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satisfies the conditions stated above for all values of x, it 
was shown that a precisely analogous theorem holds for the 
approximation of f(x) by a trigonometric sum of order n or 
lower, this result being obtainable as a consequence of the 
preceding. It is now shown that decided simplification in 
the proof of both theorems may be effected by proving the 
second directly (this had been done only for k = 1) and 
deducing the first from it. 

This method has the further advantage that the numerical 
constants involved can be computed more conveniently. 
For example, if f(x) satisfies the condition 

I/0&2) — /Ol) | S I 32 - XX\ 

in the closed interval (0,1), it can be approximately represented 
in this interval by a polynomial of degree n or lower, with an 
error which never exceeds 3/n, for all positive integral values 
of n. The same line of investigation leads to results in the 
theory of Fourier's series. 

13. There is a theorem that the perpendiculars let fall from 
the incenters of three out of four lines of given direction upon 
the remaining line touch a circle. In Dr. Hodgson's paper a 
circle is obtained for any even number of lines, beginning with 
four. If we take this circle for any 2n out of 2n + 1 lines, 
the 2n + 1 circles touch a line. The question of the reversal 
of direction of one or more of 2n lines is then taken up, and 
this is followed by the consideration of the configuration of 
circles arising from four, five, and six lines. 

F. N. COLE, 
Secretary. 

ON THE FOUNDATIONS OF THE THEORY OF LINEAR 
INTEGRAL EQUATIONS.* 

BY PROFESSOR E. H. MOORE. 

1. The Analogous Systems of Linear Equations. 
THE theory of linear integral equations, mathematically 

considered, has its taproot in the classical analogies between 

* Address of the Vice-President and Chairman of Section A of the Amer­
ican Association for the Advancement of Science, Washington, December 
29, 1911. 
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an algebraic sum, the sum of an infinite series, and a definite 
integral. 

Consider the linear algebraic equation 

(1°) x=ky 

for the number y, the coefficient k and the number x being 
given. From this single equation 1° we ascend to the algebraic 
system 

n 

(Un0) Xi = S hjVj (i = 1, 2, • • -, n) 

of n simultaneous linear equations for the determination of 
the set (yi) of n numbers yi, • • •, yn, the matrix (kij) of n2 

coefficients &n, • • •, knn and the set (xi) of n numbers 
Xi, • • •, xn being given. 

To this algebraic system (II n°) we have by the classic 
analogy the two corresponding transcendental systems 

(111°) Xi^t.kijyj (i = 1,2, . . . ) ; 

(IV°) m = f K(S, t)rj(t)dt (a£s S b). 

In 111° the infinite set (yi) is to be found, the infinite set (xi) 
and the infinite matrix (&#) of coefficients being given; the 
suffixes i, j have the range 1, 2, • • • . In IV° the unknown 
function rj and the known function £ are functions of one 
variable ranging over the interval a-b of the real number 
system, while the known coefficient function or, in Hubert's 
terminology, kernel K is a function of two variables ranging 
independently over that interval. I t is plain that the theories 
of 111°, IV° must involve convergence considerations. 
Throughout, the numbers and the functional values of the 
functions are real or complex numbers. 

You are aware that the study of the algebraic system IIn°, 
initiated before 1678 by the genial intuition of the philosopher-
mathematician Leibniz, led to the development of the theory 
of determinants—a theory which in the nineteenth century 
came to permeate all branches of number theory, algebra, 
analytic geometry, and pure and applied analysis, exerting 
everywhere a profound influence not merely by its usefulness 
but perhaps even more by the extreme elegance of its methods 
and results. 
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The theory of infinite determinants connected with the 
denumerably infinite system 111°, or more exactly with the 
equivalent system in which the indices i, j have the integral 
values from — oo to + oo, was initiated by G. W. Hill, who 
in 1877 made hardy but happily effective use of the deter­
minant of a system of the latter type in his solution of a 
differential equation arising in his memorable study of the 
motion of the lunar perigee. To supply the requisite con­
vergence proofs, Henri Poincaré in 1886 laid the foundations 
of the general theory of infinite determinants, which has since 
been developed chiefly by Helge von Koch. 

