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T H E BOREL T H E O R E M 
AND ITS GENERALIZATIONS* 

BY T. H. HILDEBRANDT 

That any one should at tempt to devote a paper to the 
subject of the Borel Theorem may at first glance seem a 
presumption. A brief investigation will however reveal the 
following facts, (a) The Borel Theorem is closely related 
to the fundamental postulates of linear order, (b) There are 
many extensions and analogs of the Borel Theorem, some 
of which are hidden away in papers on other subjects, 
(c) The Borel Theorem has held and still holds a central 
position in the development and analysis of general spaces. 

The arrangement of topics in the paper is suggested by 
the previous paragraph. No claim is made for completeness 
with respect to the extensions and analogs of the Borel 
Theorem, due to the nature of the case. Nor do I claim 
any originality in the material presented. I hope that a 
systematic treatment of the Borel Theorem in general spaces 
will be suggestive and perhaps create further desirable 
interest and results in these spaces. 

I. T H E BOREL THEOREM AND ITS EXTENSIONS FOR THE 

LINEAR INTERVAL AND ^-DIMENSIONAL SPACE 

In order to give a simple statement of the Borel Theorem 
I shall use the phrase "a family gf of intervals I covers the 
point-set E" to mean that every x of E is interior to some 
interval Ix of g. Then the Borel Theorem in its simplest 
form may be stated as follows. 

If the family % of intervals I covers the closed interval 
(a, b) then a finite subfamily of $ covers (a, b). 

* An address presented at the request of the program committee before 
the joint meeting of this Society and the American Association for the 
Advancement of Science, Section A, at Kansas City, December 30, 1925. 
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1. Historical Note* As in the case of other important 
mathematical results, the conception of the Borel Theorem 
is an interesting chapter in mathematical history, to which 
the future will no doubt add contributions. So far the 
honor of having first stated an outright theorem on intervals 
belongs to Borel, f though Borel's formulation deals only 
with the reduction of a denumerable family of intervals 
to a finite one. The name Heine-Borel seems to be due 
to Schoenfliess,J who noted the relationship of the Borel 
Theorem to Heine's proof of the uniform continuity of a 
function continuous on a closed interval, published in 1872.§ 
That Heine was aware of the fact that an interval theorem 
lay hidden away in his proof seems rather doubtful. As a 
matter of fact priority on the uniform continuity seems to 
go back at least to G. Lejeune-Dirichlet, though he suffered 
the penalty of not publishing his result immediately. 
A proof of the theorem almost identical with that of Heine 
appears in an exposition of his lectures given in 1854 brought 
out in 1904 by G. Arendt. | | Another result carrying within 
it the germs of the Borel Theorem is due to S. Pincherle,H 
who gave the following theorem in 1881. 

If the positive-valued function f{x) is bounded from zero in 
some neighborhood of each point of a closed interval, then there 
exists an e such that 

fix) > e > 0 
for all points of the interval. 

He remarks that this theorem can be made the basis for 
proof of uniform continuity and of the uniform convergence 

* Cf. ENZYKLOPÂDIE DER MATHEMATISCHEN WISSENSCHAFTEN, vol. 

I I 3 , pp .882e t seq. 
t Paris thesis, 1894, p, 43 ; ANNALES DE L'ÉCOLE NORMALE, (3), vol. 12 

(1895), p. 51. 
X Bericht über die Mengenlehre, JAHRESBERICHT DER VEREINIGUNG, vol. 

8 (1900), pp. 51 and 119. In a later edition (Schoenfliess-Hahn, Entwickel-
ungen, vol. I (1913), p . 235), he reverts to the name Borel Theorem. 

§ Cf. JOURNAL FÜR MATHEMATIK, vol. 74 (1872), p. 188. 

|| Vorlesungen über die Lehre von den bestimmten Integralen, Braun­
schweig, 1904. 

1f M E M O R I E DI BOLOGNA, (4), vol. 3 (1881), pp. 15Iff. 
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of a series of functions, uniformly convergent at every 
point of a closed interval. 

To whom shall go the honor of first having conceived of 
the possibility of extending the Borel theorem to the case 
where the given family of intervals is not necessarily de-
numerable is another debatable question. In a way it is 
true that Dirichlet, Heine, and Pincherle were dealing with 
this case. Closely related is also the following theorem for 
the plane, due to P. Cousin.* 

If to each point of a closed region there corresponds a circle 
of finite radius, then the region can be divded into a finite number 
of subregions such that each subregion is interior to a circle of 
the given set having its center in the subregion, 

Lebesgue, to whom this extension is usually credited, 
claims to have known the result in 1898,f but first published 
it in 1904 in his Leçons sur VIntregation. W. H. Young J 
published a proof in 1902. As a matter of fact the statement 
and proof of the Borel Theorem given by Schoenfliess in his 
1900 Bericht can easily be interpreted to be that of the ex­
tension in question. 

In considering these divergent claims it seems simplest 
and most just to call the theorem the Borel Theorem, and 
in case a distinction is necessary indicate it as the denumer-
ablç-to-finite or any-to-finite form. Moreover the theorem 
which gives the reduction from any set of intervals to an 
equivalent denumerable family due to Lindelof in a general 
space proves to be only another case of a more general 
Borel Theorem. 

* ACTA MATHEMATICA, vol. 19 (1895), p . 22; Fréchet: CONGRÈS 

SOCIÉTÉS SAVANTES, 1924, p. 68. 

f For his a t t i tude on the priority question, see BULLETIN DES SCIENCES 
MATHÉMATIQUES, (2), vol. 31 (1907), pp. 132-4. 

% PROCEEDINGS OF THE LONDON SOCIETY, vol. 35 (1902), pp. 384-8. 

§ Cf. Schoenfliess-Hahn, Entwickelungen der Mengenlehre, vol. 1, 1913, 
pp. 235etseq. 

Il Cf. Borel (Baire), COMPTES RENDUS, vol. 140 (1905), p. 299; Capelli, 
NAPOLI RENDICONTI, (3), vol. 15 (1909), p. 151. 
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2. Proofs of the Borel Theorem.§ (a) By Successive Sub­
divisions.\\ Of the proofs of the Borel Theorem, perhaps 
the simplest in form is the one which proceeds by successive 
subdivisions. I t is an indirect proof. Assume that the 
theorem is not true for the interval (a, b). Then if we 
divide the interval into two or more equal parts, it will 
be not true for one of these parts. This process applies 
indefinitely, and we have a sequence of closed intervals, 
each containing the succeeding, with lengths converging to 
zero, giving a single point x of (a, b) common to the intervals. 
This point being interior to an interval I of the family %, 
ƒ will contain the intervals of the sequence after a certain 
stage, thus yielding a contradiction. 

We observe that in a way this proof connects the Borel 
Theorem with the Cantor Theorem : An infinite sequence 
of closed sets of points, each containing the succeeding, have 
a common point. 

(b) By Use of the Weierstrass-Bolzano Theorem. Another 
method of applying a similar process is to note that if the 
theorem is not true for (a, b) then if we divide the interval in­
to n equal parts, it will be not true for one of these parts. Let 
(an, bn) be the interval of length (l/n)(b — a) for which the 
theorem does not hold, and xn a point belonging to this 
interval. Then by the Weierstrass-Bolzano theorem, since 
the sequence {xn} is bounded, there will exist a subsequence 
{xnm} having as limit the point x0 of the interval (a, b). 
If #o is interior to I of the family §, then, by the properties 
of limits of sequences, we find that one of the intervals 
(Ö„, bn) is interior to / . 

This method of proof is not quite so simple nor so elegant 
as the first. I t uses the Weierstrass-Bolzano theorem, which 
itself is usually derived by a process of successive sub­
divisions. 

(c) Direct Proof by Subdivisions. The two preceding 
proofs on account of their indirect character do not give 
a method for actually selecting the intervals required by 
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the theorem. We can however use the subdivision idea 
to make such a selection. Let dx be the least upper bound 
of the values of d for which the interval {% — d, x-\-d) is 
interior to some interval of $. Then the function dx is 
bounded from zero on the closed interval (a, 6), i. e., there 
exists a d such that for all x of (a, b) dx>d>0. This can 
be deduced from the fact that dx is a continuous function on 
a closed interval, or connected with the two results (a) 
that there exists for each x a vicinity of x such that dx 

is bounded from zero in this vicinity, and (&) that for any 
function defined on (a, b) there exists a point x such that 
the greatest lower bound of ƒ for each vicinity of x is the 
same as the greatest lower bound of ƒ on (a, b). The final 
step in the proof then is to divide (a, b) into intervals of 
length less than d> each of which will be covered by some 
member of the family g by the definition of dx. 

Observe that in this case we replace all the intervals to 
which a point is interior by a single member of another family, 
a family which is really involved in the proof of the uniform 
continuity theorem as given by Heine and by Dirichlet. 
The Pincherle result is also involved in the preceding proof, 
as well as the linear analog of Cousin's formulation of the 
Borel Theorem in the plane.* We might call attention to 
the following almost self-evident resoilt involved in the 
preceding proof. 

If every point of a bounded set E is the middle point of 
an interval of length 2dx, and dx is bounded from zero} then 
all the points of E are interior to a finite number of these 
intervals. 

(d) Denumerable-to-Finite.^ When the given family is 
denumerable it is possible to select the finite family as 
follows. Suppose the intervals of $ are arranged in se-

* Cf. also Baire, ANNALI DI MATEMATICA, (3), vol. 3 (1899), pp. 13-15 ; 
Borel, COMPTES RENDUS, vol. 140 (1905), p. 299; Wirtinger, WIENER 
BERICHTE, vol. 108, Ha, pp. 1242-3. 

t Cf. Young, W. H., PALERMO RENDICONTI, vol. 21 (1906), p. 127; 
Fréchet, PALERMO RENDICONTI, vol. 22 (1906), pp. 22-23. 
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quential order 7i, 72, • • • , Jn, • • • . By a step-by-step pro­
cess, we obtain an equivalent series, retaining those intervals 
which contain at least one point not interior to the pre­
ceding intervals of the array. Let Ji, Jn.2, • • • » 7nw, • • • be 
the members of the retained family. If this is finite, the 
theorem is proved. In the contrary case, we have an element 
xm interior to Inm but not to the preceding intervals. By the 
use of the Weierstrass-Bolzano Theorem, this sequence con­
tains a subsequence xk

f having a limit x0 of (a, b). The 
contradiction arises from the fact that the interval Inm 

containing x0 as an interior point will contain an infinite 
number of the Xk as interior points, i. e., members of the 
sequence {xm} of index higher than nm. We shall see later 
in the present paper that this method of proof is effective 
in general spaces. 

(e) BoreVs Proof. The Lebesgue Chain. The first proof 
of Borel also contains a scheme for selecting the finite sub­
family, but it rests upon the properties of Cantor ordinal 
numbers, and the denumerability of the family, or of a family 
connected with the given family. Starting with the point a, 
there exists an interval I\ containing a as interior point. 
If bi is the left hand end-point of 7i, let I2 contain &i as 
interior point. Continuing thus, we get a sequence of 
intervals 7i, J2, • • • , Jn, • • • . If the point b has not been 
reached, we get a limiting point b^ of the left hand end-
points bn and an interval 1^ containing b^. By repeating 
the process, since the set of intervals is denumerable, we 
must eventually include the point b with an interval Ia 

where a is a transfinite ordinal of the second kind. We now 
extract from this well-ordered set of intervals a finite 
subset by noting that any interval Ia associated with a 
limit number a includes an infinite number of the end-points 
bff of intervals preceding it. This enables us to select a 
decreasing array of ordinal numbers and such a decreasing 
set is finite. 

