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stituent of degree m must have in this maximal subgroup at 
least one transitive constituent the degree of which is a divisor 
( > m) of m(m — 1). This paper has been offered to the 
Transactions for publication. 

5. In this paper Professor Winger shows how the classical 
properties of the rational cubic, JR3, can be derived quite 
simply from the theory of involution. The method is then 
employed in the discovery of new theorems. In particular the 
contact conies, including the perspective conies, are discussed. 
The paper closes with some theorems on the hyperosculating 
curves, i. e., curves whose complete intersections with Rs fall 
at a point. 

W. A. MANNING, 
Secretary of the Section. 

ON INTEGRALS RELATED TO AND EXTENSIONS 
OP T H E LEBESGUE INTEGRALS. 

BY PROFESSOR T. H. HILDEBRANDT. 

(Continued from page 144-) 

I I I . STIELTJES INTEGRALS AND THEIR GENERALIZATIONS. 

While the Lebesgue integral received almost immediate 
attention and recognition and found its way rapidly into 
mathematical literature and thought, it is only recently that 
the definition of Stieltjes seems to have received the considera­
tion to which it is entitled by virtue of its range of appli­
cability and usefulness. As a matter of fact, in the opinion 
of the writer, it seems to be destined to play the central rôle 
in integrational and summational processes in the future. 

1. Definition of the Stieltjes Integral.—(Cf. Stieltjes (23), 
pages 71 ff.; Perron (17), page 362; Fréchet (5), pages 45-54; 
Young (29), pages 131, 137.) A definition for this integral 
was given first by Stieltjes in his memoir on continued frac­
tions. The integral depends for its value upon two functions 
f(x) and v(x) defined on an interval (a, b). We suppose that 
they are both bounded. Then the definition is as follows: 
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DEFINITION. Divide (a, b) into a finite number of intervals 
by the points a = x0, xi, • • -, xn = b. Let & be any point 
interior to (x^if x%) and form the sum 

n 

s = Hf(%i)(v(xi) - v(xi-i)). 

If this sum has a limit as the number of divisions is increased 
and their maximum length diminished, this limit is the Stieltjes 
integral 

ƒ f(x)dv(x). 

Stieltjes stated his definition for f(x) any continuous func­
tion and v{x) a monotonie non-decreasing function and showed 
that in this case the integral exists. If we desire this integral 
to exist for every function continuous on (a, b) it is necessary 
and sufficient that v(x) be of bounded variation. However 
for the existence of an J fdv it is not necessary either that f(x) 
be continuous nor that v(x) be of bounded variation. For 
instance, we have the proposition 

(1) If f{x) is continuous and v{x) of bounded variation then 
the Stieltjes integral 

*vdf f 
•Ja 

exists also and we have 

f «îf = f fdv + ƒ(&)«(&) - f(a)v(a). 
Ja Ja 

The proof depends upon the rearrangement of the terms in 
the sum s.* 

In the sequel we shall confine ourselves mainly to the case 
in which v is a function of bounded variation, or more par­
ticularly monotonie non-decreasing, from which the former 
case can be deduced on account of the fact that every function 
of bounded variation can be expressed as the difference of 
two monotonie non-decreasing functions. 

As in the case of a Riemann integral we have the following 
theorem relative to the existence of a Stieltjes integral, v being 
a function of bounded variation: 

* Cf., for instance, Bliss (1), p. 29. 
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(2) A necessary and sufficient condition for the existence of 
the Stieltjes integral ffdv is that the total variation* of the func­
tion v(x) over the points at which f(x) is discontinuous shall 
be zero. 

Among other things, this theorem would require that the 
function v be continuous at points of discontinuity of ƒ. 

The following simple instances of Stieltjes integrals may be 
of interest: 

(a) If there exists a function w(x) such that 

then 

v{x) = I w(x)dx, 

J
n>b nib 

\ f(x)dv{x) = I f(x)w{x)dx, 
a Ja the integral on the right-hand side being taken in the same 

sense as that of w{x). 
(b) Suppose v(x) monotonie non-decreasing, and discon­

tinuous at the points x\ ^ x2 ^ x$ • • •, which approach b as 
a limit; let the measure of the discontinuities of v(x) at these 
points be the positive numbers v\, v2, • • •, respectively. Of 
necessity the series 2nvn is convergent. In the interior of the 
interval (xn-i ^ x < xn) let v(x) be constant and equal to 
n - 1 

X) Vi, and v(b) = Sn^n. Then evidently, if f(x) is continuous 
in (a, b), 

ib 

f{x)dv{x) = 2nVnf(xn). ƒ 
(c) If in example (6) we assume that in the interval (#n-i 

^ x < xn), we have 
w - l 

v{x) = x + Z) viy 

with v(b) = b + Hnr>n, then 
/ » & / • » & 

I f(x)dv(x) = I /(aOdz + ^nvnf{xn). 
Ja Ja 

These examples illustrate the fact that the Stieltjes integral 
* For the definition of the total variation over a set of points cf. below, 

§ 5. This theorem has been communicated to me by Bliss. Cf. also 
Young (29), pp. 132, 133, for the case where v(x) is monotonie. 
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in addition to giving an ordinary definite integral introduces 
also the values of the function integrated at special points. 
In this direction Fréchet has shown 

(3) The Stieltjes integral J f(x)dv(x) can be broken up into 

the sum of three terms 

I f(x)dv(x) = I f(x)a(x)dx + 2wfln/(#n) + I f(x)du(x), 

in which a(x) is a summable function and hence the first term 
a Lebesgue integral; the Xfi are the points of discontinuity 
of v(x) and vn = v(xn + 0) — v(xn — 0) ; and u is a continuous 
function of bounded variation which has a derivative zero 
excepting at a set of measure zero. 