We are led to an analogous determinant, not from the con­
tinuously infinite system IV° of linear equations, but from the 
system 

(IV) {(*) = v(s) - z f K(S, t)v(t)dt (a^s ^ 6). 
*Ja 

Here z is a given number, real or complex, and we consider 
the regular case, in which the functions involved are con­
tinuous real or complex valued functions of their arguments. 

The corresponding systems 

(I) x = y - zky, 
n 

(Lin) Xi = j/i — zJ^kiMj (i = 1, 2, • • -, n), 

(III) Xi = yi — zj^kijVj (i = 1, 2, • • •) 

are respectively equivalent to the systems 1°, IIn°, I I P . 
The types IV, IV° are however essentially distinct. For 

instance, if we look at IV and IV° as transformations of the 
functions y into the functions £, the type IV contains (in 
the case of vanishing parameter z or identically vanishing 
coefficient function or kernel K) the identical transformation 
£ = 7j, while the type IV° does not contain this transformation. 

The solution rj of the system or integral equation IV may be 
expanded formally as a power series in the parameter z, viz., 

v(p) = %(p) + * I K(P> Pi)£(Vi)dVi 
•J a 

nb r*b 

+ z2 I I n(p, pi)K(ph P2)%(p2)dpidp2 + 
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This power series converges near z = 0 uniformly in p, and 
accordingly for z sufficiently small has as sum a continuous 
function rj which is readily proved to be a solution of IV. 

Impelled by the fact that integral equations of type IV 
occur very frequently in the linear problems of mathematical 
physics, in the late nineties of the last century the Swedish 
mathematical physicist Ivar Fredholm undertook the study 
of the analytic character of the solution rj as a function of the 
parameter z. After earlier notes on the subject, Fredholm 
published his fundamental memoir in 1903 in volume 27 
of the Acta Mathematica, in one of the two volumes of the Acta 
dedicated to the memory of Abel on the occasion of the cen­
tenary of his birth. And this was the more fitting since Abel 
first studied special integral equations of the type IV°. Ac­
cordingly Fredholm calls the equation IV° Abel's integral equa­
tion. Mathematicians generally call the equation IV Fred-
holm's integral equation. With Hubert one also designates 
the equations IV°, IV as integral equations of the first and 
second kind. 

Fredholm found that the function r\ is a single-valued 
analytic function of the parameter z, having at most polar 
singularities in the finite s-plane, and he exhibited it explicitly 
as the quotient of two permanently converging power series 
in z. The denominator series with coefficients depending only 
on the kernel K, viz., 

1—s I K(P, p)dp+~ 1 1 / v / ' i r f ^ i ' * ' , 
Ja ^ *' * 2 Ja Ja \K(P2, PI) K(p2, Vm 

is Fredholm's determinant of the kernel K with parameter z. 
In case z is not a root of this determinant, for every function £ 
there is a definite solution rj of the equation IV, and the same 
is true as to the adjoint equation 

(IV) £(*) = v(t) - * f V(S)K(S, t)ds (a <,t ^ b). 

On the other hand, if s is a root of the determinant, it is of 
finite multiplicity m, and each of the corresponding homoge­
neous equations 

(IVir) y(s) = z f K(S, t)v(t)dt (a ^ s <; 6), 
*sa 

(WH) V(t) = 2 \ V(S)K(S, t)ds (a^t^b) 
%)a 
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has a solution rj not identically vanishing, the number n of 
linearly independent solutions rj for one equation being the 
same as for the other equation and at most m. 

These few results suffice to suggest the close parallelism 
between Fredholm's theory of the integral equation IV and the 
current theory of the algebraic system I I n . 