This proof hinges on two facts, (a) that the system of 
intervals is denumerable, and (b) that a decreasing set of 
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ordinal numbers selected from a well-ordered increasing set 
is finite. 

While the denumerability of the family g is postulated in 
this proof, the denumerability of the array Ji, • • • , 1^, • • • 
leading to the point b can be deduced from the following 
fundamental theorem on intervals. 

Any family of non-overlap ping intervals is denumerable. 

For the interval (0, 1), this follows from the fact that 
there exist at most n intervals of the set having a length 
greater than 1/n, which gives a system for enumeration. 
Since the unbounded straight line can be broken up into 
a denumerable set of intervals of length unity, the extension 
of this result to any family of non-overlapping intervals is 
immediate. 

In the preceding proof of the Borel Theorem the intervals 
(ba, ba+i) form a nonoverlapping family, which is therefore 
denumerable. Then the assumption that b would not be 
reached by a denumerable set of steps, would lead to a 
contradiction. In point of fact, there is contained implicitly 
in these considerations a theorem which has been called the 
Lebesgue Chain Theorem* which has been used by him in 
the discussion of lengths of curves. The theorem may be 
stated as follows. 

LEBESGUE CHAIN THEOREM. If the family % of intervals I 
is such that to every point x of an interval (a, b) excepting 
perhaps b, there correspond intervals of the family having x as 
left-hand end-point, then there exists a finite or denumerable 
subfamily of these intervals without common points, containing 
each point of the interval, excepting possibly b, as an interior 
point or left-hand end-point. 

We shall give another proof of this theorem later on. 
Also we shall see tha t the idea of a Lebesgue chain and 
of applying a process of reduction via a decreasing set 
of ordinals underlies the proofs of other theorems similar 
to the Borel Theorem. 

* Leçons sur VIntégration, p . 63. 
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(f) Dedekind-Cut Proof.* Finally we call attention to a 
proof which depends on the Dedekind-Cut Axiom, i. e., 
is based on the properties of linear order. We observe that 
the point a is interior to an interval I of the family %. 
Let x' be the least upper bound of the points of (a, b) 
which can be reached with a finite number of intervals 
starting from a, i. e., xf is defined by a Dedekind cut. 
Now x' will belong to the interval (a, b) which is closed. 
Consequently there will be an interval Ix' of the family % 
to which xr is interior. I t follows that xf is the point &. 

An analysis of the proof shows that it rests upon the 
following principle. 

INDUCTION PRINCIPLE FOR LINEAR ORDER. Suppose a 
statement S satisfies the following conditions relative to an 
interval (a, b) {which may be the infinite interval ( — <*>, -f- <x> )) : 
(1) there exists a point of the interval for which S is true, 
(2) if the statement S is true for all points preceding x', then 
there exists a point y beyond xr for which S is true. Under 
these conditions S holds f or the entire interval (a, b). 

A. Khintchinef has pointed out that this Induction 
Principle is logically equivalent to the Dedekind-Cut Axiom. 

Tha t the Dedekind-Cut Axiom implies the Induction 
Principle is practically contained in the above proof of 
the Borel Theorem. On the other hand, assume the truth 
of the Induction Principle. Suppose we have divided the 
points of the closed interval (a, b) into two groups A 
and Bf each containing a t least one point, and such that 
every point of A is less than (precedes) every point of B, 
and tha t A and B contain all the points of (a, b). Let the 
statement S be "The point x is a member of A." Since the 
conclusion of the Induction Principle is not holding, it 

* Lebesgue, Leçons, p. 105; O. Veblen, this BULLETIN, vol. 10 (1904), 
pp. 436-9 (see also TRANSACTIONS OF THIS SOCIETY, vol. 6 (1905), p. 
167, where it is pointed out that the Borel Theorem applies to any well-
ordered set); F. Riesz, COMPTES RENDUS, vol. 140 (1905), pp. 244-6. 

t FUNDAMENTA MATHEMATICAE, vol. 4 (1922), pp. 164-6. 
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follows that either condition (1) or (2) is not holding. Now 
(1) is true, hence (2) must be false, i. e., there exists a 
point xf such tha t for every x preceding it the statement 5 
is true, but 5 is not true for any point following x'. Since 
A and B contain all points of (a, b) it follows that the point 
x' belongs to one of these classes, i. e., is either the maximum 
of the class A, or the minimum of the class 5 . * 

Along the same line is the observation that the Borel 
Theorem and Dedekind-Cut Axiom are logically equivalent ; 
this remark is due to Veblen. The proof that the Borel 
Theorem has the Dedekind-Cut Axiom as a consequence, 
assumes that the interval is divided into the groups A and Bf 

as conditioned in the preceding paragraph. With every 
point of the interval, we associate as far as possible an 
interval containing the point, and consisting only of points 
of group A or of group B. Either every point of (a, b) 
is interior to one of these intervals, or the contrary is true. 
In the first case, we have by the Borel Theorem a finite 
number of intervals, reaching from a to b, containing every 
point as an interior point. Since a belongs to A, the in­
tervals overlap, and each interval contains only points of 
A or B, it follows tha t every point of (a, b) is a point of A, 
which is contrary to hypothesis. Hence there exists at 
least one point which is not interior to an interval con­
taining only points of A, or of B, i. e., satisfies the conditions 
of the Cut Axiom. An analysis of this proof shows that the 
theorem is a close relative of the following theorem. 

If a function is not invariant in sign throughout an interval 
(a, b)f then there exists a point of the interval in every vicinity 
of which the function is not invariant in sign."\ 

* To be a complete analog to mathematical induction, condition (2) 
should read: If S is true for all points preceding x\ then it is true for x'. 
In this form, however, it does not seem to have the power which carries one 
to the end of the intervals. 

t K. P. Williams, ANNALS OF MATHEMATICS, (2), vol. 17 (1915-6), 
pp. 72-3. 
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The Induction Principle also furnishes a method of proof 
for the Lebesgue Chain Theorem. Two have been given 
along similar lines. The first, due to J. Pal,* considers the 
case in which to every point of (a, b) there corresponds 
only a single interval having this point as left-hand end-
point. In that case, any chain beginning from a is necessarily 
unique. The second, due to G. C. Young,f applies to the 
general case, where the number of intervals associated with 
a given point is not specified. Obviously in this case there 
may be many different chains leading from one point to 
another. 

We say that the set © of intervals I forms a chain from 
the point a to the point x in case © is a set of non-overlapping 
intervals such that every point of (a, x), excepting perhaps 
x, is either an interior point or a left-hand end-point of 
one of the intervals of ©. The point x may be interior 
to an interval, or an end-point of a chain, i. e., a right-hand 
end-point of an interval, or the limiting point of a sequence 
of intervals of the chain ©. 

In applying the Induction Principle assume that the 
point x is such that for every y less than x, there exists a 
chain from a to y. The case in which there is an end-point y 
of a chain from a to y, such that there exists an interval 
with y as left-hand end-point which contains x, and the 
case in which x is an end-point of a chain leading from a 
to x, are easily disposed of. If neither of these two cases 
are holding, let eu e2, ez, • • • , en, • • • be a monotonie 
decreasing sequence of positive numbers converging to zero. 
Then by hypothesis there exists a chain from a to Xi, where 
the distance of x± to x is less than eu If there exists a chain 
extending from Xi beyond x} then by adding this chain to 
the chain from a to xi, we extend beyond x. In the contrary 
case, let y\ be the least upper bound of points reached by 
chains beginning at Xu Then there exists a chain from x\ 

* PALERMO RENDICONTI, vol. 33 (1912), pp. 352-3. 
t BULLETIN DES SCIENCES MATHÉMATIQUES, (2), vol. 43 (1919), pp. 

245-7. 
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to a point x2 with yi — X2<e2. By a repetition of this process, 
we get a sequence of points xi, x2, #3, • • • having a limiting 
point Xo, and by the method of construction, by combining 
chains, we get a chain from a to XQ. NOW #O is a left-hand 
end-point of an interval of the family % whose length is 
greater than en for n sufficiently large. But this interval 
added to the chain from a to XQ would give us a chain reach­
ing beyond yn for n sufficiently large, contrary to the de­
finition of yn. I t follows that there is a chain from Xi to x, 
and so beyond x. 

A careful analysis of the proof shows that its basis is 
really the same as the proof of this theorem using the 
Cantor numbers, viz., the fact that there are at most a 
denumerable set of non-overlapping intervals. 

3. Extensions of the BOY el Theorem, (a) To Closed Sets. 
An almost immediately obvious extension of the Borel 
Theorem is to replace the closed interval covered by the 
family g by a closed set of points E. The methods of proof 
sketched above all apply excepting that in the case of (e) 
and (f) which involve order on a line, it may be necessary 
to take account of the intervals complementary to the 
closed set. An alternative method of procedure is to take 
the smallest interval (a, b) containing the set E, and enlarge 
the family % by the addition of the intervals belonging to the 
complement of E with respect to (a, 6) and then apply the 
theorem for the interval.* 

(b) Extension to n~Dimensional Space, f A further ex­
tension which is possible is to ^-dimensional space. This 
was conceived almost as soon as the Borel Theorem, due to 
the consideration of functions of the complex variable.^ 

* Cf. also W. H. Young, PROCEEDINGS OF THE LONDON SOCIETY, vol. 
35 (1902), pp. 387-8. 

f Cf. Schoenfliess-Hahn, Entwickelungen, vol. 1, 1913, pp. 239-241. 
JCf. Cousin above. The Cauchy-Goursat theorem is virtually based on 

a two-dimensional Borel Theorem. See TRANSACTIONS OF THIS SOCIETY, 
vol. 1 (1900), pp. 14-16. 
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We define the point x interior to a set of points I of n-
dimensional space to mean that there exists a vicinity of x 
(i. e., an w-dimensional sphere or cube having x as center) 
containing only points of / . Then the Borel Theorem reads 
as follows. 

If E is any closed set of n-dimensional space covered by a 
family g of sets I (i. e., such that every point of E is interior 
to some member of the family) then a finite subfamily of § 
covers E. 

Some of the proofs given for the linear interval are im­
mediately extensible to space. This is true of the methods 
(a) and (b) by successive subdivisions, and (c) in which the 
family ^ is replaced by a family of spheres with the points 
of E as centers, also of (d) the denumerable case, (e) and 
(f) seem to use particularly linear order and consequently 
are effective mainly in proofs by induction, passing from 
the case of ^-dimensional to (^+l)-dimensional space. 
Lebesgue* suggests an ingenious method of passing from 
the plane to the linear interval by using the Peano curve 
which maps the square on the linear interval. 

4. Necessary Conditions. Lindelof Theorem. The hypo­
thesis of the Borel Theorem specifies as sufficient conditions 
that the set E be closed and bounded. These conditions are 
also necessary. If E is not closed then there exists a point 
Xo limiting point of E not belonging to E. If we surround 
each point x of E by a sphere of radius one-half of the 
distance of x from x0, then no finite subfamily of this family 
of spheres will cover E. The fact that E must be bounded 
is obvious. 

In the same direction is the remark that the Weierstrass-
Bolzano Theorem is a consequence of the Borel Theorem. 
For suppose an infinite set E0 of points xi, • • • , xn, • • • 
contained in a bounded closed region E. Then either for 
every point x of E there exists a sphere around x containing 
at most one point of E0, or there exists a point x such that 

* Leçons, p. 119. 
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every sphere about x contains an infinity of points selected 
from EQ. In the first case, the spheres constitute a family $ 
for E to which the Borel Theorem applies. But a finite 
number of spheres of % contain only a finite number of 
points of E0. Hence E0 has a limiting point in E. 