For if we set 

<P(Z) = JL OOn) — v(Xn — 0)) + X) (*>(*» + 0) ~ v(xn)), 

then the function v(x) — <p(x) is continuous and of bounded 
variation. Hence, if a(x) is equal to one of its derived func­
tions wherever this is finite, and zero everywhere else, then 

v(x) — <p(x) = I a{x)dx + ÏI(X), 
Ja 

where u(x) is the variation of v(x) — <p(x) over the set of 
points of measure zero at which the derivative a(x) would be 
infinite.* The form of the theorem is then an immediate 
consequence of this decomposition of the function v(x). 

2. Some Properties of the Stieltjes Integral.—(Cf. Perron (17), 
pages 366 ff.; Riesz (21), pages 38, 39.) We note the fol-
lowing properties of the Stieltjes integral, v being a function 
of bounded variation and ƒ being supposed to be integrable 
with respect to v in the interval (a, b) : 

(1) ffdv+ ffdv= f fdv. 
Ja *J c *Ja 

(2) f (f+9)dv= f fdv+ f gdv. 
va "a Ja 

* Cf. Bliss (1), p. 40; de la Vallée Poussin (24), p. 93. 
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(3) f cfdv = c f fdv. 
Ja *Ja 

(4) If ƒ ^ 0 and v(x) is monotonie non-decreasing then 

f fdv ^ 0. 

I /̂ & I rib sib 

(5) I /rite ^ I l/l | ^ | = I |/|dw, where u is the total 
I J a [ •/ a Ja 

variation of v{x) from a to #. 

(6) f dv = v{b) - «(a). 

(7) If limn /n(#) = f{x) uniformly on (a, 6), then 

limw I fn(x)dv = I f(x)dv. 

(8) /ƒ I /cfo = 0 /or a// continuous functions and v is a 

function of bounded variation, then v(x) is constant except at 
a denumerable set of points between a and b} and conversely. 

3. Comparison of the Stieltjes Integral and the Lebesgue 
Integral.—(Cf. Lebesgue (14); Van Vleck (25).) Lebesgue 
(14) has shown that every Stieltjes integral is expressible as a 
Lebesgue integral. He gives two modes of procedure. In 
the first let w(x) be the total variation of v{x) in the interval 
(a, x). Let x(w) be the inverse function of w, with the con­
vention that in case w(x) is constant in the interval (I, m), 
we take for x{w) any of the values in this interval, for instance I. 
Substitute this function in the function v(x), and assume that 
if Xo is a point of discontinuity of v(x) then we make v(x(w)) 
linear in the intervals between W(XQ — 0) and w(xo), and 
w(xQ) and w(xQ + 0). Then v(x(w)) = u(w) will be a func­
tion of bounded variation having total variation equal to w 
at any point, and so, if u' is any of the derivatives of u with 
respect to w, it will take only the values + 1 and — 1, and 
we shall have 

f 10 

uf(w)dw. 
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Hence 

I f(x)dv(x) = I f{w)uf(w)dw, 
a Jo 

where now f(w) is no longer continuous but has a denumerable 
set of discontinuities of the first kind, i. e., f(w0 — 0) and 
f(w0 + 0) exist at every point; and the integral on the right 
is a Lebesgue integral. 

The other transformation which Lebesgue suggests rests 
upon the fact that a function of bounded variation can be 
expressed as the difference of two monotonie non-decreasing 
functions. If v(x) = g(x) — h{x) and we define x{g) and x(h) 
as above, and then replace the variables g and h by 

9 - 9(a) = (g(b) - g{a))t = Kxt, 

h - h(a) = (h(b) - h(a))t = K2t 

and set x(g) = xi(f) and x(h) = x%(f), then we can express 

f f{x)dv(x) = f [Kxfixiff)) -K2f(x2(t))]dt 
Ja t/o 

We note that in the Fréchet expression of § 1, the interval 
of variation of ƒ is still (a, b) ; in both of these last expressions 
we have a new variable of integration and a new interval of 
integration. 

On the other hand Van Vleck (25) has given a very simple 
transformation of a Lebesgue integral into a Stieltjes integral. 
As a matter of fact we might point out that the Lebesgue 
integral is by its very manner of definition a Stieltjes integral. 

He shows that if I < f(x) < L and fi(y) is defined to be the 
measure of the set E for which I ^f < y, then 

(L)£f(x)dx= (8) f\dfjL(y). 

By using the integration by parts formula (1), Bliss ((1), 
page 28) shows that a Lebesgue integral is reducible to a 
Riemann integral,* viz., 

(I) Ç Max = (S) I ydn(y) = L(b - a) - (R) f\(y)dy. 
Ja Jl Jl 

* Cf. also Young (26), pp. 245ff.; Denjoy (4(b)), pp. 191-203; Lamond, 
American Journal of Mathematics, vol. 36 (1914), pp. 387, 388, in which 
the final formulas are incorrect. 
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If ƒ(#) is not bounded on (a, b), we have 

X b /»oo 

f(x)dx = I ydpiy), 
« / —00 

where 
»^M(») = urn I ydfx(y). 

oo a, 0=^00 »y — a 

A similar reduction of the Pierpont integral to the Stieltjes, 
and thence to a Riemann integral can be made, if we express 
the measure function ix(y) in terms of upper measure instead 
of measure. 

4. Amplications.—(Cf. Riesz (21), pages 40-43, 51-54; 
(22).) We would seem to have shown in the last section 
that the Stieltjes and Lebesgue integrals are equivalent. 
This is true in the sense that each of them can by a trans­
formation be evaluated in terms of the other, but in the trans­
formation we change both the function and the interval of 
integration. It does not however follow from this that 
wherever we use a Stieltjes integral a Lebesgue integral will 
serve just as well. Perhaps the best illustration of this fact 
are the two applications of Stieltjes integrals which we shall 
briefly consider, the first of which has probably contributed 
more than any other to direct attention to the Stieltjes 
integral. 

