3 sextactic points are contacts of tangents from the flexes P_3 . The 6 contacts of tangents from the sextactic points are the points P_{12} . The 12 contacts of tangents from P_{12} in turn are the points P_{24} , and so on ad infinitum. University of Oregon. ## RELATED INVARIANTS OF TWO RATIONAL SEXTICS. BY PROFESSOR J. E. ROWE. (Read before the American Mathematical Society September 4, 1918.) Let the parametric equations of the R_{3}^{6} , the rational curve of order six in three dimensions, be (1) $$x_i = \delta^6{}_{it} \equiv a_i t^6 + 6b_i t^5 + 15c_i t^4 + 20d_i t^3 + 15e_i t^2 + 6f_i t + g_i \quad (i = 1, 2, 3, 4),$$ and let the parametric equations of the R_2^6 , the rational plane curve of order six, be of the form $$x_1 = \alpha_t^6 \equiv a + bt + ct^2 + dt^3 + et^4 + ft^5 + gt^6,$$ $$x_2 = \beta_t^6 \equiv a' + b't + c't^2 + d't^3 + e't^4 + f't^5 + g't^6,$$ $$x_3 = \gamma_t^6 \equiv a'' + b''t + c''t^2 + d''t^3 + e''t^4 + f''t^5 + g''t^6.$$ It is well known that all plane sections of the R_3^6 are apolar to a doubly infinite system of binary sextics, and that all line sections of the R_2^6 are apolar to a triply infinite system of binary sextics. We shall let the four binary sextics δ_{it}^6 of (1) be four linearly independent sextics of the apolar system of the R_2^6 , and the α_t^6 , β_t^6 , γ_t^6 of (2) be three linearly independent sextics of the apolar system of the R_3^6 . Our purpose is to point out briefly the relation between the invariants of the R_2^6 and the invariants* of the R_3^6 . By means of the twelve equations ^{*} This relation must not be confused with the correspondence between invariants of the R_2^n and covariant surfaces of the R_3^n . $$a_{i}a - b_{i}b + c_{i}c - d_{i}d + e_{i}e - f_{i}f + g_{i}g = 0,$$ $$(3) \qquad a_{i}a' - b_{i}b' + c_{i}c' - d_{i}d' + e_{i}e' - f_{i}f' + g_{i}g' = 0,$$ $$a_{i}a'' - b_{i}b'' + c_{i}c'' - d_{i}d'' + e_{i}e'' - f_{i}f'' + g_{i}g'' = 0$$ $$(i = 1, 2, 3, 4).$$ it may be easily proved that the four-rowed determinants of the matrix of the coefficients of $\delta_{it}{}^{6}$ of the type |abcd| are proportional to the complementary three-rowed determinants of the matrix of the coefficients of $\alpha_{t}{}^{6}$, $\beta_{t}{}^{6}$, $\gamma_{t}{}^{6}$ of the type |ef'g''|. Let T denote the substitution of the three-rowed determinants of (2) for the proportional four-rowed determinants of (1), and T^{-1} the inverse substitution. Invariants of the R_3^6 are combinants of the four sextics δ_{it}^6 , and conversely, and these are rationally expressible in terms of the determinants of the type |abcd|. Invariants of the R_2^6 are combinants of α_t^6 , β_t^6 , γ_t^6 , and conversely, and these are rationally expressible in terms of the determinants of the type |ab'c''|. The combinants of δ_{it}^6 are implicit invariants of the R_2^6 which become explicit invariants of the R_2^6 after the application of T. Similarly, combinants of α_t^6 , β_t^6 , γ_t^6 are implicit invariants of the R_3^6 which are transformed into explicit invariants of the R_3^6 by means of T^{-1} . Hence any explicit invariant I of the R_3^6 is transformed into an explicit invariant I' of the R_2^6 by means of T. Similarly, $T^{-1}I'=I$. It is evident that the order of I in the |abcd| is the same as that of I' in the |abc'c''|. We shall now mention a few illustrations of this relation. If U' is the undulation invariant of the R_2^6 , T^{-1} U' = U is the stationary line invariant of the R_3^6 . From P, the pentatactic plane invariant of the R_3^6 , we obtain TP = P', the cusp invariant of the R_2^6 . Similarly, from Q, the quinquesecant line invariant of the R_3^6 , we derive TQ = Q' whose vanishing defines an R_2^6 such that any six of its collinear points have parameters apolar to a binary quintic. If N = 0 is the necessary and sufficient condition that the R_3^6 have a node, TN = N' = 0 defines an R_2^6 which has one secant that cuts out a cyclotomic set of parameters. Pennsylvania State College, May, 1918.