We note in passing that it is immaterial whether the 
family fj consist of open sets (containing only interior points) 
or arbitrary sets of points to make the Borel Theorem 
valid. 

Returning to the linear case, the fact that the Borel 
Theorem does not hold for sets in general suggests the 
question what can be said about the set of points interior 
to any family of intervals. If by the term two families of 
intervals are equivalent we mean that they cover the same 
set of points, then we have on the one hand 

Any family of intervals is equivalent to a family of non-
overlapping intervals. 

This is immediately evident. We need only take any 
point interior to some interval and proceed to the left and 
right until we meet a point which is not interior to any 
interval of the given family. In this way we define a group 
of non-overlapping sets which is denumerable. 

As an analog to the Borel Theorem we have the following 
theorem, which is due to Lindelof.* 

LINDELOF THEOREM. In any family of intervals it is pos­
sible to find a denumerable sub-family having the same interior 
points. 

This theorem has been proved in different ways. Mention 
might be made of the following proofs: 

(a) Using Density of Rational Points on a Line.\ Let x 
be any point interior to some interval 2" of the family. 
Then there exists an interval R with rational end-points 
containing x, and entirely interior to I. This sets up a corres­
pondence between a family of the given intervals and the 

* COMPTES RENDUS, vol. 137 (1903), p. 697. 
t Cf. W. H. Young, PALERMO RENDICONTI, vol. 21 (1906,) p. 125. 
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family of intervals with rational end-points, which is de-
numerable. 

We observe that this method of proof makes use of the 
density of the rational points on a line and their denumer-
ability. An equivalent method of constructing the intervals 
with rational end-points, would be to use the rational points 
interior to the family of intervals, and make each of them 
the mid-point of an interval with rational end-points 
interior to some interval of the set. In this form, the proof 
of the corresponding theorem in n-space can be made. 

(b) Via the Borel Theorem. Let (a, 6) be one of the 
intervals of the equivalent family of non-overlapping 
intervals, and Xo any point of (a, b). Let 
be a monotonie sequence of points approaching a, and 

be a monotonie sequence approaching b. 
Then the closed intervals (x_n, xn) can be covered by a 
finite number of intervals of the given family $. This gives 
us a method for selecting a denumerable set of intervals 
having the desired property relative to (a, b). The final 
result is a consequence of the properties of denumerability. 

(c) Lindelof Proof. Suppose the points covered by g 
belong to a finite interval (a, b). For any x covered by g> 
let dx be the maximum of the values of d for which (x-~d, 
x+d) is interior to one of the intervals of the family g, and 
consider the set En of points of the set E covered by %, 
for which dx>l/n. Then by the observation of §2(c), it 
follows that the set En can be covered by a finite number of 
intervals chosen from the family %. This gives a method for 
the enumeration of the subfamily. The extension to the 
unbounded interval results from the fact that it can be 
divided into a denumerable set of finite intervals.* 

A similar method of procedure applies in w-space. 

* W. H. Young, PALERMO RENDICONTI,vol. 21 (1906), pp. 126-7, gives 
another proof utilizing somewhat similar procedure, which resulted in a 
series of polemics with Schoenfiies, the final shot being fired by the latter 
in PALERMO RENDICONTI, vol. 35 (1913), pp. 74-78. At best the method of 
proof, even as validated by Schoenfiies, is not satisfactory. 
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5. Strict Families of Intervals.* I t is obvious that in 
general the selection of the finite subfamily of intervals in 
the Borel Theorem may be made in many different ways. 
Obviously too, some of the intervals of the finite family 
may be unnecessary in that all points interior to them are 
interior to other intervals of the family. We shall call a 
strict family of intervals, a family in which each interval is 
necessary, in the sense that it contains a point not interior 
to any of the other members of the family. We have then 

A ny finite family of intervals can be replaced by an equiva­
lent strict family. 

We note first that if three intervals have a common point 
they can be replaced by at most two of these intervals. 
Let the intervals be (ab &i), (a2, b2), and (a3, b3), where 
since they contain a common interior point, the notation 
is chosen so that 

a>\ S ci2 ^ a3 S b\ . 

Then obviously if b2<h, we can dispense with (a2, b2) 
and if b2>b3, then we can dispense with (a3, h). By the 
use of this result the theorem stated is immediate. The 
process of deletion in any particular case may be tedious, 
especially if governed by other considerations, such as, for 
instance, the desire to make the sum of the lengths of the 
retained intervals a minimum. 

More generally we have the following theorem. 

If any family of intervals is such that every point interior 
to one of the intervals is interior to at most a finite number of 
intervals of the family, then we can select a strict subfamily, 
equivalent to the given family. 

We note in the first place that the given family is neces­
sarily denumerable. For to each point interior to an interval 
of the family there will correspond a vicinity which is 
common to a definite finite number nx of intervals. By 

* Cf. Denjoy, JOURNAL DE MATHÉMATIQUES, (7), vol. 1 (1915), pp. 223-
30. 
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the Lindelof Theorem these vicinities can be replaced by 
a denumerable set of the same vicinities, and since to each 
of the final vicinities there corresponds a finite number nx 

it follows that the original family of intervals is denumerable. 
Let then the intervals be arranged in sequential array 

lit • * * , In, - • - . Let IUl be the first interval of the array 
covering a point not interior to any of the succeeding 
intervals. Such an interval will always exist. We determine 
Inm as the first interval of the sequence following Inm_x con­
taining a point not interior to Ini, • • • , If l f lhl, and a point 
not interior to any of the intervals following 7„m. I t is 
obvious that the resulting family is a strict family. I t 
remains to show that every point x covered by the original 
family is covered by the subfamily. Since x is an interior 
point of a finite number of intervals of gf the indices of the 
sequence h, • • • , In to which x is interior have a definite 
maximum N, i. e. there will be an index nm<N such that 
x is interior to Inm. 

From the point of view of measure, a strict family of 
intervals has the property that the sum of the lengths of the 
intervals is less than double the sum of the lengths of the 
intervals covered. For consider any strict family of inter­
vals. We note first of all that it is necessarily denumerable. 
For since each interval contains a point not interior to 
other intervals it contains a subinterval having no points 
in common with other intervals. These subintervals define 
a system of non-overlapping intervals which is denumerable, 
and consequently the original family, which is in one-to-one 
correspondence with it, is denumerable. Let xn be a point 
interior only to In. Then the points xn have as limiting 
points only points not interior to any interval of the family. 
From the contrary assumption would follow that some of 
the points xn are interior to more than one interval of the 
given family. As a consequence the points xn in each in­
terval (dk, bk) of the equivalent family of non-overlapping 
intervals can be arranged in order so that between two 
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points no further points of the sequence appear. Con­
sequently no point of (a&, bk) appears in more than two 
intervals of the family. 

Denjoy has given a condition under which the reduction 
of a family to an equivalent strict subfamily is possible. 
If a family g of intervals is upper semi-closed in case every 
interval which is the limit of a sequence of intervals In 

chosen from the family is part of an interval of or belongs 
to g, then we have the following theorem. 

From every upper semi-closed family % of intervals it is 
possible to select an equivalent strict subfamily. 

It will obviously be sufficient to show the possibility of 
selecting an equivalent subfamily go, such that every point 
covered by g is interior to at most a finite number of 
intervals of go. Let (a, b) be an interval of the equivalent 
family © of non-overlapping intervals. There are three 
possibilities: 

(a) The points a and b are both end-points of intervals 
of g. Then, applying the Borel Theorem, we get a finite 
sub-family having every point of (a, b) excepting a and b 
as interior points. 

(b) Both a and b are not end-points of intervals of g. 
Then by successive applications of the Borel Theorem, 
as in the proof of the Lindelof Theorem (§3(b)), we construct 
an equivalent family which has the property that a or 
& is a limiting point of end-points of any infinite set of 
intervals selected from this family. If possible let x be 
an interior point of (a, b) interior to an infinite number of 
intervals of the resulting subfamily. Then a or & is a limiting 
point of end-points of these intervals. By the semiclosure 
of the family g it follows that a or & is then an end-point of 
an interval reaching at least to x, contrary to the assumption. 
Hence every ppint interior to (a, b) is interior to at most a 
finite number of intervals of this subfamily. 

(c) If only one of the end-points a or b is an end-point 
of an interval of g, then a process similar to case (b) utilizing 
only one end-point will apply. 
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As a corollary of this result we have the following theorem.* 

If a family % of intervals is such that for every e there are 
at most a finite number of intervals of % of length greater 
than e j then there exists an equivalent strict subfamily of $. 

6. Other Theorems on Reduction of Families of Intervals 
to Finite Subfamilies. We turn our attention briefly to a 
number of analogs of the Borel Theorem, most of which 
are due to W. H. and G. C. Young, f A theorem which has 
the Borel Theorem as a consequence, but for which the 
converse has not yet been shown, has been called by the 
Youngs the Heine-Young theorem, because of its similarity 
to Heine's proof of the uniform continuity theorem. 

HEINE-YOUNG THEOREM. With every point x of a closed 
interval (a, b) there are associated two intervals, an Rx having 
x as left-hand end-point, and Lx having x as right-hand end-
point. These intervals are connected by the condition that 
if x' is interior to the Lx for x, then Rx> contains x as an 
interior point or an end-point. Then a finite number of the 
R intervals cover (a, b) without overlapping. 

The R intervals without the intervention of the L intervals 
are equivalent to a Lebesgue chain, and since the Rx is 
unique for every point there will be only one such chain. 
The presence of the L intervals insures the finiteness of the 
chain by preventing limiting points. For the L corresponding 
to a possible limiting point x would include an infinite num­
ber of x' whose RX' by hypothesis should reach up to or 
beyond x. 

The finiteness of the R chain is also apparent from another 
point of view. The L intervals are equivalent to a chain. 
Now any L is covered by at most two R intervals. We can 
then as in the case of the Borel Theorem define a sequence 

* Cf. R. L. Moore, PROCEEDINGS OF THE NATIONAL ACADEMY, vol. 10 
(1924), 466-7. 

f Cf. Reduction of intervals, PROCEEDINGS OF THE LONDON SOCIETY, 
(2), vol. 14 (1915), pp. 111-130. 
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of decreasing ordinals by beginning with Ra. For if a point 
x' is a limiting point of the L intervals, of the chain, the 
corresponding Rx> will cover an infinite number of the L 
intervals, and have as right-hand end-point a point interior 
to an L or an end-point of an I or a point which is again a 
limiting point. In either of these cases we can proceed in 
the formation of our decreasing ordinal series, which is finite. 

While this theorem seems to be more general than the 
Borel Theorem, its usefulness is rather hampered by the 
peculiar way in which the two sets of intervals are inter­
laced. 

Another theorem of the same type is due to Lusin*, 
which is stated by him as applying to non-dense perfect sets. 

LUSIN THEOREM. Let E be any non-dense perfect set, and 
® the family of open intervals (ak, bk) complementary to E 
relative to an enclosing interval (a, b). Moreover, suppose that to 
every point x of E not an a& or bk there correspond intervals of a 
family % to the right of x of the form (x, ak), and all intervals 
to the left of the form (bk, x) in a certain neighborhood of x; 
while to the points bk, only intervals of first type correspond, 
and to points ak only intervals of the second type ; then a finite 
number of the intervals from % and ® cover (a, b) or E without 
overlapping. 

The proof can be made along the lines of the Young 
Theorem ; the right-hand intervals together with the intervals 
of ® can be formed into a chain, this being reduced to a 
finite set by the inclusion of the left-hand intervals. From 
this it is apparent that to prevent overlapping it is not 
sufficient to assume as Lusin does that only a single interval 
the right and left corresponds to each point of E. 