The first application is in the theory of linear functional 
operations. Let % be the class of all continuous functions ƒ on 
an interval (a, 6). Then U is said to be a functional operation 
on g, if for every function ƒ of g there is a corresponding real 
number U(f). 

A functional operation which is linear is generally defined 
to have the following two properties: 

(a) distributivity: U(fl + f2) = tfÇfi) + Ufa); 
(b) continuity: if l i m n / w = / uniformly on (a, b), then 

limw U(fn) = U(f). 
It can then be shown that every linear functional operation 

U possesses also the properties 
(c) U(cf) = cU(f), c being any constant; 
(d) there exists a quantity M such that, for every function ƒ 

of the class g, | U(f) | ^ I X maximum of \f\. 
If the functional operation U has the property (a), then 

the property (d) is equivalent to the continuity property (b). 
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As illustrations of linear functional operations we cite 

U(f)= f f(x)u(x)dx, 

U(f) — 2nUnf(Xn), 

where u(x) is any summable function on (a, b), and where 
the un constitute an absolutely convergent series and the xn 
are any points of the interval (a, b). 

Hadamard* has shown that for every linear functional 
operation U(f ) on the class of all continuous functions there 
exists a sequence of integrable functions un{x) such that 

U(f) = limn I f(x)un(x)dx, 

but the functions un(x) do not necessarily have a summable 
function as a limit. On the other hand, Hellyf has shown 
that there exist a set of constants um^n)

f a set of points #m
(w) 

on the interval (a, b), and a set of integers rm, such that 

U(f) = lim E ^ ( w ) / f e ( n ) ) . 

Each of these expressions for a linear U(f) is rather compli­
cated. Perhaps the most elegant expression for a linear 
operation has been given by Riesz, who shows that there 
exists a function of bounded variation u(x) such that 

U(f)= ff(x)du(x). 

Riesz's second proof of this fact (cf. (22)) is really quite simple 
and elegant. It is made to depend upon the extension of the 
application of U(f) to functions which are constant on 
intervals, and this leads directly to a definition of the func­
tion u(x) and to the expression of U(f) for any continuous 
function f(x) as a Stieltjes integral. 

A second application is allied to the Weierstrass theorem 
that every continuous function is expressible as the limit of a 
uniformly convergent sequence of polynomials, i. e., linear 
combinations of the functions 1, x, x2, •••, x11, •••. This 

* Cf. Leçons sur le Calcul des Variations, I, pp. 289-302. 
t Cf. Wiener Berichte, vol. 1212o (1912), pp. 277-8. 
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theorem has suggested the question: under what conditions, 
necessary and sufficient, can we say of a given set of functions 
<Pi(x), • • •, <pn(%), ' • *, continuous on (a, b), that any continuous 
function can be expressed as the limit of a uniformly con­
vergent sequence of functions which are linear combinations 
of the <Pn(x). 

Various necessary or sufficient conditions in terms of 
Riemann integrability and Lebesgue summability were given, 
involving the derivatives of the functions <pn, but it remained 
for the Stieltjes integral to provide a condition both necessary 
and sufficient, which is as follows (cf. Riesz (21), pages 51-54) : 

A necessary and sufficient condition that every continuous 
function may be uniformly approximated by linear combina­
tions of a set of functions \<pi(x), • • •, <pn(x), • • •] is that the 
only solution of the equations 

ƒ 
b 

<pn(x)du(x) = 0 (n = 1, 2, • • •), 

for a u{x) which for every xQ satisfies the condition 

U(XQ) = %(u(x0 + 0) + u(x0 — 0)), 

is u(x) = constant. 
5. Extension of the Stieltjes Integral.—In constructing a de­

scriptive definition of integration Lebesgue* sets down the 
following six properties sufficient to characterize his definition 
of integration: 

f f(x)dx = 1 f{x- h)dx. 
a Ja+h 

L(2) f f(x)dx + ff(x)dx + ff(x)dx = 0. 
«/a Jb *Jc 

X(3) f f(x)dx + f <p(x)dx = f (ƒ(*) + <p(x))dx. 

1(4) If ƒ ^ 0 and b > a, then f f(x)dx ^ 0. 
va 

i(5) f 1 X dx = 1 or f 1 X dx = b - a. 
Jo Ja 

* Cf. (13), pp. 98, 99. Cf. also Annales de VEcole Normale Supérieure, 
ser. 3, vol. 27 (1910), pp. 368, 369 and 374 ff. 
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i(6) If fn(x) is a monotonie non-decreasing sequence of 
functions having ƒ(x) as a limit, then 

' fn(x)dx = I f(x)dx. 
a Ja 

If we turn back to § 2, we observe that there are properties 
of the Stieltjes integral which are very similar to these; in 
particular we find a marked similarity between (1), (2), (4) 
and (6) of § 2 and Z(2), i(3), i(4), and i(5) above. We 
observe that the main dissimilarity between the properties 
are in the absence of an analogue of i ( l ) and the fact that in 
the analogue (7) of L(6) the convergence to the limiting 
function fix) is uniform instead of monotonie. In discussing 
this last difference first, we observe that it is really the property 
L(6) which characterizes the Lebesgue integral as distinct from 
the Riemann, i. e., in effect that the continuity of the Riemann 
integral operation is one based on uniform convergence of the 
functions, and that of the Lebesgue one is based on monotonie 
sequences. It is this distinction which we find emphasized 
in the later treatments of Young (cf. (27) and (28)). It seems 
that an obvious conclusion is that, if we start from the following 
properties modelled after those of Lebesgue, we might expect 
to arrive at a Lebesgue generalization of the Stieltjes integral : 

S(l) v(x) is a monotonie non-decreasing function of x. 

S(2) f f(x)dv(x) + ff(x)dv(x) + Cf{x)d,v{x) = 0. 

