
220 THE PKOBLEM OF LAGEANGE. [Feb., 

A NOTE ON T H E PROBLEM OF LAGRANGE I N T H E 
CALCULUS OF VARIATIONS. 

BY PROFESSOR GILBERT AMES BLISS. 

(Read before the American Mathematical Society, December 31, 1915.) 

THERE are two theorems concerning the solutions of a 
system of linear differential equations, due to von Escherich 
and A. Mayer,* which play an important rôle in the proofs 
of the sufficient conditions for a problem of the calculus of 
variations in the form proposed by Lagrange. Bolza remarksf 
that the theory of the second variation has so far been essential 
to the establishment of these two theorems, as well as to the 
proof of the necessity of Jacobi's condition in the exceptional 
cases not covered by the geometrical theory of Kneser. In 
a paper which will appear in the near future, the writer has 
shown that for problems in parametric form in any number 
of dimensions an inclusive proof of the Jacobi condition may 
be made very simply by an application of Euler's equations 
and the usual corner point condition to the second variation. 
A similar result has been attained for the problem of Lagrange 
by D. M. Smith. I t is desirable therefore to have deductions 
of the two theorems mentioned above which also shall be 
independent of the complicated transformations of the second 
variation. The proofs given below have this advantage. 

§ 1. The Differential Equations. 
The forait 

212(77, y', M) = ]C (PikViVk + 2Qikrjir)k' + Rikv/Vk) + 
i, k 

where i, k, ]8 have the ranges 

i, Jc = 1, 2, • • ', n; /3 = 1, 2, • • •, m; m < n, 

is quadratic and homogeneous in the variables 77, 77', ju, with 
coefficients and variables which are supposed to be functions 
of x of class C' on an interval x\ ^ x ^ x2. The prime denotes 

* See Bolza, Vorlesungen liber Variationsrechnung, p. 633. 
%t Loc. cit., p. 634. 
I Bolza, loc. cit., p. 621. 
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differentiation with respect to x. In the sequel it will be 
convenient to represent multipartite numbers and matrices 
by single symbols, with the usual agreements as to the mean­
ings of their products.* The expression for Î2 would then be 

20(77, 77', M) = Pw + 2 Q W + Zfy'V + 2Sir/i + 22V•/*• 

The matrices P and R are symmetric. 
The system of m + n linear differential equations to be 

considered can now be represented in the form 

(1) #(,,) = 0^ = 0, *(t,,ri = 0 , - ^ = 0, 

where the symbol 0^, for example, represents the multipartite 
number (50/d^i, • • -, dQ/dfj,m). A multipartite number is by 
definition equal to zero only when every element is zero. 
There are therefore m of the former equations and n of the 
latter. 

The quadratic form Q satisfies the well-known relations 

rç.fy + V-^V + M - ^ = 2Î2, 

where (u, a) is a second set of arguments of the type (rj, ix), 
and Qu, for example, is the row of derivatives of the function 
Sl(u, u', a) with respect to the elements of u. The product> 
indicated by a dot, of two multipartite numbers such as rj 
and Qu, is the sum of the products of their respective elements. 
As a result of the second of the relations (2) one finds the 
formula 

U'^(rj, u) — r}-ty(u, <T)+ <r-*(rç) — /x-3>(¥)= -r-(7yQ^—w-îî,/). 

* The notations and properties used here are very simple. The symbols 
?7, rj'', ju, for example, denote the multipartite numbers 

î? = (î7l, 1?2, • • -, Vn), V' = (l7l'> V , ' * *, V ) , M = (Ml, M2, • ' ', Mm), 
and Q is the matrix of elements Qik (i, k — 1, 2, • • -, w). Then Q77 is by 
definition a multipartite number 

Qrç = ÇZQikVk, 2Q2fc?7fc, * • *, 2Qnkr)k)i 

and Q77 • 1/ is the bilinear expression found by multiplying each element of 
Qrj by the corresponding element of t\' and adding, according to the usual 
definition of scalar multiplication. If further details seem to be necessary 
for the developments of the present paper, see Bliss, "The solutions of 
differential equations of the first order as functions of their initial values," 
Annals of Mathematics, 2d series, vol. 6 (1905), p. 58. 
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Every pair of solutions (rj, JJL), (U, a) of the equations (1) 
clearly makes the last expression in parenthesis have a con­
stant value. When this constant is zero the two solutions 
are said to be conjugate. 