W. H. and G. C. Young credit the following theorem for 
a closed interval to Lusin. 

If to every point x of a closed interval (or closed point set) 
there correspond all the intervals to the left and right of the 

* Moscow MATHEMATICAL SOCIETY TRANSACTIONS (SBORNIK), vol. 28 
(1911-12), p. 270. 
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point in a given neighborhood of the point, then a finite number 
of these intervals suffice to cover the interval {or point set) 
without overlapping* 

With every x of (a, b) we associate an interval of a new 
family such that x is the middle point of its interval, and 
the interval consists of an L and an R of equal length selected 
from intervals associated with the point. A finite number of 
these intervals suffice to cover (a, &). We assume that the 
intervals retained give a strict covering for (a, 6). Then if 
Ini contains a, let Xi be its middle point. If Xi>a, we reach 
xi by noting that (a, xi) belongs to the given family. Let 
ƒ„, overlap with Inx and x2 be its middle point. Then x2>xi. 
If x2 belongs to Ini then Xi and x2 is an interval of the given 
family. If x2 is not in Ini then we reach x2 by taking the 
intervals xi b\ and b\ x2, where bi is the right-hand end-
point of In. I t is obvious that in this way we can construct 
a finite number of intervals as required. 

A slightly more general theorem can be obtained by 
associating with every point all the intervals to the left in a 
certain vicinity, and only one or more to the right. In this 
form the proof given above via the Borel Theorem is not 
valid, and it is not clear whether the Borel Theorem can be 
used. I t can be deduced by using the Lebesgue chain associ­
ated with the intervals to the right; or, following the Youngs, 
we get an equivalent method by associating with every point 
x of (#, b) as an Rx the smallest interval containing all the 
intervals of the given family having x as left-hand end-point 
and as Lx the given vicinity to the left. Then the Heine-
Young Theorem applies; there exists a finite number of 
the R intervals reaching from a to b. Any of these R inter­
vals can be replaced by at most two intervals of the original 
family. 

* This theorem can be made the basis of a proof of the theorem If 
f(x) has a Riemann integrable derivative f {%) on (a,b) then ƒ(&)—ƒ (a) = 
fa f {x)dxf without using the mean-value theorem of the differential calcu­
lus, a desideratum in considerations in general functional space. 
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In trying to avoid the infinite elements which pervade the 
Lebesgue Chain Theorem, the Youngs state the following 
lemma. 

YOUNG'S LEMMA. If to every point of the closed interval 
(a, b) there corresponds an interval of a family % having this 
point as left-hand end-point, then for every e, there exists a 
finite subfamily %e of non-overlapping intervals, such that 
he sum of the complementary intervals is less than e. 

If we assume the Lebesgue Chain Theorem this result is 
immediate. The Youngs prove the theorem by an ingenious 
application of the Heine-Young Theorem. Chose n so that 

2(b — a) <ne. 

Then to every point x of (a, b) we make correspond as 
La an interval to the left of x whose length is 1/n of the least 
upper bound of the intervals of ^ associated with x. If 
\X, X J ' it x) 

is any interval of gf, then we add to % all the inter­
vals (y, x+hx) where 

x ^ y ^ x. 
n 

Let Rx be the smallest interval containing all the intervals 
of this extended family which have x as left-hand end-point. 
Then it is apparent that the R and L intervals satisfy the 
conditions of the Heine-Young Theorem, so that a finite 
number of the R intervals extend from a to b without over­
lapping. The result desired follows from the fact that each 
R can be approximated up to 2/n of its length by an interval 
of the family g. 

I t is obvious that the Young Lemma will hold also for 
closed sets of points E, in which form it was originally 
stated.* A proof similar to this other proof given by Young 
has been made by Sierpinskif for the following more general 
theorem which utilizes the properties of upper measure. 

* PROCEEDINGS OF THE LONDON SOCIETY, (2), vol. 9 (1911), pp. 325ff. 
t Cf. FUNDAMENTA MATHEMATICAE, vol. 4 (1923), pp. 201-3. 
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If E is any bounded linear set, and % a family of intervals 
such that to every x of E there corresponds an interval Rx 

of %, having x as left-hand end-point, then for every e it is 
possible to determine a finite subfamily fÇe of $, consisting of 
non-overlap pin g intervals, and such that 

~m{E -E • Fe) < e . * 

The proof is as follows. Let En be the set of points of 
E for which there exists an Rx of length greater than 1/n. 
Then the En form a monotonie increasing family of sets 
such that 

E = 2Li Eni 

and consequently 
limn mEn = mE. 

Chose n so that 
_ __ e 
mE — mEn < - . 

2 
Let (ai, bi) be the smallest interval containing Eny its length 
being /. Obviously if we use intervals of g of length greater 
than 1/n, then there will be at most nl possible non-over­
lapping intervals in (a\, bi). If between every two intervals 
we allow a space d such that 

e 
nid < - , 

2 
then the points of En not covered will be of upper measure 
at most e/2. Since a\ is a lower bound of points of En there 
will be a point Xi of En in the interval (ai, ai+d) and an Rx 

of length greater than 1/n. Let a2 be the lower bound of the 
points of En to the right of RXl=Ri. Take x2 so that x2 

belongs to (a2, a2+d) and En. Continuing in this manner we 
get a finite number of intervals Ri, • • • , Rm. Let S be the 
set of points belonging to Ri, • • • , Rm. Then we wish to 
show that 

(mE - ES) < e. 

* We follow the usual notat ions: mE or meas E for upper measure of E; 
E- F the set of points common to E and F; E+Fset of points belonging to 
either E or F; E-F the sets of points of E not in F. 



1926.] THE BOREL THEOREM 445 

Now by the properties of upper measure we have* 

ME = M{E - ES) + MES. 

By the selection of En, we have 

_ _ e 

mE — mEn < - , 
2 

and by the selection of S, 

_ _ e 

mEn — rnEnS < -> 
2 

so that 
ME — MEnS < e. 

But E contains En and so ES contains EnS. Hence 

M(E - ES) = ME - MES < ME - mE^S < e. 

These theorems are of value in connection with the 
discussion of the distribution of infinite derivatives of a 
function of a single variable. The Young Lemma and the 
Sierpinski extension have been used by the Youngsf and 
by Rajchman and SaksJ to obtain in a simple way forms of 
the theorem that any monotonie function and therefore 
any function of bounded variation has a finite derivative 
excepting at a set of points of measure zero. 

Closely related to these theorems is a so-called "tile" 
theorem of the Youngs. If to a point correspond all the 
intervals in a certain vicinity of the point, then any such 
interval is called a tile and the point is called the point of 
attachment. 

T I L E THEOREM. § Suppose a family of intervals $ such 
that to every point x of a linear bounded set E, there correspond 
all the intervals in a certain neighborhood of x. Then for 

* Cf. Hausdorff, Mengenlehre, p. 415. 
t PROCEEDINGS OF THE LONDON SOCIETY, (2), vol. 9 (1911), pp. 325-

35. 
Î FUNDAMENTA MATHEMATICAE, vol. 4 (1923), pp. 204-13. 
§ PROCEEDINGS OF THE LONDON SOCIETY, (2), vol. 2 (1904), pp. 67-9; 

ibid., (2) vol. 14 (1915), pp. 122-126. The Youngs assume that E is measur 
able. 
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every e and d, there exists a finite or denumerably infinite 
subfamily %de of $, such that 

(a) every interval I of %de is of length less than d, 

(b) the point associated with each interval of %de is in­
terior only to that interval, 

(c) every point of E is interior to some interval of $de, 
and 

(d) X) mIn — w £ < e 

where In are the intervals of gde. 

In case the set E is a closed interval, the set %de is finite.* 
In this case the proof can be made via the Borel Theorem. 
We discard all intervals of § of length greater than d, and 
then associate with each point x an interval of the remaining 
family associated with x, of which x is the middle point. 
Then replace this new family by a finite strict subfamily 
via the Borel Theorem. Let xi, • • • , xn be the mid-points 
of the resulting intervals arranged in order. We can then 
select intervals from % attached to the points xi, • • • , xn 

in such a way that the overlap lies entirely between #»-, 
Xi+i and has for each i a length less than e/n. 

In the case of any set E, we enclose E in a, set of non-over­
lapping intervals Jn such that 

]T) mJn — ME < e. 

Discard all the intervals of g of length greater than d, and 
those which do not lie completely interior to some J n . 
Associate with each point x of E an interval of the remaining 
intervals associated with x, having x as middle point, forming 
a family gfo. The family $0 is equivalent to a denumerable 
family of non-overlapping intervals Km lying interior to the 
J„, which contains E, so that 

X) mKm — ME < e . 

* Also true if E is a closed set. Obviously this case is closely related to 
the Lusin-Young Theorem. 
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Now by following a process similar to that used in §5, and 
by discarding, at each stage, intervals not needed, we can 
reduce g0 to an equivalent strict family g of intervals. 
This strict family of intervals can be replaced by a family 
%de of intervals chosen from %, satisfying the conditions 
(b) and (d), by a line of reasoning similar to that used in 
connection with the case where E is a closed interval. 

7. The Vitali Theorem. The tile theorem of the 
Youngs is very closely related to the Vitali Theorem, which 
plays a role in connection with measurable sets and deriva­
tives of functions comparable to that of the Borel Theorem 
relative to closed sets and continuous functions. I t was 
stated by Vitali* for the linear interval in a form equivalent 
to the following: 

If % is a family of intervals such that for every point x of 
the bounded measurable set E, there exists a set of intervals 
of % containing x, whose lengths approach zero, then there 
exists a denumerable subfamily of % consisting of non-over­
lapping intervals, the sum of whose lengths is greater than the 
measure of E. 

This theorem has been extended in various ways, especially 
to higher dimensions, the chief extensions being due to 
Lebesguef and Carathéodory.J Probably the simplest 
statement and proof of the fundamental extended form 
of the theorem has been given by Banach,§ viz. 

VITALI THEOREM. Let E be any bounded set of points in 
a space of n dimensions. Let % be a family of closed sets of 
points I, such that to each point x of E, there corresponds a 
sequence In chosen from % subject to two conditions : 

(1) if rn(x) is the radius of the smallest sphere Cn(x) of 
center x containing In(x), then limw rn(x) = 0, and 

* ATTI DI TORINO, vol. 43 (1907), pp. 229-236. 
t ANNALES DE L'ÉCOLE NORMALE, (3), vol. 27 (1910), pp. 391-5. 
% Vorlesungen ilber réelle Funktionen, 1918, pp. 299-307. 
§ Sur le théorème de Vitali, FUNDAMENTA MATHEMATICAE, vol. 5 

(1924), pp. 130-6. 
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(2) there exists a quantity a independent of n and x such that 

meas In(%) 
> a. 

measCn(#) 
Then for every e, there exists a finite or denumerable family 
of sets In(xn) = In (1) without common points, and such that 

(2) ]T]meas 7 / < meas E + e 

and 

(3) mêâs (E - Y,In'E) < e. 

In this theorem it is immaterial whether the sets In{x) 
contain #.* Also it is possible to replace the spheres Cn(x) 
by cubes having x as center, or rectangular parallelepipeds, 
the ratios of whose dimensions are bounded from infinity and 
zero. Tha t the theorem is not true with an unconditioned 
set of rectangular parallelepipeds has been shown by 
Banach.f 

We give the proof in two dimensions, the changes to be 
made for the n-dimensional case being obvious. 