S(3) f (ƒ(*) + <p(x))dv(x) = f f(x)dv(x) + j <p(x)dv(x). 

8(4) If ƒ ^ 0 and b > a, then f f(x)dv(x) ^ 0. 

S(S) f dv(x) = v(b) - v(a). 

8(6) If fn is a monotonie non-decreasing sequence of func­
tions such that limn fn = ƒ, then 

limn I fn(x)dv(x) = I f(x)dv(x). 
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In the above properties S(l) is not an analogue of Z(l), 
which would have the form 

f(x)dv(x) = f(x-h)dv(x). 
•J a *Ja-\-h 

If we use this property in connection with S (5) we get 

v{b') - v(a') = t>(&") - *(a") 

for every pair of subintervals of (a, b) for which 

h' - a' = b" - a". 

In as much as v is a continuous function except at a denu-
merable infinity of points, this would require that the function 
v(x) be continuous throughout the interval, and from this 
in turn we would conclude that v(x) is linear and of the form 
ex + d. If we impose on this the requirement i(5) instead 
of 8(5) we get v(x) = x + c. In other words, it seems that 
the property Z(l) plays a principal rôle in characterizing the 
Lebesgue and Riemann integrals as distinct from the Stieltjes. 

By following through a method of reasoning similar to that 
of Lebesgue ((13), pages 98-102), but on the basis of the prop­
erties S(1)-*S(6), we arrive at a result similar to the one which 
he obtains,, viz., 

In order to find I fdv, it is sufficient to know how to find 
•Ja 

J' \pdv, where \p is a function which takes only the values 
a 

zero and unity. 
Lebesgue determines his function x// to be the measure of the 

set of points E for which x// = 1. Radon ((19), pages 1305 fl\) 
has suggested a method of procedure to be applied to any 
monotonie non-decreasing function which has the continuity 
property v(x — 0) = v(x) at every point of the interval. 
This requirement is a result of the fact that he considers as 
the basis of his operations half open intervals (a ^ x < b). 
We modify this method slightly, using open intervals instead 
of half open ones. 

We proceed to define a function v(E) on a set of points E 
corresponding to the measure function, as follows: If E = 
(o' < x < b') then v(E) = v(b' - 0) - v(a' + 0). If a and b 
are the extremities of the fundamental interval, then we take 
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for E = (a ^ x ^ 6), v(E) — v(b) — A (a). In order to 
avoid circumlocution, we might think of the interval (a, b) as 
extended by e on each end, and have v(a — e) = v(a) and 
«(& + e) = «(6), and think of the interval (a, b) as enclosed in 
an open interval extending beyond a and 6. Complementary 
sets will be taken with respect to the closed interval (a, 6). 

For any set E, we define then a quantity v{E) as follows: 
Enclose the points of E in a finite or denumerable infinitude 
of open intervals an; then 

v(E) = BÇZnv(an)), 

i. e., S(25) is the least upper bound of the sums 2nfl(cen) for all 
possible enclosures of the set E in open intervals. Let CE 
be the complementary set to E relative to the closed interval 
(a, b). Then we define 

v(E) = v(a, b) - i(CJS).* 

When v(E) = v(E), we say that E is measurable relative to 
v(x), and define «(E) to be the common value. The totality (g 
of sets measurable relative to v(x) form a class of sets which 
have the following properties :f 

(1) If Ei and E2 belong to the class (g, then Ex + E2 and 
EiE2 also belong to (g. 

(2) If Ei, • • •, En, • • • belong to (g and are mutually dis­
tinct, then 2 n E n also belongs to (g. 

(3) The Borel measurable sets belong to (g. 
Further «(E) has the properties 
(1) If Ei and E2 belong to (g, then 

v(Ex + E2) + <EiE 2 ) = «(Ex) + <E 2 ) . 

(2) If Ei, • • •, En , • • • belong to (g and are mutually dis­
tinct, then 

vÇ2nEn) = 2nfl(En), 

i. e., « is what Radon ((19), page 1299) calls an absolutely addi­
tive function. 

* Note that the values of v{E) and v(E) are independent of the values 
of v(x) at its points of discontinuity. We might then have assumed 
with Radon v(x — 0) = v(x) at every point. In particular we have 

^ s f l ' S ^ b') = v(b' + 0) - v(a' - 0), not v(Jb') - v(a'). 

fFor the proof cf. Radon (19), pp. 1305 ff. Bliss (1), pp. 12-17, has 
given a careful analysis of the case in which v(x) is a continuous monotonie 
non-decreasing function. 
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(3) For every E of @ and for every e > 0, there exists a 
closed set E', contained in E and (2, such that v{E) — v(E') < e. 

In case v(x) is of bounded variation instead of monotonie 
non-decreasing, it can be expressed as the difference of two 
monotonie non-decreasing functions p(x) and n(x). We can 
then find the class (Si of all sets measurable relative to p(x) 
and (£2 of all sets measurable relative to n(x). We say that 
the class (g of all sets measurable relative to v is the greatest 
common subclass of the classes (Si and (g2, and set 

v(E) = p(E) - n(E). 

The total variation of v over the set E is defined to be 

t{E) = p{E) + n(E). 

6. The Frêchet Generalized Integral—(Cî. Fréchet (6).) 
Instead of proceeding to the definitions of integration of the 
function ƒ with respect to the v(E) defined in the preceding 
section, on an interval (a, b) or a set E, we prefer to discuss the 
definition of integration suggested by Fréchet, which includes 
the Lebesgue, Young, Pierpont, and Stieltjes integrals as 
special cases by properly assigning the function v. 

Suppose a set $ of general elements p. Suppose further a 
class d of subsets E of elements of p, which has the following 
properties : 

(1) If Ei and E2 belong to @, then Ei + E2 and EiE2 also 
belong to (§. 