We have seen, then, that the theories of determinants of 
the matrices or kernels of the three types—the finite, the de-
numerably infinite, the continuously infinite—were initiated 
by the mathematician-philosopher Leibniz, the mathematical 
astronomer Hill, the mathematical physicist Fredholm; and 
we appreciate anew the magnitude of the debt owed by pure 
mathematics to its most closely related sister sciences—logic, 
astronomy, physics—a debt abundantly repaid by the appli­
cations throughout the wide range of the sciences, at least in 
the progress of time, of even the most abstract doctrines of 
pure mathematics. 

2. References to the Literature. 

The investigations of von Koch and Fredholm opened the 
way for the systematic development, now in rapid progress, 
of the analogies and the interrelations between the algebraic 
and the two kinds of transcendental theories, and for the im­
mediate application of the new results in various domains of 
pure and applied analysis. 

Especially noteworthy are the memoirs of David Hilbert and 
of Erhard Schmidt. By direct limiting processes Hilbert 
obtains from algebraic theorems the corresponding tran­
scendental theorems. Hilbert has thus initiated a theory of 
functions of a denumerable infinity of variables, from which 
in turn, by the connection between functions of continuous 
variables and their Fourier coefficients, one proceeds to the 
theory of functions of continuous variables. In particular, 
Hilbert has studied real-valued symmetric kernels, obtaining 
the transcendental analogues, for example, of the orthogonal 
transformation of the algebraic quadratic form to the sum of 
squares of linear forms. Geometric analogies of metrical 
nature play a considerable rôle in the work of Hilbert, and 
perhaps even more in the work of Schmidt, who treats tran­
scendental problems directly, using methods originated by 
H. A. Schwarz in the potential theory. Schmidt has also 
entered upon the study of non-linear integral equations. 
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But for details of the extensive literature and present 
state of the whole subject I must content myself with referring 
to the most recent books: 
HEYWOOD ET FRÉCHET: L'équation de Fredholm et ses applications à la 

physique mathématique. Hermann, Paris, 1912. 
LALESCO: Introduction à la théorie des équations intégrales. Hermann, 

Paris, 1912. 

and to the reports : 
HILBERT: "Wesen und Ziele einer Analysis der unendlichvielen unab-

hângigen Variabeln." Palermo Rendiconti, volume 27, pages 59-74 
(1909). 

VON KOCH: "Sur les systèmes d'une infinité d'équations linéaires à une 
infinité d'inconnues." Compte rendu du\ Congres des Mathématiciens, 
tenu à Stockholm 22-25 Septembre, 1909, pages 43-61; Teubner, 
Leipzig, 1910. 

FREDHOLM: "Les équations intégrales linéaires." Ibid., pages 92-100. 
BATEMAN: "Report on the history and present state of the theory of inte­

gral equations." Report to the British Association for the Advance­
ment of Science, Sheffield, 1910, 80 pp.; Burlington House, London, 
1911. 

HAHN: "Bericht über die Theorie der linearen Integralgleichungen." 
Jahresbericht der Deutschen Mathematiker-Vereinigung, volume 20, 
pages 69-117 (1911). 

3. The Fundamental Problem of Unification. General Analysis. 

We are now in position to take up, as the specific subject 
of this discourse, the question of foundations of the theory 
of linear integral equations. We have seen that the algebraic 
theory serves to suggest the corresponding transcendental 
theories, or even to determine those theories by suitable use 
of limiting processes. But this state of affairs may be recog­
nized as only preliminary to the determination of a general 
theory capable of specialization into the various theories. 
This is in accordance with a general heuristic principle of sci­
entific procedure, which I have formulated as follows: 

The existence of analogies between central features of varions 
theories implies the existence of a general theory which underlies 
the particular theories and unifies them with respect to those 
central features. 

For the case of the real-valued symmetric kernel, and in 
fact for the more general case of the complex-valued hermitian 
kernel, i. e., a kernel K satisfying identically the condition 
that K(s, f) and ic(t, s) are conjugate complex numbers, I 
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took up six years ago this problem of unification for the 
Hubert theory as presented by Schmidt. This was the theme 
of my series of lectures: " On the theory of bilinear functional 
operations," at the colloquium of the American Mathematical 
Society, held in September, 1906, in New Haven, under the 
auspices of Yale University. 