Since E is bounded, it is possible to find an open set U 
containing all the points of E and such that 

meas U S meas E + e. 

We then reduce the family g to the family $1, by retaining 
only those In(x) which are contained in U, so that condition 
(2) of the conclusion is fulfilled if the selection can be made 
in accordance with condition (1). 

Let k be any constant greater than unity. Then by 
selecting an 

such that the radius rni(xi) is sufficiently near to the least 
upper bound of the radii rn(x) we can make sure that 

* In Lebesgue's formulation (loc. cit., p. 391) the In(x) contain JC but 
then the spheres containing In(x) need not have x as center, 

f Loc. cit., pp. 134-6. 



1926.] THE BOREL THEOREM 449 

rn(x) < krni(xi) = kr(Ii'), 

for every n and x. Similarly if I{, • • • , Im-i have been 
determined, then by a similar method we can select the set 

J- m =z J- nm \Xm) 

with properties (a) IJl does not have any points in common 
with 7/ f or j g m — 1, and (6) 

rn(x) < krnm(xm) = kr(Jm') 

for all In(x) which have no points in common with If for 
j^tn — 1. Since E and therefore also U is bounded, and 
consequently has finite upper measure, it follows that 
meas Jm' approaches zero with m and consequently r(IJl) 
approaches zero with m, due to condition (2) of the hypo­
thesis. Let Cm' be the circle of radius (2& + 1) r ( / m ' ) , center 
xm. Then we show that for every m, all points of E belong 
to 

m - l °° 

Z / / + EC/. 
1 m 

We observe first that the sets In ' for n^m are chosen 
from the reduced family $m of gf with respect to the open 
set 

um= u- E i / 
1 

as In f for w ^ l , was selected from the reduced family gi 
with respect to U. Let x0 be any point of E. Then either XQ 
belongs to some If or it belongs to Um for every m. Let 
7m(xo) be the 7 of maximum radius contained in Um. Then 
since r(In) approaches zero with n, there exists a value of 
n such that 

r(Im(x0)) > kr(In
f)y 

but 

K J m ( * o ) ) ^ W / ) . 

for j = m, - - • , n — 1. I t follows that 7m(x) must have parts 
in common with one of the sets 7m ', • * • , 7w'-i, and hence 
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is completely covered by the corresponding C ƒ by the method 
of formation of the Cf. 

Now since 
00 

y^meas 1/ < meas E 
l 

it follows that X™ meas If approaches zero with m. Hence 
since 

00 00 00 

^2meas// > a ^meas C/ = ]T]measCy 
m m ( 2&+1) 2 

it follows that ]£w meas Cf approaches zero with mt i.e., the 
set 2^1 If contains all points of E up to a set of measure 
zero. 

The following generalization is possible.* 

The Vitali Theorem is still valid in case the set E is any 
sett and the constant a of condition (2) of the hypothesis is 
dependent on x, but independent of n. 

The case when E is any set can be reduced to the case 
when E is bounded, by consideration of the fact that n-
dimensional space can be broken up into a denumerable 
set of compartments of finite magnitude. For the case where 
E is bounded and a is dependent on the point x, we consider 
the sets En of points of E which satisfy the conditions 

1 1 
< a(x) ^ -

n + 1 n 
where <x(x) is the greatest lower bound of the values of the 
fraction 

meas Im(x) 

meas Cm(x) 

We can then apply the previous theorem to the sets En, 
successively. We determine / / , • • • , In so that 

* Lebesgue, loc. cit., p. 393 ; Carathéodory, loc. cit., p. 305. 
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m e a s ( £ i - 2J EJ/ ) < - , I Ei — 2J -Si-f/ ) 

then I'nx+i, • • • , In, belonging to Z7— X ) - l / / , so that 

meas (EX + E2- X) (Ei + E 2 ) / / J < / l - —J , 

and so on. 
The Vitali Theorem gives a very elegant method for 

demonstrating the following generalization of the Lebesgue 
metric density theorem. For the statement of the theorem 
we define the upper metric density of a set £ at a point x 
of E as 

meas CrE 
lim 
r-o meas Cr 

where Cr is a sphere of radius r and center x. Then the 
theorem is* 

The points of any set E at which the metric density is not 
unity form a set of zero measure. 

For let EQ be the set of points of E at which 

meas CrE 
lim 
r_o meas Cr 

does not exist or is less than unity, and let E^ k a, positive 
integer, be the points of E for which there exists a sequence 
of circles with radii rn converging to zero, such that 

•'•E<(i-i) 
meas CfnE < ( 1 JmeasC fn. 

Then E0 = J^Ek. The spheres Crn form a family g as required 
by the Vitali theorem for the points of Ek. Hence for every 
e there exists a denumerable set of the Crn, Cm satisfying the 
conditions 

* See Lebesgue, loc. cit., p. 407; H. Blumberg, TRANSACTIONS OF THIS 
SOCIETY, vol. 24 (1923), pp. 122ff ; and W. Sierpinski, FUNDAMENTA MATHE-
MATICAE, vol. 4 (1923), pp. 167-171, where other references are to be found. 
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meas Eu = meas X) Cm'E& = /^meas Cm
fEk, 

m m 

and 

y^measCV < meas Eh + e. 

But since Ek is part of E, we have 

meas CjEk < meas Cm '£ < f 1 jmeas Cm ' . 

Then 

meas Ek = ^ meas <?„/£& < ( 1 j X ) m e a s Cm' 
m \ &/ m 

< 11 )l meas£*.+ e), 

from which 

meas Ek < (k — l)e, 

i.e. £fc is of measure zero for every k, giving the same result 
for EQ. 

The question naturally arises what it is possible to do 
in the matter of selecting the sets In so as to contain all 
points of E. H. Rademacher* has given the following which 
might be considered a generalization of the Young Tile 
Theorem : 

If with every point x of E, there is associated a sequence 
of spheres, whose radii converge to zero, then for every e it is 
possible to find a denumerable set of these spheres En, such 
that 

^ m e a s Cn < meas E + e 

and every point of E is interior to at least one of the spheres. 

* MONATSHEFTE FÜR MATHEMATIK UND PHYSIK, vol. 27 (1916), pp. 
189-190. 
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This is a consequence of the Vitali Theorem and the 
result that under the hypothesis of the theorem, there 
exists a denumerable set of spheres covering E and a con­
stant k (which depends upon the dimension of the space) 
such that 

X)nieas Cn < &(meas E + e). 

Essentially the point is that under the given hypothesis it 
is possible for every e to cover a set of measure zero by a 
denumerable set of the given spheres, the sum of whose 
measures is less than the given e. 

I t is obvious that in the Rademacher theorem, the spheres 
can be replaced by cubes having the points x as center. 
To further extensions there are limitations. J. Splaya-
Neumann* has shown that it is necessary that the points x 
be the centers of the spheres by giving an example of a 
plane closed set of measure zero, such that the sum of the 
measures of the covering circles is always greater than or 
equal to unity, f 

For the linear interval, J. C. BurkillJ has given an exact 
covering theorem based on intervals, an extension of the 
Vitali Theorem. By observing that as a result of the metric 
density theorem the finite number of intervals of the Vitali 
Theorem can be chosen so that each of the complementary 
intervals contains a point of the given set, and combining 
this with the Borel Theorem he obtains the following slightly 
complicated result: 

If % is a given family of intervals I satisfying the hypotheses 
of the Vitali Theorem relative to a closed set E, and © a family 
of intervals J such that for every x of E all intervals in a certain 
vicinity of x belong to ®, then there exists an interval K which 

* FUNDAMENTA MATHEMATICAE, vol. 5 (1924), pp. 329-30. 
t Cf. also K. Menger, W I E N E R BERICHTE, vol. 133 l i a (1924), pp .425-7; 

and R. L. Moore, loc. cit., pp. 464-5, where examples based on intervals, 
rectangles, and squares are given, which are not centered relative to the 
points of association. Moore's example, however, is not with respect to a 
set of measure zero, as he claims. 

% FUNDAMENTA MATHEMATICAE, vol. 5 (1924), pp. 322-4. 



454 T. H. HILDEBRANDT [Sept.-Oct., 

for every e is completely covered without overlapping by a finite 
number of intervals from % and © fulfilling the conditions 

m e a s ( 2 I n - ÇEIn)EK) < e, and m e a s ( E X - (2In)EK) <e. 

We note finally that in the Vitali Theorem, the sets I of 
the family % may be replaced by measurable sets, but then 
the condition that the subfamily consist of non-overlapping 
sets must be dropped.* 

II . T H E BOREL THEOREM IN GENERAL SPACES. 

Probably no theorem of analysis has contributed more 
towards the analysis of general spaces than the Borel 
Theorem. The attempts to derive the theorem in increas­
ingly general situations has led to interesting new properties 
and characterizations of spaces. 

8. Metric Space. The first and simplest general space 
to which the Borel Theorem was extended is now generally 
called a metric space. The definition of the space and the 
proof of the theorem in this space were made by Fréchet 
in his Paris thesis.f A metric space 35 consists of a set of 
general elements x. I t is postulated that for every pair 
of elements xi and x2 of the space there exists a positive 
real number ô(xi, x2) called distance and subject to the 
conditions 

(1) ö(xi, x2) =ô(x2, Xi) for every xi and x2i 

(2) ô(xi, x2) = 0 if and only if xi and x2 are identical, 

(3) ô(xi, x2)^ô(xh Xz)-\-8(xs, x2) for every Xi, x2 and x$. 

A sequence { said to have as limit the element x 
if limn ô(xn, x)=0. A set E in the space 35 is said to have x 
as limiting element if there exists a sequence of distinct 
elements {xn} extracted from E having x as limit. Derived 
sets, closed sets, and perfect sets are defined in the usual way, 

* See Lebesgue, loc. cit., p. 394; and Rademacher, loc. cit., pp. 191-2. 
f Sur quelques points du calcul fonctionnel, PALERMO RENDICONTI 

vol. 22 (1906), pp. 1-72. Fréchet's results were stated with respect to 
what seemed to be a slightly more general situation, the equivalence with 
the above metric space being shown by E. W. Chittenden, TRANSACTIONS 
OF THIS SOCIETY, vol. 18 (1917), pp. 161-6. 
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and the notation Ef is used for the derived set of E. In such 
a space it seems natural to define a sphere center XQ and radius 
r as the totality of points of 3) satisfying the condition 

ô(x,Xo) S r, 

also to speak of a sphere of radius u s a vicinity of its 
center. The notion x interior to the set E can be defined in 
the following equivalent ways: 

(a) there exists a sphere having x as center all of whose 
points belong to E, or 

(b) x belongs to E and is not a limiting element of any set 
consisting of points all of which do not belong to E. From 
the properties of S it follows that all points x such that 
h(x, Xo) <r are interior to the sphere center x0 and radius r. 

In a general metric space the Weierstrass-Bolzano Theorem 
is not a consequence of the boundedness of a set. Instead we 
have the property compact, a set E being compact, if 
every infinite subset has a limiting element. If every 
infinite subset of E has a limiting element in E, we shall call E 
self-compact* which concept in a metric space is equivalent 
to compact and closed. 

As in the linear case, we shall say that a family § °f 
sets I chosen from a space 3) covers the set E if every point 
of E is interior to some set i" of %. Then the Borel Theorem 
can be stated : 

Any self-compact set E which is covered by a family §, 
can be covered by a finite subfamily of g. 

I t may occasionally be useful to refer to the property 
expressed in this theorem as the Borel property, i.e., E 
has the Borel property if from any family covering E, 
a finite subfamily covering E can be selected. 