(2) If Ei, - • -, En, • • -/are sets belonging to @, which are 
without common elements, then XnEn also belongs to @. 

On the class (2, we suppose that there is defined an abso­
lutely additive f unction v(E) which has the following property: 

If Ei, - • •, En, - ' - are sets belonging to (§ without common 
elements, then 

vÇZnEn) = 2nV(En). 

Then it can be shown that there exist two functions Vi(E) 
and v2(E), satisfying the same condition as v and in addition 
the condition vx(E) ^ 0 and v2(E) ^ 0 for every E, and 
such that 

v(E) = vi(E) - v2{E). 

We shall assume in the sequel that in addition to being 
absolutely additive, the function v(E) is also monotonie, i. e., 

v(E) ^ 0 for every E. 
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The changes in the properties and definitions given below are 
obvious, when this last requirement is omitted. 

Suppose there is defined on ^ a function ƒ(p). In defining 

a value for an integral I fdv, we can follow the method of itegral I fdv, 
JE 

Young or that of Lebesgue. 
For an analogue of the Young integration, we divide E into 

a finite or denumerable set of subsets En of (§, and let mn 
and Mn be the upper and lower bounds, respectively, of ƒ on En. 
Let 

8 = 2nMnv(En) and s = ^nmnv{En). 

Then the upper integral I fdv is the greatest lower bound of 
JE 

the values of 8 and I fdv the least upper bound of the values 

of s for all possible divisions of E into a finite or denumerably 

infinite number of sets belonging to (£. We say that I fdv 
JE 

exists, when the upper and lower integrals are equal. 
If ƒ is not bounded on E, then the divisions of E must be 

restricted to be such that Mn and mn are finite. In particular 
a necessary and sufficient condition for the existence of finite 
values for J and J , the upper and lower integrals, is that there 
shall be at least one division of E into a denumerable set of 
distinct sets E for which the value of S formed for | / | , 
2nMnv(En), is finite. 

On the other hand we are able to give a definition of inte­
gration which is analogous to that of Lebesgue. We say 
that ƒ is measurable relative to (g, if the set E for which ƒ > I 
belongs to (S for every value of I. It follows from this that 
the sets E for which h ^ ƒ < l2 belong to (£ for every h and £2. 

Let us divide the interval — oo to + °° by means of the 
points • • •, Z_n, • • •, Li, k, h, ' • -,ln, • • •, and let En be the set 
for which Zn_i ^ ƒ < ln. We say that ƒ is summable relative 
to v and (g, if there exists a division of — oo to + oo for which 

22 Inv(En) is absolutely convergent. 

If ƒ is measurable and summable relative to v and @, then 
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we define 

(L) ffdv = lim Xn\nv(En), 
JE d^ja 

where d is the maximum difference ln — ln-i, and ln-i S ^n 
•< L, which limit can be shown to exist. 

These two definitions of integration, the (7) I fdv and the 
JE 

(L) I fdv, are not in general equivalent, the first of the two 
JE 

being the more inclusive in that it may define an integral for 
functions which are not integrable according to the second 
definition. For instance, if we suppose that $ is the linear 
interval (a, b), and the class (g is the class of all Borel measur­
able sets of points, then the ( Y) integral method of definition 
will make all Lebesgue summable functions integrable, while 
the (L) integral method is restricted to Borel measurable 
functions. If however we assume that this (g is extended to 
include all the Lebesgue measurable sets, i. e., if we add to the 
class (£ all the sets E for which there exists a Borel measurable 
set Bx including it and a Borel measurable set 2?2 included 
within it, for which 

meas B\ = meas B2, 

then the two definitions are equivalent.* 
A similar result holds in the more general situation. If we 

extend the class (g so as to include all sets E for which there 
exists an Ei and an E2 belonging to (S such that E\ ^ E ^ E2, 
and v(Ei) = v{E2)} and call the resulting class complete as to v, 
since no further extension will be possible, we shall have the 
proposition: 

If (5 is complete as to v, then the general Young integral 
definition is equivalent to the general Lebesgue integral definition, 
and the integrals of f with respect to v on any set E of (5 take the 
same value. 

There is no difficulty in writing down some of the more 
important properties of these integrals, either from the corre­
sponding properties of the Stieltjes or the Lebesgue integral. 
We note only the following: 

(1) If Ei, E2, • • •, En, • • • belong to (g, and have no common 

* Cf. for instance, de la Vallée Poussin (24), pp. 31-33. 
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elements, and if I fdv exists for every n, then if E = XnEn, 

Sn f fdv = f f do. 
dEn JE 

(2) If the fn are defined on $ and limn fn = f on $ , then 
if the fn are integrable relative to v on £ for every n, and ƒ is 
summable on E, ƒ will be integrable relative to v and 

limn I /ncfo = I /dtf, 

if (a) the sequence / n is monotonie non-decreasing, or (6) 
\fn — ƒ | is a bounded function on ÜJ and with respect to n. 

7. Special Cases of the Frêchet Integral.—(Cf. Young (29) ; 
Radon (19), pages 1305 ff.) We have already indicated in the 
preceding paragraph that if we assume ^ to be any linear 
interval (a, b) and (g to be the class of all Lebesgue measurable 
sets of points on (a, b) while v(E) = meas E, the Fréchet 
integral reduces to the Lebesgue or Young integral, depending 
upon which manner of definition is followed out. Similarly 
if $ is any set of points on (a, b), and © is the class of all sets 
measurable relative to ty, then if we put v(E) = meas E, we 
obtain the Pierpont integral for any set E of the class (£. 

If we let $ be the interval (a, 6), and v(E) the function of 
sets defined from the monotonie non-decreasing function v(x) 
in § 5, and @ the class of all sets of points measurable relative 
to v(x), which class will be complete as to v, then we get an 
extension of the Lebesgue integral to the Stieltjes integral, 
which, by putting v(x) = x, reduces to the ordinary Lebesgue 
integral, and has properties analogous to those of both the 
Stieltjes and Lebesgue integrals.* 

Young has given an extension of the Stieltjes integral on 
the basis of monotonie sequences of semi-continuous functions 
which is equivalent to the one which we have just derived. 