Subsequent study led to the recognition that the general 
theory of linear integral equations is merely a division in 
the theory of a certain form of general analysis, an introduction 
to which, instead of the colloquium lectures, I published,* 
as pages 1-150, in the volume The New Haven Mathematical 
Colloquium, etc., Yale University Press, New Haven, 1910. 

This morning I wish to establish, in the sense of general 
analysis, an adequate and satisfactorily simple foundation 
for the general theory of linear integral equations, embracing 
by specialization, as we shall see, together with an interesting 
variety of new theories, the algebraic and both types of tran­
scendental theories, now current, at least in so far as regular 
kernels are concerned. 

As to the system III , I call the matrix-kernel (&#) regular 
in case there is a set (ki) of numbers of finite norm 2»- | hi |2 , 
such that for every i and j \ lctj | ^ | hihj |. This regular kernel 
satisfies the latest condition found t by von Koch as sufficient 
that the infinite determinant and all its minors converge abso­
lutely. Then, if the sets (xi), (yî) are of finite norm, the sys­
tem I I I may be treated either by the method of infinite 
determinants or by Hubert's theory of functions of infinitely 
many variables. 

I shall indicate, first, the terminology or basis of the founda­
tion of the general theory, and then two sets of postulates, 
the former effective for the validation of the general Fredholm 
theory for the general kernel, and the latter effective for the 
validation of the general Hilbert-Schmidt theory of the real 
symmetric or the more general hermitian kernel. And, in 
advance, I notice that for the latter theory we need more 
postulates than for the former theory. This is in accordance 

* Cf. also my paper, "Ona form of General Analysis, with application 
to linear differential and integral equations," read before the Section 
on Analysis of the Rome Congress of 1908, Atti, etc., vol. 2 (1909), pp. 
98-114. 

t Loc. cit., pp. 49, 50; Palermo Rendiconti, vol. 28 (1909), pp. 257, 263. 
The condition is that the kernel (fan) have the form ha = UijVi/vj (i,j)y 
where vi =H 0 (i) and the series S»-,-w»,-2, XiUu converge absolutely. 
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with the nature of things logical: we must pay for the elaboration 
of theory by the imposition of additional postulates and the cor­
responding restriction of scope of application» 

4. Fredholm's Equation in General Analysis. The Basis Sx. 

In order to bring the equation-systems I, I I , I I I into no-
tational conformity with the integral equation IV, we regard, 
for instance, in I I I the set (xi) of numbers Xi (i = 1, 2, 3, • • •) 
as a function x or £ of the argument i oi s with the range 
i = s = 1, 2, 3, • • • . Then I, IIW, I I I , IV are special cases 
of the general equation 

(G) £ = if - zJitri, 

with the meaning 

(Ö) it(s) = rj(s)-zJtK(st)r,(t) (s), 

which we designate as Fredholm's equation in general anal­
ysis. The kernel K, the parameter z, and the function £ being 
given, the function TJ is to be determined as a solution of the 
equation G. 

The understanding is that (1) £ and rj are functions of an 
argument p or s or t having a certain range ^3; (2) /c or ic(st) 
is a function of two arguments ranging independently over 5̂ ; 
(3) J or Jt is a functional operation turning a product KTJ 
or K(st)rj(t) into a function of the argument 5; and (4) the 
equation G holds for every value of s on the range ^3. 

For the general theory this range 5̂ is simply a class of 
elements p. These elements p are of any nature whatever, 
e. g., numbers, sets of numbers, functions, points, curves; and 
they are not necessarily all of the same nature. Thus, the 
range 5̂ is a general class of general elements. This " general " 
is the true general, in the sense of arbitrarily special, that is, 
capable of arbitrary specification—without the exclusion of 
exceptional or singular cases. 

Thus, for the general theory of the equation G the range $P 
enters without the imposition of restrictive properties or 
features, and it is this presence in the theory of a general class 
which constitutes the theory a doctrine of the form of general 
analysis which we are developing. 

