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PONCELET POLYGONS IN HIGHER SPACE. 
PROFESSOR ALBERT A. BENNETT. 

(Read before the American Mathematical Society December 30,1919.) 

LET there be given a linear projective space of 2n dimen­
sions. A point of the space may be denoted by P and its 
dual figure by P' . Thus a P' is a linear space of 2n — I 
dimensions. 

The totality of P's in the space is infinity to the order 2n, 
and the totality of P"s is of course of this same order. We 
shall select from these totalities a Qn and a Qn

r respectively, 
general quadratic loci of infinity to the order n of elements, 
where Qn consists of P's, and Qn' of P"s. 

For Qn and Qn' not in specialized relation to each other 
we have a two-two correspondence of the following form: 
Each P of Qn meets two P"s of Qn', and each P ' of Qn' meets 
two P's of Qn- Starting with any point of Qn, a succession of 
points of Qn is determined, where furthermore consecutive 
points of the sequence may be joined by lines. The succession 
of lines forms then a single "broken line" as this term is used 
in projective geometry. It may or may not happen that the 
broken line closes into a polygon. Except for degenerate 
cases corresponding to coincident P's or P"s, and it being 
supposed that Qn and Qn' are not degenerate, it may be proved 
that the closure of the broken line is determined by the rela­
tive positions of Qn and Qn

f and is independent of the element 
selected as initial. 

This may be called a theorem of Poncelet polygons in 
higher spaces. For n = 1, the theorem is the usual one. 

It should be emphasized that the case for n > 1 is not the 
logical equivalent of the case for n = 1, since there are n 
independent parameters in any case. The proof of the theorem 
is immediate by reference to general theorems on algebraic 
correspondences or to theta functions, the quadratics Qn and 
Qn determining theta functions of genus n, and affording one 
of the simplest illustrations of their character. 

A second generalization and one which applies to three-
space is to spaces of 2n — 1 dimensions generally, n > 1, the 
P, P', Qn, Qn being as above. Any P' of Qn may be viewed 
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as a (2n — 1)-space tangent to the n-dimensional quad­
ratic cone KJ of (n — 2)-spaces also represented as Qn'. 
While a P ' of Qn

f meets Qn in a conic, the two (2n — 2)-
spaces, L', tangent to Kn' and contained in P', which are also 
tangent to Qn, determine two points of tangency on Qn. This 
correspondence is again two-two, and for it the same theorem 
holds. The case n = 2 leads to the study of Kummer's 
surface and the theorem is in substance familiar in this case. 
Cf. Hudson, Kummer's Quartic Surface, Cambridge, 1905, 
page 196, and Zeuthen, Lehrbuch der abzahlenden Methoden 
der Geometrie, Leipzig, 1914, page 276. 
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ON THE KECTIFIABILITY OF A TWISTED CUBIC. 

BY DR. MARY F. CURTIS. 

(Read before the American Mathematical Society December 31, 1919.) 

I F the space curve 

(1) Xi = a,itn + bit""1 + hk<t+ k (i = 1, 2, 3) 

is a helix, it is algebraically rectifiable. For if it is a helix, 
it makes with a fixed direction a constant angle and *\xf\x' 
= (xf | a),* where a\, ai, az are constants, not all zero; then 
the arc 

(2) s= f -tëlx'dt 

is an integral rational function of t, not identically zero, and 
the curve (1) is algebraically rectifiable. 

It is not, however, in general true, that if (1) is algebraically 
rectifiable, it is a helix. It will be true, provided (2) is an 
algebraic function only when {x' \ x') is a perfect square of the 
form (xr\a)2. This condition is fulfilled in the case of the 
twisted cubic: 

(3) X\ = at, x% = bfi, xz = ctz, abc =)= 0, 

* If a : (at, a2, a*) and b : (bi, &2, bz) are two triples, then by (a \ b) we 
mean their inner product: ajbi + «2̂ 2 + a3b3. 