A conjugate system of solutions is a system of n linearly 
independent solutions every two of which are conjugate. 
The functions u, a belonging to such a system are the elements 
of two matrices U, 2 , the former of which has n columns and 
rows, while the latter has n columns and m rows. A column 
of U with the corresponding column of 2 forms a solution of 
type (77, JJL) of the equations (1). The solutions (u, cr), (v, r) 
defined by the equations 

u = Uc, <x = 2c; v = Ud, r = 2cZ, 

where c and d are constant multipartite numbers of n elements, 
satisfy the relation 
(3) U'Qvr — V'QU' = 0, 

since a similar relation holds for every pair of the solutions 
of the conjugate system U, 2 . I t is important to note that 
the equation (3) is an identity in the elements of c and d, and 
would remain true even if these elements were functions of x. 

§ 2. The Proofs of the Theorems in Question. 

Let (17, JU) be an arbitrarily selected set of functions of the 
type described in the preceding section. If U, 2 is a conjugate 
system of solutions with determinant | U \ different from zero 
on the interval xi ^ x ^ afc, the linear equations 

(4) rj= Uc 

determine uniquely the elements of c as functions of x; in 
other words, there passes a unique solution 

u = Uc, cr = 2c 

through each point of the curve defined by the functions rj 
in the (n + 1)-dimensional ^77-space. 

LEMMA. If the system (77, /x) is a solution of the equations 
(1), then in every interval x\ ^ x ^ x2 for which the determinant 
of the matrix U is different from zero 

(5) j-v (£V - ö«') = R(v' - «') • W - u'). 
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For let (v, r) be the solution 

(6) v = W, r = 2c ' 

defined at each point of the xrj-cuxve by the derivatives of 
the functions c determined by equations (4). With the help 
of the first of the relations 

u> = jj'c9 v> = TJ'c' 

it follows from (4) by differentiation that 

(7) rj' = TJ'c + TJc' = u' + v. 
Now 

^ • ( f t , / - f t / ) = i / - ( f t / - a „ / ) + i r \dx®v'~~ ^ f t ' ~ ft'c-c'j, 

where the symbol of partial differentiation indicates that 
during that operation the elements of c are regarded as 
constants. The expression ft, is linear in the elements of c, 
and the expression ft/c-c' is therefore precisely ft/ with c 
replaced by c', that is, ft,. The last equation may therefore 
be written, with the help of equations (1) and the relations 
rj = u, r\' = u' + v, in the form 
d 
faV-ify - ft') = V-(û, ' - ft') + i?-(Q, - flu - ft/) 

= rç-ft, + f/'ft/ — ^*ft — w'-ft, 
— 2(7/' — i ^ ' f t ' — U'Qv' + A'ft'. 

But equation (3) holds even when the values c and d = c' 
are functions of #, and since ft = ft = 0 the formulas (2) give 

j£ rj • (ft,, - ft,) = 20(77, ?', /*) - 2Q(w, < <r) — 2(77' — w') • ft,. 

The expression on the right is readily identified with the second 
member of (5) by an application of Taylor's formula. For 
since rj = u 

0(^7, J, M) = Qfa, < *) + ft'-O?' - u') + Qv-(n-a) 

+ i î W ( V - u') • (V - u') + ft^r/ - u') • (M - <r). 