For the respective instances I I n , I I I , IV, the range 3̂ is 
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finite, denumerably infinite, continuously infinite, consisting of 
the respective elements 

p = 1, 2, • • *, n; p = 1, 2, 3, • • • ; a ^p £b. 

We denote these ranges by the notations 
spn». çpin. çpiv# 

The respective functional operations J are 

*=1 ?=1 Ja 

In the instances I I I and IV the functions £, rj, K are necessarily 
subject to certain conditions of convergence or of continuity. 
The conditioning properties are defined in terms of features 
possessed by the special classes $pm, ^3 IV; we are able to speak 
in ^ 3 m of p tending to oo, and in ^3IV of the difference p\ — p2 

of two elements p. Similarly, in the general theory the func­
tions must possess certain properties, which must however be 
postulated and not explicitly defined, since we attribute to the 
general range no features available for use in the definitions. 
Now, instead of postulating properties of the functions, it is 
technically more convenient to postulate classes of functions 
to which the functions shall belong, viz., the classes of func­
tions are the classes of all functions possessing the respective 
properties. 

Accordingly, the form of the general equation G leads to 
the following first basis: 

Zi = (31; $; 3»; ft; J ) 

for the construction of a general theory of the linear equation 
G. Here 31 denotes the class of all real or the class of all com­
plex numbers a; 3̂ denotes a general class of general elements 
p or s or t or u or v or w; 3)t denotes a class of single-valued 
functions JJL on ^ to 31, that is, for every function ^ and argu­
ment p, fjt,(p) denotes a definite number a of the class 3t; ft 
denotes a class of functions K on 3̂̂ 3 to 3Ï, that is, for every 
function K and (ordered) pair (st) of arguments of ^3, n(st) 
denotes a definite number a of the class 31; and J or Jt denotes a 
definite functional operation on ft9Jl or fts*9ft* to 3)i or 3JÎS, 
that is, for every function K of ft and rj of 3JÎ, JKTJ or Jt K(st)rj(t) 
denotes a definite function of 3)1 or 3)l5. 
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For the basis Si the 'problem of foundations of a general 
theory of the equation G is then: to specify properties of the con­
stituents of the basis Si sufficient to validate the desired theory. 
The range 5̂ is to remain general, and the properties specified 
are to be of general reference, that is, defined with respect to 
the general range ^5. 

I t is convenient here to refer to the important memoirs of 
S. Pincherle: 
"Sulle equazioni funzionali lineari". Rendiconti delta R. Accademia dei 

Lincei, ser. 5, vol. 14 (1905), pp. 366-374; 
"Sulle equazioni funzionali lineari". Bologna Memorie, ser. 6, vol.3 (1906), 

pp.143-171; 
"Appunti di calcolo funzionali". Bologna Memorie, ser. 6, vol. 8 (1911), 

pp. 1-38. 
In these memoirs, from the standpoint of the general theory 
of linear distributive functional operations, Pincherle inves­
tigates the problem of foundations for a theory of the equation 

(G') ï=v-zJ'v, 
which includes the equation G, with the basis 

2 ' = (21; <$; Wt; J ' ) , 

where J' is a functional operation on -BÎ to 9JÏ. 

5. Certain Definitions. The Closure Property C\. Relative 
Uniformity of Convergence. 

We do not however retain the basis Si. With the purpose 
of obtaining finally a general theory characterized by its 
simplicity and by its possession of a number of important 
closure properties, we set up other bases S2, • • -, SO. When­
ever a general theory, as a matter of fact, includes, as a special 
instance, a theory analogous to but not a priori one of its 
instances, we speak of a closure property of the general 
theory. The terminology is adapted from that in use in the 
theory of point sets. 

That the general theory include, as special instances, the 
current theories of the equations I, I I n , I I I , IV with regular 
kernels is the closure property Ci, fundamental to the whole 
inquiry. 