He defines the value of I fdv, v being a monotonie non-

decreasing function, for functions which are upper or lower 
semi-continuous but constant on subintervals of the interval 
(a, 6), i. e., what he calls simple u- and ^-functions. If f(x) 

* Cf. also Daniell, this BULLETIN, vol. 23, pp. 209, 211. 
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is constant in each of the intervals formed by the points of 
division a = x0, xi, • • •, a;n = b, then his expression can be 
reduced to 

f fdv = £ƒ(*<) (*fo + 0) - v(xi - 0)) 

n-l 

+ Z/fe + 0) (*(«*! - 0) - v(xt + 0)), 

where we assume that v(x0 — 0) = v(a — 0) = A (a) and 

«(s»+0) = «(6+0) = t>(6). 
From this definition of integration for simple upper and 

lower semi-continuous functions he passes by monotonie 
sequences of these functions to the integrals of upper and 
lower semi-continuous functions, and then proceeds in the 
same way to the general case, i. e., he formulates the following 
definition: 

Form the integrals with respect to v{x) for all upper semi-
continuous functions less than the given function, and take 
the upper bound of these integrals; form the integrals with 
respect to v{x) of all lower semi-continuous functions greater 
than the given function and take the lower bound of these 
integrals; if these two bounds agree the function is said to 
have an integral with respect to v(x), which is the common 
value of the bounds. 

In showing the equivalence of this definition to the one 
which we have proposed above, we note first that the value 
of the integral of simple u- and /-functions as given by Young 
is the same as that which we should obtain from our definition. 
The fact that if a function is integrable according to this 
Young definition, it is also integrable as above, with respect 
to v{x), is then immediately evident. 

To prove the converse, it is sufficient to show that if E is 
any set measurable relative to v(x), and f(x) has the value 
unity for x on E and zero elsewhere, then the (Y) j fdv exists, 

JE 
and is equal to v(E). For this purpose we may use the 
property of v{E) noted previously: 

If v(E) exists, then for every e > 0 there exists a closed set 
E' contained in E such that v(E') — v{E) < e; 
and the further fact apparent from the definition of v{E) : 

If v(E) exists, then for every € > 0, there exists a set of 
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non-overlapping open intervals an such that every point of 
E is interior to some an and 2»fl(o») — v(E) < e. 

Radon has shown how one can define a v(E) with respect to 
monotonie functions in space of any number of dimensions. 
So far however none but trivial examples for a general function 
space have been given. It still remains therefore to give 
examples of functions v{E) for spaces of infinitely many 
dimensions, and function spaces, which are not trivial. 

It may be of interest to note, finally, that the general 
Fréchet-Stieltjes integral of a bounded function, when existent 
on a complete class (£, is expressible as an ordinary Stieltjes 

integral in the form I ydjj,(y), where l<f<L and ix(y) is 

the value of v(Ey) where Ey is the set of elements for which 
f < y. This integral in turn is expressible as an ordinary 
Riemann integral. In a sense then the general Fréchet inte­
gral is equivalent to the Stieltjes integral on a linear interval. 
The extension to the case of an unbounded function is obvious. 

IV. THE HELLINGER INTEGRAL. 

1. Definition of the Hellinger Integral and its Relation to the 
Lebesgue.—(Cf. Hellinger (11), pages 236 ff.; Hahn (7), pages 
170-183; Riesz (20), page 462.) We conclude our discussion 
of definitions of integration with a brief mention of the Hel­
linger integral and its generalizations. It is closely related 
to the Stieltjes integral, as a matter of fact extends in a way 
the ideas underlying this latter integral, and also had its 
origin in an attempt to break up into component parts a 
Stieltjes integral found by Hubert in his work on quadratic 
forms in infinitely many variables. It is defined as follows: 

Let v(x) be a monotonie non-decreasing continuous function 
of x in an interval (a, b). Further let f{x) be any continuous 
function of x, which is constant in the intervals in which v(x) is 
constant, i. e., if v(x2) — v(xi) = 0, then f(x%) — f(xi) = 0. 
Divide the interval (a, b) into any finite number of intervals by 
means of the points a = x0, xi, • • -, xn = b9 and form the sum 

<ss0 v(xt+i) — v(Xi) ' 

the quotient being defined to be zero when v(xi+i) = v(xi). It 
can then be shown with the aid of the Schwarz inequality that this 
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sum does not decrease when we subdivide the intervals (xt, Xi+i). 
The least upper bound of this sum for all possible divisions of the 
interval {a, b) is defined to be the Hettinger integral 

f 
*Ja 

(dff 
dv 

If the Hellinger integrals 

" <#0' j f WO* r m .nd r 
J a dv Ja 

dv 

exist, then it can be shown that the Hellinger integral 

ƒ 
* « 2 

dv 

also exists and that we have 

(df2y 
\Ja dv J -Ja dv X dv 

which corresponds to the Schwarz inequality. 
Hahn hasvstated a necessary and sufficient condition under 

which the Hellinger integral of ƒ with respect to v will exist, 
and incidentally given the relation between Hellinger and 
Lebesgue integrals. Suppose we take the inverse x(v) of the 
monotonie function v(x). This will not have a unique 
definition at the values of v for which v{x) is constant, but 
when we substitute it in the continuous function f{x) which 
is constant where v(x) is constant, we obtain a continuous 
function F(v) of v defined in the interval (v(a), v(b)). 
Then Hahn's theorem is: 

A necessary and sufficient condition for the existence of the 
Hellinger integral 

'• (dff 
ƒ dv 

is that F{v) be the indefinite integral of a function Ff(y), which 
is summable and of summable square. Moreover we have 

Ja ÜV Jv,a} 

This theorem thus expresses the Hellinger integral in terms 
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of a Lebesgue integral, and a Lebesgue integral in terms of a 
Hellinger. For the proof of the theorem we refer to Hahn's 
memoir (7). Riesz previously obtained a similar result for an 
integral of the form 

f-ffi- (p>l) 

viz., a necessary and sufficient condition that a continuous 
function F(x) be the indefinite integral of a function Ff(x) 

for which I | Fr(x) \ pdx with p > 1 exists, is that there exist 
%Ja 

a finite upper bound for the sum 

t = l \X% Xi—i) 

for all possible subdivisions of the interval (a, b) into a finite 
number of subintervals. 