Fréchet proved the theorem first for the case in which 
the family is denumerable. The process is very much the 
same as that given in §2(d), for the linear case. The family 
is arranged in sequential order 7i, • • • , In, • • • , and by a 
step-by-step process replaced by an array I\, • • -, 7nw, • • *, 

* Due to E. W. Chittenden, this BULLETIN, vol. 21 (1915), p. 18. 
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in which each set contains at least one element of E not 
interior to the preceding set. If this sequence is infinite, 
we get a sequence of distinct elements of E, Xi, * • , Xmy , 
where xm is interior to Inm but not to any preceding set. 
By the self-compactness of E} this sequence has a limiting 
element XQ of E. Now XQ is interior to some set In and con­
sequently In contains a sphere having x0 as center, and 
hence an infinite number of the sequence xm as interior 
points. This leads to a contradiction with the method of 
selecting Inm and Xm* 

We call attention to the fact that the proof utilizes in 
particular two ideas, (a) the self-compactness of E, and 
(b) the fact that if x is interior to E, and a limiting element of 
Ei then E contains as interior elements an infinite number of 
elements of E\. 

For the general Borel Theorem, Fréchet* originally 
postulated further properties of the space, viz., that the 
space SD is separable, i.e., can be considered as the derived 
set of a denumerable set of its elements. I t was shown later 
that any compact set E of a space 2) has the same property, 
i.e., for any compact set E, there exists a denumerable subset 
EQ such that E is contained in E0+EÓ, thus removing the 
restriction of separability for the space 2). f 

The proof of the Borel Theorem depends upon the follow­
ing lemma. 

LEMMA.J If every point x of a compact set E is the center 
of a sphere of radius r(x), and if there exists an e such that 
for all x of E 

r(x) > e > 0, 

then all points of E are interior to a finite number of these spheres. 

* Loc cit., pp. 25-27. 
t See T. H. Hildebrandt, AMERICAN JOURNAL, vol. 34 (1912), pp. 278-

281; W. Gross, WIENER BERICHTE, vol. 123 IIa(1914), pp. 809-812; 
Fréchet, BULLETIN DE LA SOCIÉTÉ DE FRANCE, vol. 45 (1917), pp. 1-8. 

t See Hahn, Réelle Funktionen, 1921, pp. 89-93. See also Urysohn, 
FUNDAMENTA MATHEMATICAE, vol.7 (1925),pp. 46-48, where the role of the 
axiom of choice in the proof of the Borel Theorem is emphasized. 
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Let S(xi) be the sphere about any point xi of £ , and xn any 
point not interior to S(xi), 5(x2), • • • , S(#»-i). Then on 
account of the fact that 8(xn, xm)>e for every n and m 
and E is compact, the sequence xn is finite. 

With this lemma, the Borel Theorem in a metric space 
can be proved in two ways. Either (a) following the method 
of §2(c) on the linear interval, let r{x) be the least upper bound 
of the radii of the spheres of center x interior to some set 
I of the given family. The self-compactness of the family 
yields immediately that the r(x) have a positive lower bound, 
and the lemma then suggests a method for selecting the 
finite subfamily from $. 

Or (b) from the lemma we conclude that for every n the 
points of a compact set E are interior to a finite number of 
spheres of radii 1/n. For every n then we retain the spheres 
which are interior to some set I of $. We obtain in that way 
a denumerable family of spheres, covering E, and hence by 
the denumerable-to-finite Borel Theorem, we can select a 
finite subfamily of spheres, which in turn defines a finite sub­
family of % covering E. 

This last proof contains practically the proof of the 
result that any compact set E is separable. For the centers of 
the spheres of radius 1/n having E as interior points will 
be a denumerable set E0 having the property that E belongs 
to EQ+E0'. 

Also there is present a special case of the Lindelof Theorem 

in a metric space, viz. 

If in a space 2D E is any separable set covered by a family 

g of sets I, then it is covered by a denumerable subfamily. 

Obviously the reason why the Lindelof theorem holds 
in linear or ^-dimensional space is because these spaces are 
separable. The method of proof is entirely similar to these 
special instances. Let E0=* [xn] be a denumerable subset 
of E such that E belongs to E0+E0'. Consider the denumer­
able family of spheres, center xn, and rational radii interior 
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to some I of %. They will cover E and set up a one to one 
correspondence with a denumerable subfamily of $. 

The condition that E is self-compact is necessary for 
the validity of the Borel Theorem. For if E is not self-
compact, then there exists a denumerable set of elements 
[xn] of E without a limiting element in E. To every 
point x of E there corresponds then a sphere containing at 
most one point of [xn]. These spheres form a family cover­
ing E, but every finite subfamily contains only a finite 
number of points of [xn] and hence does not cover E. 

Similarly the condition that E be separable is also neces­
sary for the Lindelof Theorem. Instead of proving this 
directly we relate this theorem and separability to a third 
property suggested in Lindelöfs paper. If we define an 
element of condensation of a set E, as a limiting point of E 
which remains a limiting point after the removal of any 
denumerable set from E, and a set as self-condensed if 
every non-denumerable set chosen from E has at least one 
element of condensation in E, then we have the equivalence 
of the following three properties in a metric space 2) :* 

(A) The set E is separable. 

(B) The set E is self-condensed. 

(C) The set E has the Lindelof property, i. e., if |Ç is any 
family of sets covering E, then a denumerable sub-family 
of % covers E. 

We have already shown that (A) implies (C). To show 
that (C) implies (B) follows the lines of the converse of the 
Borel Theorem above; the assumption of a non-denumerable 
set EQ without an element of condensation in E yields via (C) 
a denumerable set of spheres each of which contains only 
a denumerable set of elements of E0. To show finally that 
(B) implies (A), we show first that if E is condensed and 
if each point of E is the center of a sphere of radius greater 
than e, then all the points of E are interior to a denumerable 

* See Gross, loc. cit., pp. 805-12; Fréchet, ANNALES DE L'ÉCOLE 
NORMALE, (3), vol. 38 (1921), pp. 349-356. 
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subset of these spheres. Allowing e to take on successively 
the values 1/n, we get a denumerable set of centers of 
spheres which is the desired denumerable subclass of E. 

In so far as measure has not yet been effectively con­
nected with a general metric space, it is not possible to 
give generalizations of the Vitali Theorem. However 
K. Menger* has given some results which are comparable 
to the Vitali Theorem. 

We define the diameter of a set I as the diameter of the 
minimum sphere containing J. Then Menger is interested 
in the question : What properties of a set E in a metric 
space and what properties of a family g of sets / such that 
every point of E is interior to a subfamily of sets I whose 
diameters converge to zero, are sufficient to make possible 
the selection of a finite or denumerable subfamily of % 
of sets /whose diameters approach zero, and which covers K. 

If d(I) is the diameter of I and d(I, x) is the least upper 
bound of the diameters of spheres center x contained in 
I(x)1 then Menger's principal result is that the selection 
desired is possible provided 

(a) E is the sum of a denumerable set of compact sets; 
(b) if I(x) are the sets of g associated with x, then for 

every x the condition that d{I) approach zero is a conse­
quence of the fact tha t d(7, x) approaches zero. This latter 
condition is fulfilled in case there exists a positive-valued 
function ƒ (x) on E such that for each I associated with x 

d(I) <f(x)-d(I,x) . 

The proof is made first for a compact set E. If En 

is the subset of E for which there exists an I such that 
d(I, x)>\/n then En is interior to a finite number of these 
sets / . As a consequence E can be covered by a finite or 
denumerable family of sets In from g, which if denumerable 
has the property that there exists a point xn of In such that 
d{Im Xn) approaches zero, so that d(In) converges to zero 

* Einige Überdeckungssaetze der Punktmengenlehre, WIENER BERICHTE, 
vol. 13311a (1924), pp. 421-444. 
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as desired. The extension to the denumerable set of compact 
sets is obvious. 

In addition to having contact with the Vitali Theorem, 
the results of Menger are also related to Young's Tile 
Theorem (§6) and R. L. Moore's reduction theorem (§5). 
The conditions of Menger are sufficient. No doubt further 
interesting results can be obtained by considering necessary 
conditions. 

9. The Borel Theorem in a Space 2 with Limit of Sequence 
defined. Frechet's thesis besides considering metric 
spaces also postulated a more fundamental space 8, that 
in which limit of a sequence is defined. Limit is subject 
to three conditions : (1) the limit of a sequence is unique, 
(2) the limit of a sequence consisting of the same element 
repeated is this element, and (3) any subsequence of a se­
quence having a limit has the same limit. Obviously limit­
ing element, interiority, and the other concepts can be 
denned in the main as suggested for metric spaces. 

The first statement of a Borel Theorem in a space 8 
is due to E. R. Hedrick.* By analyzing the proof for the 
Borel Theorem in the denumerable-to-finite case, he ob­
served that it could be effected provided the space 8 had 
the following propertyf (called by Fréchet the Hedrick 
property) : 

(H) If x is interior to a set E, then an infinite number of 
elements of any sequence having x as limit are interior to E. 

He found that this property was a consequence of the 
simpler property : 

(S) The derived class of any class is closed. 

For suppose x is interior to E and the limit of a sequence 
of distinct elements xn, the result being obvious if the ele­
ments are not distinct. We show that there exists an no 

* TRANSACTIONS OF THIS SOCIETY, vol. 12 (1911), pp. 285-7. 

t Fréchet's statement (cf. ANNALES DE L'ÉCOLE NORMAL, (3), vol. 

38 (1921), p. 348) of this property is: If x is interior to E and a limiting 
element of F, then x is a limiting point of a subset Fü of F consisting entirely 
of elements interior to E. In an £ space this statement is equivalent to 
the one above. 
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such that for n>no, xn is interior to E. The assumption 
of the contrary gives rise to a sub-sequence {xnm} no point 
of which is interior to E, i. e., each member of the sub­
sequence is the limiting element of a sequence of elements 
{xnmk} not members of E. If we let E0 be the class of ele­
ments [#nmfc], then EQ contains the sequence {xnm} and 
consequently the point xf by the property S. The element 
x would then be a limiting element of E0 which would con­
tradict the interiority condition of x to E. 

I t is now fairly obvious that the Borel Theorem is valid in 
the form 

If the space 8 has the property S then any self-compact 
set E covered by a denumerable family % of sets J, is covered 
by a finite sub-family of %, i. e., any self-compact set E 
has the denumerable-to-finite Borel property. 

The condition that E be self-compact is necessary in any 
space 8.* For suppose {xn} is a sequence chosen from E 
not having a limiting element in E. Let Im be the set ob­
tained from the given space by deleting the elements xn 

for n>m. Then obviously the set E is covered by the family 
% of 7m, since no element of E is a limiting element of {xn}, 
but no finite subfamily of § contains all points of the 
sequence {xn}. 

Further the property S and so H is a necessary property 
in a space 8 for the Borel Theorem in this form : if E is self-
compact then E has the denumerable-to-finite Borel prop­
erty, f Let if possible the set E be such that E' is not closed. 
Then there exists a sequence {xn } of elements of E' with 
a limit x" not belonging to E'. Let the elements {xmn\ 
of E be such that xn' is a limiting element of xmn for w = l, 
2, • • • . Consider the family $ consisting of (a) I0, the 
set remaining after removing the elements xmn from the 
fundamental space, and (b) In the set remaining after 

* Cf. E. W. Chittenden, The converse of the Heine-Borel theorem in a 
Riesz domain, this BULLETIN, vol. 21 (1915), pp. 179-183. 

t Cf. Fréchet, BULLETIN DE LA SOCIÉTÉ DE FRANCE, vol. 45 (1917), 
pp. 1-8; Chittenden, this BULLETIN, vol. 25 (1918), pp. 60-66. 
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removing all members of the sequence excepting 
xn

f from the fundamental space. Then the self-compact 
set EQ consisting of the sequence {xn

f} and x" is covered 
by the family % but by no finite subfamily of this family. 