You are familiar with the notion, uniformity of convergence 
of a sequence of functions over a range of values of the argu­
ment of the functions, and you appreciate the fundamental 
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rôle played by the notion in the development of analysis 
during the last half century. A sequence {jun} of functions 
/in (n = 1, 2, 3, • • •) of the argument p on the range $P con­
verges over the range 9$ uniformly to a function 6 as limit 
function, in notation 

L ixn = e CP), 
n 

in case for every positive number e and index n greater than a 
number ne, dependent upon e alone, the difference /*n(p) — 0(p) 
is, for every value of p on the range $P, in absolute value at 
most e: 

I A * n ( p ) - 0(p}\ <> e. 

For investigations in general analysis we need a more gen­
eral notion, the notion of relative uniformity of convergence, or, 
uniformity of convergence relative to a scale function. If the 
function a (defined on the same range 3̂) is the scale function, 
this relative uniformity, in notation 

LfJLn= 6 («P; or), 
n 

has the same definition except that the final inequality is 
replaced by 

I/*»(p) - »(p) I Se |<r(p)|. 

We speak also of relative uniformity as to a class © of scale 
functions; the notation 

£ / * » = e cp; ©) 
n 

means that for some function a of the class S we have the 
relative uniformity as to the scale function v. 

One observes that the classical uniformity is that instance of 
relative uniformity in which the scale function is identically 1. 

In illustration of this notion of relative uniformity, consider 
a sequence {/*n} of real-valued nowhere negative functions ixn 
of the real variable p on the infinite interval ^ = 1 — oc 
of the number system, and let the functions fin be individ­
ually integrable from 1 to oo. If relative to a scale function 
a of the same kind the sequence {/*»} converges uniformly on 
P̂ to a limit function 6, then 6 also is integrable from 1 to oo, 

and the integral of 6 is the limit as to n of the integral of fin. 
But the limit function 6 is no longer necessarily integrable 
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from 1 to oc, if the convergence is merely uniform in the class­
ical sense (a = 1), as appears from the following example: 

/*n(p) = 1/p (1 Û V ^ n)> n/P2 (P ^ n)> 

»(p) = 1/P (1 ^ p ) . 
To facilitate the exposition of the sequel we need certain 

additional definitions. 
Consider a class 9ft of functions ^ on 3̂ to 91, that is, on 

the range 3̂ with functional values belonging to the class 21. 
The class Wlz, the linear extension of the class 9ft, is the class 
of all functions fxL of the form 

MX = aim + «2M2 + • • • + ClnVn, 

viz., the class of all linear combinations of a finite number of 
functions belonging to the class 9ft with numerical coefficients 
belonging to the class 2Ï. Further, © being a class of functions 
a on 3̂ to 31, the class 3)1®, the class 9ft extended as to the class ©, 
is the class of all functions 6 of the form 

0 = Lfxn (?P; cr), 
n 

a form which has been defined above. The class 9ft is con­
tained in the class 9ftz and for every S in the class 9ft@. If 
the classes 9ft and 9ft/, are identical, the class 9ft is said to be 
linear, to have the property L. If the classes 9ft and 9ft̂  
are identical, the class 9ft is said to be closed, to have the 
property C; otherwise expressed, the class 9ft is closed in 
case every function 0 of the form 

n 

belongs to the class 9ft. The class 9ft*, the ^-extension of the 
class 9ft, is the class (9ft/,) ̂  that is, the extension as to 9ft of 
the linear extension of 9ft. The class 9ft2 is the class of all 
functions of the form /XIJU2 or fii(p)mip)> that is, of all products 
of pairs of functions of the class 9ft, the arguments of the two 
functions being the same. 

In illustration of these definitions, if 9ft is the class 9ftIV of 
all continuous functions on the finite linear interval 5)3IV, a~b, 
we have 

m = mL = mm=m* = 9ft2. 
Further, if 9ft is the class 9ftni2 of all functions /* on $ 
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(p = 1, 2, 3, • • •) such that the series S P M(P) 2 converges ab­
solutely, we have 

m = mL = mm = m*; aft2 = an1111, 
where 9Jlni1 denotes the class of all functions \x on ^ such that 
the series Spiu(p) converges absolutely. Thus the classes 
•Di111* and 3JtIV occurring in the regular cases of equations I I I 
and IV are linear closed classes of functions. 