So far the Hellinger integral has shown itself of value 
in the theory of quadratic forms in infinitely many variables 
and the related fields, in which it is effective in breaking up 
such a form into the sum of squares of linear forms in infinitely 
many variables, thus completing the analogy with the finite 
case. No simple reduction of this character has been thus 
far made by using the Lebesgue integral only, even though 
the Hellinger integral is expressible in terms of the Lebesgue. 

2. Generalizations of the Hellinger Integral.—(Cf. Radon, 
pages 1351 ff.; the Moore generalization has been given by 
Moore in lectures at the University of Chicago, 1915-17.) 
An extension of the Hellinger integral has been given by 
Radon. He presupposes a class (g of sets E of the type 
discussed in §§ 5 and 6 of Chapter III in connection with the 
Fréchet general integral, but limited to points in a space of a 
finite number of dimensions. He assumes further a function 
v(E) which is monotonie, i. e., v(E) ^ 0 for every E of the 
class @, and is absolutely additive, i. e., for every denumerable 
infinity of mutually distinct sets E\, E2, • • •, En) • • • of (S 

v(EnEn) = 2nV(En). 

He further assumes that the functions ƒ are defined on the 
class (S, are absolutely additive and so of bounded variation, 
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and in addition such that if v(E) = 0 then f(E) = 0. A set E 
is then divided into a finite number of subsets E\, • • •, En of 
the class S, and the expression 

formed, the quotient being defined to be zero if v(Ei) = 0. 
Then the least upper bound of this expression for all possible 
finite subdivisions of the set E into sets Ei is defined to be the 
integral 

JE m 
P-I-

When p = 2, this integral reduces to the Hellinger integral 
if v(E) is formed on the basis of a continuous monotonie non-
decreasing function as in § 5 of Chapter III; and to the sum 
of squares if formed on the basis of a monotonie non-decreasing 
function, constant except for a denumerably infinite set of 
points of discontinuity. 

Radon proves also a theorem for the space of n dimensions, 
which corresponds to the Hahn theorem on Hellinger integrals: 

A necessary and sufficient condition that the generalized 
Hellinger integral 

JE (dv) p—1 

exist, is that there exists a function F defined on the funda­

mental set ty, such that f (JE) = I Fdv for every E of @, and 
JE 

for which the generalized Stieltjes integral I \F\pdv exists, 
JE 

this last integral being equal to the generalized Hellinger 
integral of ƒ with respect to v. 

The function F which appears in this theorem is of the 
nature of a derivative of the function f(E) with respect to 
the monotonie function v(E); in other words, this connects 
with the idea of the derivatives of functions with respect to 
monotonie functions or more generally functions of bounded 
variation. Some results in this direction have recently been 
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obtained by Young,* though there still is undoubtedly a 
considerable field for investigation. 

A generalization of the Hellinger integral in a different 
direction has been proposed by Moore. He starts from the 
integral in the form 

X dv 
and observes that it is bilinear in / i and/ 2 , and it is the bilinear 
aspect of the Hellinger integral which dominates his gener­
alization. The germ of the generalization is contained in the 
observation that the Hellinger integral 

fdM2 
J dv 

can be written as the limit (or the least upper bound if / i = /2) 
of a double sum of the type 

n n 

where a ^ si < s» • • • < sn ^ b is a partition T of the interval 
(a, 6), and o)„(s, t) is a function of two variables which depends 
for its value on the values of v and the partition 7r. 

Suppose then that ^ is a class or set of elements p, con­
cerning the character of which nothing is postulated, i. e., 
they are perfectly general. We denote by a any finite col­
lection (pi, • • •, pn) of distinct elements of ^ . Let there be 
defined functions £(p) which make correspond to every value 
of p a real or complex number a. We denote by £ the con­
jugate function, i. e., the function which for every p takes 
on the values conjugate to those of J. 

Let e(p, q) be a function of the two variables p, q, each of 
which varies over the range $ . We shall assume that e(p, q) 
has the following two properties: 

(a) €(p, q) = €(g, p). 
(b) For any cr the determinant of the values e(pt-, pj), 

i, j = 1, • • -, n is positive and not zero. 

* Cf. Proceedings Lond. Math. Society, ser. 2, vol. 15 (1916), pp. 35-64. 
See also de la Vallée Poussin: (24), pp. 67 ff., where the case in which 
v(E) = meas E, i. e., v(x) = x is treated. 
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Then we define the operation J as follows: 

o, É(PO, 

£(pi), <vu vi)> 

1 ?(Pn), «fan, Pi), 
«KPl, Pi), •••» 

«(Pn, Pi ) , • • ' , 

' ' , S(Pn) 

Pn) 

• è - , €(Pn, Pn)\ 

<Vh Vn) 

€(j?n, Pn) 

in which by 
lim F (a) = a, 

we mean* that for every e > 0, there is a <re such that if cr 
contains ae, then | JF(<T) — a | ^ 0. 