The third term on the right evidently vanishes, and the last 
also because 

0 = ft - ft = ftw,(7/ - u'). 
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The matrix fiMru/ is precisely the matrix R. 
Let V, W be two matrices of order n whose columns belong 

to solutions of equations (1), as described in the preceding 
paragraphs, without being necessarily conjugate to each other. 
Let A(x, £) represent the determinant of order 2n 

A(x, Ö = 
V(x) W(x) 
F(0 WV-) 

The first of the two theorems mentioned is then as follows: 
If at every point of an interval X\ ^ x ^ x^ the quadratic 

form with matrix R is positive definite, and if furthermore there 
exists a conjugate system U with determinant | U | =|= 0 on the 
interval, then on the same interval the determinant A(x, £) 
vanishes only at x = % or else is identically zero. 

Under the hypothesis of the theorem a solution (rj, fx) of 
equations (1) having elements rj vanishing simultaneously 
at two points £ and £' of the interval in question must be 
identically zero. For the derivative of the function 
rj - (0^/ — Ou/) expressed by formula (5) is clearly positive or 
zero between £ and £' since the quadratic form with matrix 
R is positive definite. If the elements of rj vanish at £ and 
%', so does the function rj'(^ — ^w/), and the derivative of 
this function must be identically zero between £ and £'. 
In that case the elements of rj' — u' = v are identically zero, 
and equations (7) and (6) show that the functions c are 
constant. The elements of rj can not then vanish at all 
unless the elements of c are all zero, since the determinant of 
the matrix U in equations (4) is different from zero. 

If A (£',£•) = 0 f ° r a value £r =)= & it is always possible to 
find a set of functions 

T)(X) = V{x)-c+ W(x)>d 

linear in the 2n constants c and d and vanishing at £ and £'. 
These functions rj belong to solutions of the linear equations 
(1), and by the reasoning of the preceding paragraph must 
be identically zero. But in this case it follows readily that 
A(x, £) = 0 since c, d are not both zero. 

I t can be shown that for every point £ there exists a matrix 
U of conjugate solutions with determinant different from zero 
at £.* The last theorem then shows that the zero x = £ 

* Von Escherich, Wiener Berichte, vol. 108 (1899), p. 1339; Bolza, loc. 
cit., p. 627. 
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of the determinant A(x, £) is an isolated one. This is the 
second theorem of Bolza mentioned in the introduction above. 

The formula (5) is identical with a formula of von Escherich* 
when the values of c from equations (4) are substituted and rj 
replaced by z. The proof here is, however, of an entirely 
different character and by far more simple than his. Bolza 
uses the formula of von Escherich for the purpose of trans­
forming the second variation, and with the help of this trans­
formation deduces the theorem last given. This process 
seems very much less direct than the argument given above. 

UNIVERSITY OP CHICAGO. 

CONCERNING A NON-METRICAL PSEUDO-
ARCHIMEDEAN AXIOM. 

BY DR. ROBERT L. MOORE. 

(Read before the American Mathematical Society, April 26, 1913.) 

§ 1. Introduction. 

L E T HI denote Hubert's plane Axioms of Groups I and Ilf 
or Veblen's Axioms I-VIII . J Let H2 denote Hi together with 
Desargues' theorem! (considered as an axiom) and Hubert's 
I I I (axiom of parallels). I t is well known that if a two-
dimensional space 8 satisfies H2 together with Hubert's 
congruence axioms of Group IV and the archimedean axiom 
that of any two non-congruent segments some multiple of 
the smaller is larger than the greater, then S is either an ordi­
nary euclidean space of two dimensions or an everywhere 
dense subset of such a space. 

Consider the following non-metrical pseudo-archimedean 
axiom: 

AXIOM A. If (1) the points of a line I (Fig. 1) are divided 
into two sets Si and $2 such that no point of either of these sets 
is between two points of the other one and such that no point P is 

* Loc. cit., p. 1283, formula (9); Bolza, loc. cit., p. 630, formula (68). 
t D. Hilbert, Foundations of Geometry, translated by E. J. Townsend, 

Open Court Publishing Co., Chicago, 1902. 
t O. Veblen, "A system of axioms for geometry," Transactions Amer. 

Math. Society, vol. 5 (1904), pp. 343-384. 
§ Cf. Hilbert, loc. cit., p. 71. 