We note that in a space £ there is then equivalence be­
tween these three properties : 

(S) The derived class of every class E is closed. 

(H) If x is interior to E, and is the limiting element of a 
set E\ then an infinite subset of Ei is interior to E. 

(B) If E is self-compact, it has the denumerable-to-finite 
Borel property. 

The problem of determining conditions under which the 
any-to-finite Borel Theorem is valid in a space 8 remained 
unsolved for some time. Obviously the methods of metric 
space could not be used. A method of attack is suggested 
by the proof in the case just treated, viz. to utilize the 
theory of transfinite ordinals. The first solution of the 
problem was given by R. L. Moore.* He calls a monotonie 
family of classes G, a family such that for each pair G\ 
and G2 of the family, one contains the other. He then de­
fines the concept called by Fréchet perfectly compact. The 
set E is perfectly compact in case every infinite monotonie 
family of sets chosen from E or the family of their derived 
sets has a common element. That a perfectly compact 
set is compact is obvious from a consideration of the mono-
tonic family where Gm consists of the elements of the 
sequence {xn} for n>m.\ The relationship of the property 
"perfectly compact" to the theorem "any monotonie se­
quence of closed compact sets has a common element" will 
appear later. Moore's result is as follows. 

* See PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 5 
(1919), pp. 206-210. 

t Fréchet (ANNALES DE L'ÉCOLE NORMALE, (3), vol. 38, pp. 334-6) 
shows that in a metric space every compact set is also perfectly compact. 
This can also be deduced from the converse of the any-to-finite Borel 
Theorem in a metric space and in an 2 space. 
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In a space 8 with the property S, a necessary and sufficient 
condition that E have the any-to-finite Borel property is that 
E be perfectly self-compact. 

Suppose there is given a family % of sets I which covers 
E. Well-order this family, and then by a step-by-step 
process reduce the family so that each ƒ contains as in­
terior point at least one element of E not interior to any 
of the preceding sets in the array. Let the members of the 
resulting family be 7i, J2, • • • , J«, • • • , and let xa be interior 
to Ia but not to Ip for (3>a. Let Ea be the set of points 
xp for ]8 >ce. Then the family consisting of the Ea is a mono-
tonic family from E} and since the Ea do not have a common 
point, either the family is finite or the derivatives Ea have 
a common point x'. In the latter case there exists a y such 
that x' is interior to Iy, and since x' is a limiting element of 
Ey, by the property H it follows that Iy contains interior 
points of the set of xa for ordinals greater than 7, contrary 
to the definition of the xa. Hence the number of members 
of the family of Ea is finite. 

For the proof of the converse, let E be a set of the space 8 
having the any-to-finite Borel property. Then as shown 
above E is self-compact, i. e. compact and closed. Let G 
be any infinite monotonie family of sets Ea drawn from E. 
Then since E is closed El will belong to E. Moreover the 
property S insures that the sets ECt = Ea+Ea

f are closed. 
Let the sets Ia of the family % consist of the points remaining 
after deleting the elements of Ea from the fundamental set. 
If the sets Ea have no common element, it follows that E 
will be covered by the family g, but a finite subfamily of 
% will not cover E since the sets Ea contain elements for 
each a. 

Another solution of this question of the Borel any-to-
finite Theorem in a space 8 was given in 1923 by Kuratowski 
and Sierpinski.* In so far, however, as their result is practi­
cally stated in a space in which vicinities are defined we shall 
postpone consideration of it to a later section of this paper. 

* Le théorème de Borel-Lebesgue dans la théorie des ensembles abstraits, 

FUNDAMENTA MATHEMATICAE, vol. 2 (1921), pp. 172-8. 
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10. Vicinity Spaces 33. Hausdorff Form of the BOY el 
Theorem. The first suggestions of sets or vicinities as the 
basis for consideration in a general space are to be found 
in the paper of Hedrick.* Another development based to 
some extent on the Rieszf postulates for limiting element 
was given by R. E. Root.J About the same time, Hausdorff 
in his book on Mengenlehre developed systematically the 
point set theory in a vicinity space. Later, in 1918, Fréchet§ 
gave an independent development of the same type of 
space showing in particular the relationship between the 
space characterized by the Riesz postulates and a space 
based upon vicinities. The Hausdorff postulates have come 
to be accepted as a satisfactory basis, and a space based on 
them is usually called a topologie space. The postulates are 
as follows : 

I. To every point x there corresponds a family of sets 
V(x), chosen from the given space, and containing x. 

11. If Vi(x) and Vi(x) are vicinities of x, then there 
exists a common sub vicinity Vs(x). 

I I I . For every pair of points Xi and x2, there exist vicini­
ties Fi(xi) and F2(x2) without common elements. 

IV. If x2 belongs to Fi(#i) then there exists a F2(x2) 
contained in Fi(xi). 

In a vicinity space limiting element of a class E can be 
defined either (a) x is a limiting element of E if every V(x) 
contains at least one point other than x, or (b) x is a limit­
ing element of E if every V(x) contains an infinity of 

* Loc. cit., p . 289; Fréchet, TRANSACTIONS OF THIS SOCIETY, vol. 14 

(1913), pp. 320-4, showed tha t the space postulated by Hedrick was a 
metric space. 

t See ATTI DEL IV CONGRESSO INTERNAZIONALE (Roma) 1909, v o l 2, 

pp. 18-22. 
J Cf. TRANSACTIONS OF THIS SOCIETY, vol. 15 (1914), pp. 51-70. 

§ BULLETIN DES SCIENCES MATHÉMATIQUES, (2), vol. 42 (1918), pp. 

138-156; called Fréchet I in the sequel. Fréchet considers a type of 
space tha t he has called "espace accessible," which is equivalent to a 
vicinity space subject to postulates similar to those of Hausdorff, IV and 
especially I I I being replaced by weaker ones. 
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elements. In a 33 space satisfying conditions I, II , and I I I 
these two definitions are equivalent. 

More generally we can define x is a limiting element of E 
of power jit, if every vicinity of x contains a subset of power /x. 
Finally x is called a complete limiting element of E if every 
V{x) contains a subset of E of the same power as E. 

It is obvious that we can obtain an 8 space in a 35 space 
by assuming that limwxw = x is defined "for every V(x) there 
exists an no such that if n>^o then xn is contained in V(x)" 
But limiting element based on the sequence notion of this 
8 space need not agree with the limiting element of the 
given 33 space, unless the 33 space is subjected to additional 
conditions.* On the other hand given an 8 space it is 
possible to define it as a 33 space in which limiting elements 
are the same, f 

The notion interiority can be defined in different ways, 
equivalent if we are in a Hausdorff 33 space (i. e. subject 
to conditions I, II , I I I and IV)J : x is interior to E if x 
belongs to E and either (a) every set Ei having x as a 
limiting element, contains at least one element other than 
x of E, or (b) every set Ei having x as limiting element con­
tains an infinity of elements of E> or (c) there exists a V(x) 
containing only elements of E. 

Obviously x is interior to every V(x). 
An open set or region is a set containing only interior 

points. On account of condition IV every V(x) is an open 
set. We note that the sum of two open sets is open, also 
the complementary set of a closed set is open. 

Finally we note that on account of condition IV, a 
Hausdorff 33 space has the property S. 

The outstanding difference in HausdorfFs statement of 
the Borel Theorem from that stated by Fréchet is that the 

* Cf. Root, loc. cit., pp. 67-71; Fréchet, I, p. 148. 
t Cf. Fréchet, I, pp. 140-148. 
$ Limiting element may be of power 2 or tf0. Definition (c) is perhaps 

most satisfactory in so far as limiting element does not enter directly. 
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family % of covering sets consists of open sets, which intro­
duces an element of simplicity, since belonging to an open 
set is equivalent to being interior. The most elegant form 
of the Borel Theorem in a Hausdorff 33 space has been 
given by P. Alexandroff and P. Urysohn,* by calling at­
tention to the following equivalences : 

THEOREM I. The following properties of a set E in a Haus­
dorff space are equivalent : 

Ao» E is s elf-compact. 

Ai. Every denumerable subset of E has a complete limit­
ing element in E. 

B. If % is a denumerably infinite monotonie family of 
closed sets Fn such that each FnE contains at least one element^ 
then the sets FnE have a common element. 

C. If E is covered by a denumerable family ® of open 
sets G, then E is covered by a finite subfamily of ©. 

I t is obvious that A0 and Ai are equivalent. The equi­
valence of B and C is a matter of taking complementaries, 
products and sums. Assume B, and let © = [(?»]. Then 
the sets ^ f Gn are open sets, and the sets 33 —]CT Gn 
closed, as a matter of fact form a monotonie family. If 
the sets E(^B—^^ Gn) contain an element for every m, 
then by B they have a common element, i. e. the family © 
does not cover E. Conversely, assume C and a monotonie 
family of closed sets [Fn] such that each FnE contains a 
point. Then the 33 — Fn are open sets. If the FnE do not 
have a common point, then the sets 33 — Fn will contain 
all points of E. The finiteness of the equivalent set chosen 
from the %$ — Fn leads to a contradiction. 

The fact that Ai implies B is a well known result. The 
denumerable family FnE leads to a set E0, of points xn 

where xn belongs to FnE. The complete limiting element 
of E0 in E is also a limiting element for each FnE, and hence 
in each member of the family. 

* Cf. MATHEMATISCHE ANNALEN, vol. 92 (1924), pp. 258-60. 



1926.] THE BOREL THEOREM 467 

To complete the equivalence we show that C implies A0. 
If possible let E0 be a denumerable set without a limiting 
element in E, Then Eo = E0+EÓ will be closed and have 
no limiting elements in E. Then if xn is any element of E0f 

the sets __ 
Gn = £) — Eo+xn 

will be open and will contain all points of E, but a finite sub­
family of the Gn will not. 

More generally we have the following theorem : 

THEOREM I I . The following properties of E in a Haus-
dorff 55 space are equivalent : 

A. Every infinite subset of E has a complete limiting 
element belonging to E. 

B. If ^ is any well-ordered monotonie decreasing family 
of closed sets $ such that f or each a, FaE contains an element, 
then the sets FaE have a common element. 

C. If E is contained in a family © of open sets G, then 
it is contained in a finite subfamily. 

The proof of the equivalence of B and C follows the lines 
of the corresponding proof for Theorem I. 

Assume A, and let © be a family of open sets C * Let JU 
be the power such that any subfamily of © of power less 
than /x does not contain E, but there are subfamilies of 
power fi containing E. Let ©o be a subfamily of © of 
power fi containing E. Let 0 be the least ordinal of power /z. 
Then we can well-order ©0 in the form &, G2, • • • , Gai • • • 
such that a < 0 and by possible deletion assume that each 
Ga contains at least one point xa of E not in any preceding 
set. Consider the set £ 0 = [^a]. By the property A if E0 

is infinite, £o has a complete limiting element x, belonging 
to E, and consequently to some member Gp of the family ®0. 
Consequently every vicinity of x and so also G$ will con­
tain a subset of E0 of power JJL. Since the set of elements xa 

for ce</3 is of power less than JU it follows that Gp contains 
* This method of proof follows the lines suggested by Kuratowski and 

Sierpinski, loc. cit., pp. 174-5. 
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points of E0 of index greater than /3, contrary to the method 
of choice of the #«. Hence the set E$ is finite. 

