follows: 

ƒ(x) = 0, for the numbers of the set (B — b) ; 
f(x) = l, for x = b; 

f(x+y) =f(x) +f(y), for all real numbers. 
In this way f(x) is completely defined. Let us denote by H 
the set of all points where ƒ (x) = 0. If we denote by Hc the 
set of all numbers x+c, where x assumes all values of H 
we have then H=Hab, where the symbol == means con­
gruent, and a is a rational number. Then we have 

(H«h-H«'b) = 0, 

if a^a', and 

a 

where K denotes the continuum. Therefore we must have, f 
for every interval 8, 

tm(H-ô) = 0, me(H'd) = 8. 

* The symbol m% (M) shall signify the interior measure of M, ni* (M) 
the exterior measure of M. 

t For suppose nn(H • ô)>0. There must exist then a measurable 
subset PC H so that m(P)>0. We would have w(P a 6)=w(P)>0. On 
the other hand it can be shown easily, that then there exists a rational 
number «i, so that m(Paib • P) —a>0, but this is impossible, since (Paib • P) 
« 0 because PC H, PaibC Haih, and (H • Haib) =0. We must have there-
fore nti{H • ô)=0. See also M. Kormes, Treatise on basis-sets (Columbia 
University dissertation, not yet published), Theorem VIII. 
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Since the function f(x) is everywhere 0 on the set Hi it 
is bounded and continuous. 

There exist non-measurable solutions of (1), which are 
continuous on a perfect set P , where ra(P)=0. Let P 
be the set of all numbers z of the form 

Xi X2 

To^T (10**2 + 10*01 

(10*Xn + l O ^ ^ n - i + h 10*0 ! 

where every xn is either 1 or 2. There cannot exist then 
any relation of the form 

] £ rxz\ = 0 
x 

between the numbers z of the set P ,* where r\ denotes a 
rational number, and in every case only a finite number of r\ 
are different from 0. The numbers of P constitute a subset 
of a basis-set B of all real numbers, f The existence of such 
basis-set was demonstrated in another paper. % 

We define now a solution of the functional equation (1) 
in the following way: 

f(x) = 0 , for all numbers of P ; 
f(x) = 1, for all numbers of B—P; 

f(x+y) =f(x) +f(y) for all numbers of the continuum K. 

But this defines f(x) completely, and it is clear that f(x) 

is non-measurable and continuous on the perfect set B. 

* M. Kormes, Treatise on basis-sets, 
f To construct a basis-set B which has a given set P as a subset we pro­

ceed in the following way. We well-order the continuum K in such a way 
that the numbers of P precede all other numbers. The set (K—P) is not 
empty, and since the set P is not the entire basis-set of i£, there must be 
a first number at of (K—P) which cannot be represented by numbers of 
P in a linear way. If we consider the set Pi = P + a i and reason in the same 
way as above, we obtain a basis-set B of the continuum K, See also M. 
Kormes, Treatise on basis^sets, 

X M. Kormes, loc. cit. 
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From Theorem I, the Fréchet-Sierpinski theorem* can be 
deduced immediately. 

THEOREM II. Every solution of (1) which is measurable 
has the form A • x. 

In fact, suppose that f(x) is a solution of (1), and that 
f(x) is measurable. Then there exists a perfect set P, 
where m(P) >0, and f(x) is continuous on P. Being finite, 
f(x) must be bounded on P, and Theorem II is a simple 
consequence of Theorem I. 

Theorem I can be generalized for functional equations in 
n variables. A proof for two variables will be given below 
and it is quite analogous for n{>2) variables. 

THEOREM III. Every solution of the functional equation 

(2) f{x + u, y + v) = f(x9y) + f(u,v) 

where x, y, u> v denote real numbers, which has the property 
that f (x, 0) is bounded on a measurable set MX1 where m(Mx) >0, 
and that /(O, 3/) is bounded on a measurable set My, where 
m(My) >0, has the form A • x+B • y.f 

We have 

ƒ (* , ? )«ƒ (* + (>, 0 + y) «ƒ(*,(>)+/(0,y) , 

where f(xf 0) is the solution of the functional equation 

f(x + u, 0) «ƒ(*,<>)+/(M), 

and /(O, y) is the solution of the functional equation 

/(O, y + v) - / ( 0 , 3 Ï ) + / ( 0 , Ü ) . 

According to Theorem I, f(xf 0) has the form A • x, where 
A =/( l , 0) ; and /(O, y) has the form B • y, where 5 « / ( 0 , 1). 
Therefore ƒ(#, y) has the form A -x+B • y. 

* See second, third, and fourth footnotes on p. 689. 
t We can assume also that tm (Mx) and nn (Mv)>0, and reason in a 

way similar to that indicated in the proof of Theorem la. 
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The same reasoning holds if f(x, a) and f(b, y) are bounded 
in Mx and Myy respectively. We have then ƒ(#, a) = 
ƒ(*, 0) +ƒ(<), a) and ƒ(6, y) =/(0, y) +ƒ(&, 0). Hence ƒ(*, 0) 
and jf(0, 3>) must be therefore bounded in Mz and ikfy, 
respectively. 

From Theorem III, the following theorem can easily be 
obtained. 

THEOREM IV. Every solution of the functional equation (2) 
which is bounded on a measurable set Mxyi whose square 
measure is m(2)(Mxy)>0, has the form A • x+B • y. 

In order to prove this theorem let us suppose that 

m^(Mxy) = a > 0. 

According to a theorem of Fubini,* there must exist then a 
straight line y = b parallel to the X-axis, and a straight line 
x = a parallel to theF-axis, so that m(Mxa) >0 and m(Miy) >0. 
Then f(x, a) would be bounded on the set Mxai where 
m(Mxa)>0; and ƒ(&, ;y) would be bounded on MbV> where 
m(Mjjy)>0. Therefore/(x, 3;) must have the form 

A.% + B-y. 

From Theorem IV, we may state the following theorem. 

THEOREM Vf. Every solution of the functional equation (2) 
which is measurable has the form A • x+B • y. 

If ƒ(#, y) is a solution of (2) and it is measurable, then 
there exists a perfect set P, where m(2)(P) >0, and f(x, y) 
is measurable on P. Since f(x, y) is finite and P is closed, 
ƒ(#, y) is bounded on P, and we can apply Theorem IV. 

NEW YORK CITY 

* Theorem of Fubini-Lebesgue; see de la Vallée-Poussin, Cours d'Analyse 
Infinitésimale, vol. 2 (2d éd.), pp. 117-120. 

t Theorem of Steinhaus-Sierpinski; see Sierpinski, loc. cit, 


