ON THE FUNCTIONAL EQUATION $f(x+y) = f(x) + f(y)^*$

BY MARK KORMES

Fréchet,† and later Blumberg‡ and Sierpinski,§ have demonstrated that the solution of the functional equation

$$(1) f(x+y) = f(x) + f(y)$$

which is measurable, has the form $A \cdot x$, where A denotes a constant. In this note the following theorem is proved.

THEOREM I. Every solution of the functional equation (1) which is bounded on a set of positive measure is of the form $A \cdot x$.

The proof depends on a theorem of Steinhaus¶ which can be stated as follows.

LEMMA. The set arising by arithmetic summation (addition of abscissas) of a set of positive measure, contains an interval.

Since f(x) is bounded on a set of positive measure, f(x+y) is bounded on an interval, and therefore f(x) must be of the form $A \cdot x$ according to a theorem of Darboux.

THEOREM Ia. The statement of Theorem I remains true if f(x) is bounded on a set whose interior measure is positive.

If the interior measure of a set A is a > 0, then there exists** a measurable sub-set of A whose measure is equal to a > 0.

^{*} Presented to the Society October 31, 1925.

[†] M. Fréchet, L'Enseignement Mathématique, vol.15 (1913), p. 390.

[‡] Blumberg, Convex functions, Transactions of this Society, vol. 20, p. 41.

[§] W. Sierpinski, Fundamenta Mathematicae, vol. 1, p. 116.

[¶] H. Steinhaus, Fundamenta Mathematicae, vol. 1, p. 99:

^{||} The proof of this lemma will be a part of a paper entitled On arithmetic summation of point sets.

^{**} C. Carathéodory, Vorlesungen über Reelle Funktionen, p. 261.

To this subset Theorem I can be applied and thus Theorem Ia is established.

Theorem I establishes a far more general condition than the one given by Fréchet, Blumberg, and Sierpinski. The following remarks show that this condition is incisive. The condition $m_i(M)^*>0$ is essential, since there exist non-measurable solutions of (1) which are continuous on a set H, where, for every interval δ ,

$$m_i(H \cdot \delta) = 0$$
, $m_e(H \cdot \delta) = \delta$.

Let B denote a hamelian basis-set of all real numbers. If b is a number of B, we define a solution of the functional equation (1) as follows:

$$f(x) = 0$$
, for the numbers of the set $(B - b)$;
 $f(x) = 1$, for $x = b$;
 $f(x+y) = f(x) + f(y)$, for all real numbers.

In this way f(x) is completely defined. Let us denote by H the set of all points where f(x) = 0. If we denote by H^o the set of all numbers x+c, where x assumes all values of H we have then $H = H^{ab}$, where the symbol = means congruent, and α is a rational number. Then we have

$$(H^{\alpha b} \cdot H^{\alpha' b}) = 0,$$

if $\alpha \neq \alpha'$, and

$$K = \sum_{\alpha} H^{\alpha b},$$

where K denotes the continuum. Therefore we must have,† for every interval δ ,

$$m_i(H \cdot \delta) = 0, \qquad m_e(H \cdot \delta) = \delta.$$

^{*} The symbol m_i (M) shall signify the interior measure of $M, m_{\bullet}(M)$ the exterior measure of M.

[†] For suppose $m_i(H \cdot \delta) > 0$. There must exist then a measurable subset $P \subset H$ so that m(P) > 0. We would have $m(P^{\alpha b}) = m(P) > 0$. On the other hand it can be shown easily, that then there exists a rational number α_i , so that $m(P^{\alpha_i b} \cdot P) = a > 0$, but this is impossible, since $(P^{\alpha_i b} \cdot P) = 0$ because $P \subset H$, $P^{\alpha_i b} \subset H^{\alpha_i b}$, and $(H \cdot H^{\alpha_i b}) = 0$. We must have therefore $m_i(H \cdot \delta) = 0$. See also M. Kormes, Treatise on basis-sets (Columbia University dissertation, not yet published), Theorem VIII.

Since the function f(x) is everywhere 0 on the set H, it is bounded and continuous.

There exist non-measurable solutions of (1), which are continuous on a perfect set P, where m(P) = 0. Let P be the set of all numbers z of the form

$$z = \frac{x_1}{10x_1!} + \frac{x_2}{(10^2x_2 + 10x_1)!} + \cdots + \frac{x_n}{(10^nx_n + 10^{n-1}x_{n-1} + \cdots + 10x_1)!} + \cdots,$$

where every x_n is either 1 or 2. There cannot exist then any relation of the form

$$\sum_{\lambda} r_{\lambda} z_{\lambda} = 0$$

between the numbers z of the set P,* where r_{λ} denotes a rational number, and in every case only a finite number of r_{λ} are different from 0. The numbers of P constitute a subset of a basis-set B of all real numbers.† The existence of such basis-set was demonstrated in another paper.‡

We define now a solution of the functional equation (1) in the following way:

$$f(x) = 0$$
, for all numbers of P ;
 $f(x) = 1$, for all numbers of $B - P$;

f(x+y) = f(x) + f(y) for all numbers of the continuum K. But this defines f(x) completely, and it is clear that f(x) is non-measurable and continuous on the perfect set B.