To complete the equivalence we show that C implies A. 
For suppose E0 is an infinite subset of E not having a 
complete limiting point in E. Then for every x of E there 
exists a vicinity V(x) such that the power of V(x)EQ is 
less than tha t of E0. These vicinities being open sets, 
constitute a family of open sets containing E. But obviously 
a finite subfamily cannot contain all points of EQ. 

Theorem I suggests an extension in which the word 
"denumerable" is replaced by "power less than or equal to 
JU," in the properties Ai, B and C, the proof being similar. 
Theorem II suggests the following extension. 

THEOREM I I I . The following properties of a class E in a 
Hausdorff 33 space are equivalent : 

A. Every infinite set of power /x has a complete limiting 
element in E. 

B. If % is a well-ordered monotonie decreasing family of 
closed sets F, of power ^M> such that for each a, FaE contains 
at least one element, then the sets FaE have a common element. 

C. If E is contained in a family © of open sets G, the 
power of © being ^/x, then E is covered by a subfamily of 
© of power ^M-

This theorem contains among others the Lindelof Theorem 
as a special case. The proof is similar to that of Theorem 
I I . I t is interesting that in the general space the Lindelof 
Theorem and the Borel Theorem seem to join hands, a 
fact not to be foreseen by a consideration of ^-dimensional 
space. 

Alexandrofï and Urysohn call a set E satisfying the 
conditions of Theorem II bicompact, because it is a meeting 
place of the generalization of Theorem I and of Theorem I I I . 
I t is obvious however that property B is a special case of 
the perfectly compact property. Perhaps completely compact 
would be a better term. 
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I t remains to consider to what extent the Hausdorff 
postulates on the 33 space are needed. An analysis of the 
proofs shows that in any space in which closed and open 
sets are complementary the properties B and C are equi­
valent.* 

In Theorem I, Ao and Ai are equivalent, and imply B 
and C if the 33 space is subject only to conditions I, pro­
vided "limiting element" is the limiting element of power fc$0 

(i. e. definition (b)). The converse that A0 and Ai follow 
from B and C requires condition IV, making V{x) an open 
set, which condition is practically the property S: the 
derived set of a set is closed. If "limiting element" is of 
power 2, (i. e. definition (a)), then B and C follow from Ai, 
but Ao and not Ai follows from B and C under additional 
postulate IV. 

Theorems II and III are true under a space satisfying 
postulates I and IV, the latter being required in the proof 
of the result "C implies A, , ; for instance. 

11. General Borel Theorem in a 33 Space. We have pointed 
out that the Hausdorff statement of the Borel Theorem 
is based on families of open sets. I t seems desirable to 
consider briefly what happens in case we are dealing with 
families of arbitrary sets, the deciding covering property 
being then interiority. At the same time, the at tempt is 
to reduce the properties of the 33 space to a minimum. 

For most of this section, we shall assume considerations 
based on a 33 space subject to condition I of Hausdorff. 
Limiting element is of power 2, i. e., x is a limiting element 
of E in case every vicinity of x contains a point of E other 
than x. Further x is interior to E if x belongs to E and 
every set having x as limiting element has a point other 
than x in common with £ , or if E contains a vicinity of x. 
Compactness, derived sets, limiting points of power ju, 
complete limiting points are defined as above. We use 
finally a new concept : x is a complete interior limiting point\ 

* Cf. Saks, FUNDAMENTA MATHEMATICAE, vol. 2 (1921), pp. 1-3. 
t Chittenden (this BULLETIN, vol. 30 (1924), p. 556, referred to as 

Chittenden I in the sequel), calls such a point a hypernuclear point. 
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of E if every vicinity of x contains as interior points a set 
of the same power as E. The definition of interior limiting 
point of power JJL is then obvious. 

As in the previous section it seems proper to consider the 
following properties of a set E in this space as being con­
nected with the denumerable-to-finite Borel Theorem : 

A0. E is self-compact. 

Ai. Every denumerable subset of E has a complete 
limiting point in E. 

A2. Every denumerable subset of E has a complete 
interior limiting point in E. 

B. If g is a monotonie denumerable family of sets F 
chosen from £ , either the sets F or their derived sets have 
a common element in E. 

C. If E is covered by a denumerable family © of sets G, 
then it is covered by a finite sub-family of ®. 

We obviously have that A2 implies Ai implies Ao. 
The statement<<A2impliesC , ,is a form of the Borel Theorem 

whose proof is obvious. The converse C implies A0 can be 
proved by assuming if possible E not self-compact. Then 
there exists a denumerable set E0 of elements of E without 
a limiting element in E. Then for each point yn of E0 there 
exists a V(yn) containing only the point yn of E, and for 
each point x of E not a point of EQ a vicinity V(x) containing 
no points of E0. Then the sets 

Go = J2 V(x), Gn = Vn(yn) 
cover E but a finite subfamily does not. 

The proof of the fact that B follows from Ai can be modelled 
after the more general result given below. The converse is 
is obvious. 

To obtain further results it seems necessary to add 
additional hypotheses on the fundamental space. 

The assumption that 33 satisfies the condition IV of 
Hausdorff, or has the property 5, that derived classes are 
closed, gives a Hedrick property which can be stated as 
follows. 
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(H) If x is interior to E and a limiting element of EQ 

of power JJL then EQE contains a set of interior elements, whose 
power is /x. 

If derived classes are closed, then according to Fréchet* 
every vicinity V(x) of x contains a subvicinity VQ(X) all 
of whose elements are interior to V(x). Now if x is interior 
to E, then there exists a vicinity V(x) of x, which contains 
only points of E. The subvicinity Vo(x) of V then defines 
a subset of -Eo of power /x all points of which are interior 
to E. 

If 33 has the property S and consequently H, then we 
can state the equivalence of B and C. The proof of this 
equivalence follows the lines of proof of Moore's form of 
the Borel Theorem in an 8 space.t 

The other possible equivalences seem to be linked up 
with the fact that in the general 33 space with limiting 
element as defined, a finite class may have a limiting element. 
The conditions II and III of Hausdorff are sufficient to 
guarantee the contrary. Under these conditions it is pos­
sible to prove that C implies A2 and A0 implies Ai. The 
proof of the former of these statements follows the lines 
of the proof of the fact that C implies A0 given above. The 
latter is obvious. We have as a consequence the following 
theorem. 

THEOREM I. If the 33 space satisfies condition IV of 
Hausdorff, then properties Ai, B and C are equivalent. If 
the Space is a Hausdorff S3 space, then all the properties 
Ao, Ai, A2, B, and C are equivalent. 

The extension of these results to the case where the 
word "denumerable" is replaced by "power less than or 
equal to JU" in the properties Ax, A2, B, and C is obvious. 

Theorem II of § 10 suggests the consideration of the 
following properties : 

* Cf. Fréchet, I, p. 145. 
t Chittenden (I, p. 519) has shown that in a general S3 space the pro» 

perty S is not a consequence of the Borel Theorem in the form "Ao implies 
C." 
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A / . Every subset of E has a complete limiting element 
in E. 

A2'. Every subset of E has a complete interior limiting 
element in E. 

B'. E is perfectly self-compact, i. e., if % is any monotonie 
family of sets F chosen from E then either the sets F or 
their derived sets have a common element in E. 

Cr. E has the Borel any-to-finite property, i. e., if £ 
is covered by a family ® of sets G then E is covered by a 
finite subfamily of ©. 

Chittenden* has stated the following theorem. 

THEOREM I I . Ai is equivalent to B ' and A2' is equivalent 
to C'. 

We prove first that Ai' implies B'. Suppose % a mono-
tonic family of sets F chosen from £ . Let H be a set of 
elements of E such that every element of H is in some 
F and every F contains an element of H. Well-order H, xa 

corresponding to the ordinal a. Then we determine a well-
ordered subfamily of $ and a subset H0 of H by the 
requirement that Fa contain no element of H with ordinal 
7 <j(3a and x^a be the first element of H common to all Fy 

for 7 ^ a. Then for every F of g there exists an a such 
that F contains Fa. For F contains an element xy of H, 
and for some a, xy will not belong to Fa, so that by the 
monotonie character of fj, F contains Fa. From this it fol­
lows that if the derived sets Fa have a common element, 
the same will be true of the sets F', i.e. if the theorem 
holds for a well-ordered monotonie family, it holds for any 
monotonie family. 

* I, pp. 514-8. Very recently, since this paper was in type, Professor 
Chittenden has called my attention to the fact tha t the proofs of the first 
part of this theorem contained in his paper are not correct. Correct 
proofs by Sierpinski, who first noted the error, will appear in the next 
issue of this BULLETIN. The proof tha t is given here of the fact tha t 
Ai implies B' is a modification of Chittenden's proof, obtained before I 
was aware of an error in his work. 
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Let Fi, - • • , Fa, - - • be the elements of ft in order. 
Since every well-ordered set without final element is cofinal 
with a regular ordinal number,* it is obviously sufficient to 
prove the theorem for the case where every ordinal a 
precedes £2 the least transfinite ordinal corresponding to 
fx the power of ft. Let xa belong to Fa but not to Fa+i. Then 
from the assumption concerning E it follows that the set H 
of elements xa will have a complete limiting element x'. 
Every vicinity of xr contains a set of H of power JU, i.e. for 
every a an element x$ with /3>ce, and consequently an ele­
ment of Fa. Hence x' is common to the sets Fi. 

For the proof of the converse, that Bf implies A{, we refer 
the reader to the paper by Sierpinski, which will appear in 
the next issue of this BULLETIN. 

The proof of the equivalence of A2' and C' is parallel to 
the corresponding equivalence in Theorem II of § 10. 

Apparently to get complete equivalence it is necessary 
either to strengthen condition B' or add further postulates 
on the fundamental space. Just what is necessary has not 
as yet been determined. A sufficient, but not necessary 
condition is that the space have the property S. Then the 
property H is valid, which added to B' gives C' as in Moore's 
proof of the Borel Theorem in an 2 space given in § 9. We 
thus have the following theorem. 

THEOREM I I ' . If the space $5 has the property S, then 
properties A{, A2', B', and C' as applied to any set E of the 
space are equivalent. 

We note that since in a space S3 with the property S, 
the set E—E-^-E' is closed, perfect self-compactness or 
condition B' is equivalent to "if % is any infinite monotonie 
family of closed sets such that each set F*E contains an 
element, then the FE have a common element", the relation­
ship of which to condition B of Theorem II of § 10 is obvious. 

Kuratowski and Sierpinski in a space 8 define a 93 space 
by the condition that any set V to which x is interior is 

* Cf. Hausdorff, Mengenlehre, 1914, p. 132. 
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a vicinity of x. Then their statement of the Borel Theorem 
is as follows : 

In an 2 space having the property S, a necessary and suf­
ficient condition that every self-compact set E have the Borel 
any-to-finite property is that every set of the space which is 
compact and whose derived set is compact have a complete 
interior limiting element. 

The relationship to Theorem II is apparent. 
Finally it is obvious that Theorem II can be generalized 

as in § 10, giving a theorem corresponding to Theorem III , 
which contains the Lindelof Theorem* as a special case, 
and might be labelled "The Borel-any-to-less-than-power fi 
Theorem. " 

In closing we cannot refrain from calling attention to 
a justification of the consideration of general spaces, in 
gathering under the same roof such apparently diverse 
results as the Borel and Lindelof Theorems, and producing 
a result of greater scope. 

T H E UNIVERSITY OF MICHIGAN 

* For an 8 space, first given by Kuratowski and Sierpinski, loc. cit., 
pp. 176-8. 