More recently he has replaced this definition by one in 
which the least upper bound notion replaces that of limit as 
to (7. It is as follows : 

Form for any a the least upper bound of the values of 
n _ n 

X) %(Vi)y(Vi) Y,y(Vi)%(Pi) 
t = i t = i 

for all functions rj for which we have 
n 

H v(Pi)e(Pi, PJ)V(PJ) = 1. 

Then the least upper bound' of these least upper bounds for 
all possible a is defined to be J££. These two definitions are 
equivalent, i. e., for every function £ they yield the same 
positive finitef o r infinite value. 

We notice that this operation J is essentially dependent 
upon the e chosen in any particular situation. If we specify 
our e we have theoretically determined the operation J, and 
the functions £ for which the J££ exists, i. e., is finite. 
For instance if $ = (1, 2, • • •) and e(p, q) = the Kronecker 

* Cf. Proceedings Nat. Acad. Sciences, vol. 1 (1915), p. 630. 
t As an instance of a function £(p) for which j££ is finite, we might note 

e(p, q) for q fixed. For we have 

J~<V> Q) <V, Q) - «(& «)• 
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ô, i. e., zero f or p =J= q and unity for p = q, then 

and the functions on which J operates are those for which 
the sum of squares of absolute values is convergent. More 
generally if the class ^ is perfectly general, and e(p, q) is as 
above, i. e., zero for p =|= q and unity for p = q, then the 
functions £ for which J££ exists are different from zero only 
at most at a denumerable set of elements pi, • • •, pn, • • • and 

Jh = s-i(pb)É(p»). 

The elements p\, • • •, pn, • • •, at which the functions for 
which J££ exists are different from zero, may differ for differ­
ent functions. If $ is the linear interval (a, b) this will 
then give an operation for the class of functions which are 
different from zero only at a denumerable set of points, which 
functions are disregarded in Lebesgue integration. 

If ty is the interval (a < p ^ b) and 

€(*'*) - j - a if ê^t, 
then 

i. e., the J-operation reduces to the Hellinger integral and 
the functions £ are the continuous functions for which a 
Hellinger integral exists, i. e., according to the theorem of 
Hahn (§ 1) the continuous functions which are the indefinite 
integrals of functions which are summable and have summable 
squares. 

Similarly the Hellinger integral 

e(s, t) = 

is obtained if 
\p(s) — \[t(a) for s ^ t 
\p(t) - Ma) for s^t> 
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where ^ is a properly monotonie increasing function on the 
interval a < p ^ &.* 

Moore has given non-trivial instances of e's in the case in 
which p and q range over functional spaces. For instance 
if $ is the class of all continuous functions <p(x) on the interval 
(a, b) then 

/ s f <Pi(x)<p2(x)dx 
e(<Pu <P2) = eJa 

has the properties required of the e above.f Just what the 
character of the operation J is in this case does not seem to 
have been determined. 

This general operation had its origin in the desire to obtain 
for a general range, functional or otherwise, a theory which 
would be a generalization of Hubert's theory of biquadratic 
forms in infinitely many variables, as simplified by Hellinger. 
In addition to accomplishing this and incidentally throwing 
light on what is essential in the Hellinger theory, interest 
undoubtedly attaches to this generalization as being an instance 
of a bilinear operation in a general situation with instances of 
a non-trivial character, and for this reason it is bound to be 
the subject of further consideration and attention. 

The treatment of BoreFs definition of integration on page 
132 ff. is not entirely clear nor accurate. The definition 
should be interpreted as follows: 

f(x) is (B) integrable in case (a) there exists a set of singu­
larities Z denumerable or even of measure zero, such that for 
every e and for every set of intervals which has total length 
at most e and is such that each interval of the set contains at 
least one point of Z, the Riemann integral of f(x) on the com­
plementary set P e exists, and (6) these Riemann integrals ap­
proach a finite limit as e approaches zero. This limit is the 
(B) integral of ƒ (a;) on (a, 6). 

Proposition (2) is not correct in that the condition given is 
necessary but not sufficient, an immediate consequence of 
proposition (3). If, in accordance with a suggestion recently 

* Professor Moore informs me that he has recently succeeded in remov­
ing from the condition (b) above the hypothesis that the determinant 
I €(Pi> Pi) I is n ° t zero. This would allow ^ to be simply monotonie non-
decreasing and the interval to be a ^g p ̂  b, which is the case treated by 
Hellinger. 

t Cf. American Mathematical Monthly, vol. 24 (1917), pp. 31 and 333. 
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made by Lusin,* we replace in condition (a) above the words 
" for every e and for every set " by " for every e there exists 
a set " and call the resulting integral a (BL) integral, then we 
can state proposition (2) in the following form: 

A necessary and sufficient condition that f(x) be (BL) 
integrable is that there exist a set of singularities Z, denumer-
able or of measure zero, such that (a) the Lebesgue integral 
of ƒ on the set Z+Z' exists, (b) if the (an, bn) are the intervals 
complementary to Z + Z' then for every n 

nK' 
lim (R) ƒ 

exists and is finite, and this limit is defined to be the integral 
over (a», 6»), (c) if œn îs the maximum value of 

for an ^ an
r ^ bn

f ^ 6n, then 2Jncon is convergent. 
Tf both the (B) and the (BL) integrals exist for a set Z, then 

the values will be the same. Also if either the (B) or the 
(BL) integral exist for different sets Z\ and Z2 then the result­
ing integrals are the same. 

In the case of (BL) integrability we have the result that 
every (L) integrable function is (BL) integrable, but not 
conversely, in as much as (BL) integrable functions may be 
non-absolutely integrable. 

Finally we desire to remark that Borel's first definition of 
integrationf can be interpreted in the sense of (B*) integrabil­
ity. The footnote on page 135 should be revised accordingly. 

*Cf. Annali di Matematica, ser. 3, vol. 26 (1917) p. 113. 
tCf. Comptes Rendus, vol. 150 (1910) pp. 375-7. 