^{*} M. Kormes, Treatise on basis-sets.

[†] To construct a basis-set B which has a given set P as a subset we proceed in the following way. We well-order the continuum K in such a way that the numbers of P precede all other numbers. The set (K-P) is not empty, and since the set P is not the entire basis-set of K, there must be a first number a_1 of (K-P) which cannot be represented by numbers of P in a linear way. If we consider the set $P_1 = P + a_1$ and reason in the same way as above, we obtain a basis-set P of the continuum P. See also P. Kormes, Treatise on basis-sets.

[‡] M. Kormes, loc. cit.

From Theorem I, the Fréchet-Sierpinski theorem* can be deduced immediately.

THEOREM II. Every solution of (1) which is measurable has the form $A \cdot x$.

In fact, suppose that f(x) is a solution of (1), and that f(x) is measurable. Then there exists a perfect set P, where m(P) > 0, and f(x) is continuous on P. Being finite, f(x) must be bounded on P, and Theorem II is a simple consequence of Theorem I.

Theorem I can be generalized for functional equations in n variables. A proof for two variables will be given below and it is quite analogous for n(>2) variables.

THEOREM III. Every solution of the functional equation

(2)
$$f(x+u, y+v) = f(x,y) + f(u,v)$$

where x, y, u, v denote real numbers, which has the property that f(x, 0) is bounded on a measurable set M_x , where $m(M_x) > 0$, and that f(0, y) is bounded on a measurable set M_y , where $m(M_y) > 0$, has the form $A \cdot x + B \cdot y$.

We have

$$f(x,y) = f(x+0, 0+y) = f(x,0) + f(0,y),$$

where f(x, 0) is the solution of the functional equation

$$f(x + u, 0) = f(x,0) + f(u,0),$$

and f(0, y) is the solution of the functional equation

$$f(0, y + v) = f(0, y) + f(0, v).$$

According to Theorem I, f(x, 0) has the form $A \cdot x$, where A = f(1, 0); and f(0, y) has the form $B \cdot y$, where B = f(0, 1). Therefore f(x, y) has the form $A \cdot x + B \cdot y$.

^{*} See second, third, and fourth footnotes on p. 689.

[†] We can assume also that m_i (M_x) and m_i $(M_y) > 0$, and reason in a way similar to that indicated in the proof of Theorem Ia.

The same reasoning holds if f(x, a) and f(b, y) are bounded in M_x and M_y , respectively. We have then f(x, a) = f(x, 0) + f(0, a) and f(b, y) = f(0, y) + f(b, 0). Hence f(x, 0) and f(0, y) must be therefore bounded in M_x and M_y , respectively.

From Theorem III, the following theorem can easily be obtained.

THEOREM IV. Every solution of the functional equation (2) which is bounded on a measurable set M_{xy} , whose square measure is $m^{(2)}(M_{xy}) > 0$, has the form $A \cdot x + B \cdot y$.

In order to prove this theorem let us suppose that

$$m^{(2)}(M_{xy}) = a > 0.$$

According to a theorem of Fubini,* there must exist then a straight line y = b parallel to the X-axis, and a straight line x = a parallel to the Y-axis, so that $m(M_{xa}) > 0$ and $m(M_{by}) > 0$. Then f(x, a) would be bounded on the set M_{xa} , where $m(M_{xa}) > 0$; and f(b, y) would be bounded on M_{by} , where $m(M_{by}) > 0$. Therefore f(x, y) must have the form

$$A \cdot x + B \cdot y$$
.

From Theorem IV, we may state the following theorem.

THEOREM V†. Every solution of the functional equation (2) which is measurable has the form $A \cdot x + B \cdot y$.

If f(x, y) is a solution of (2) and it is measurable, then there exists a perfect set P, where $m^{(2)}(P) > 0$, and f(x, y) is measurable on P. Since f(x, y) is finite and P is closed, f(x, y) is bounded on P, and we can apply Theorem IV.

NEW YORK CITY

^{*} Theorem of Fubini-Lebesgue; see de la Vallée-Poussin, Cours d'Analyse Infinitésimale, vol. 2 (2d ed.), pp. 117-120.

[†] Theorem of Steinhaus-Sierpinski; see Sierpinski, loc. cit.