Consider further two general ranges 5)3', %" conceptually but 
not necessarily actually distinct. The product range %'%" 
is the class of all composite elements (p', p") or p'p", the first 
constituent p ' being an element p ' of the class ^3', and the 
second constituent p " being an element p" of the class ty". 
For example, if $P' is the linear interval a' -6 ' and ^3" is the 
linear interval a"-b", the product $|3'̂ 3" is, to speak geo­
metrically, the rectangle a' ^ p' ^ b', a" £ p" ^ b". The 
product class WW of two classes W, W of functions on the 
respective ranges ^3', ^3" consists of all products M V or 
/*' (p') P" (p") of a function // of the class W on ^ r and a function 
M" of the class 3ÏI" on $ " . The class (WW%, the ^-com­
posite of two classes W, 3K" on the respective ranges ^3', ^3" 
is, as indicated by the notation, the -^-extension of the product 
class WW, viz., the extension as to the product class WW 
of the linear extension of the product class WW. The 
classes 9tt'9Jt" and (WW) * are classes of functions on the 
product range ^3'^3", and accordingly, if the ranges $P', 5)5" 
are identical, $P' = 5)3" = 9$, the arguments of the functions 
of those classes are variables (p', p" or pi, p2) ranging inde­
pendently over ^3. 

The suitability of these notions for use in a general theory 
of linear integral equations is indicated by the fact that for 
the regular case of the equation I I I or IV the functions £ 
and rj belong to a class 33Î (SDÎ1112 or WY) whose -^-composite 
with itself is the class ft to which the kernels belong, viz., 

ft = (3B3R)*. 

6. The Bases S2, S3, S4. 

With the aid of the notions and notations now at hand we 
are able to proceed rapidly towards our goal. We recall that 
the basis Si 

Si = (21; $ ; m; ft; J ) , 
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was dictated by the mere form of the general equation 6? 

(G) S(8) = l,(8)-zJtK(st)r,(t) (S). 

By the consideration that in the typical instances I, I I n , III> 
IV the kernel n(st) for every s as a function of the argument t 
belongs to the class 9JÎ* to which the function rj(t) belongs, we 
are led to a basis S2, simpler than Si, in the form 

S 2 = (21; $; 3R; 9Î ï 3ÏÏ2; ft; J ) . 

Here the class -Ji is defined as the class 5DÎ2 of all products jui/z2 

of pairs of functions of the class 3JI, the arguments being the 
same for the two functions; and J is a functional operation 
on ît to 21, so that for every function v of 9Î, Jv denotes a number 
a of the class 2Ï. 

This system S2 was basal for my lectures at the New Haven 
Colloquium of 1906. The development of the theory of the 
general equation G on the basis S2 requires numerous postu­
lates. We must, for instance, arrange to extend the scope of 
the functional operation J from the class 9Î to its linear 
and -^-extensions, 3ÎL and $1*, in such wise that from the equa^ 
tions 

vL = aivi + • • • + anvn) 0 = LvLn OP; v) 
n 

we have the conclusions 

JvL = CliJvi + • • • + CLnJVn', JO = LJvLn* 
n 

Accordingly, if we define the class 9t as the class 9W*, the -^-ex­
tension of the class 9tt, and take J as a functional operation on 
this class 9Î to 2Ï, we have a simpler basis S3 

S3 = (SI; ^;m;m^ 2tt*; 51 ; J). 

A theory based on S3 requires postulates involving the kernel 
class ft. These postulates are avoided if we define the class 
ft as the -^-composite of the class Wl with itself. Thus we 
obtain the still simpler basis S4 

S4 = (31; $; 3»; 31 s 3R*; ft » (2K2R)*; J ) . 

Here J is still a functional operation on -K to 21. For the 
regular cases of the typical instances I, I I n , I I I , IV the defi­
nition just suggested of the kernel class ft is appropriate. 
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As to irregular cases, it is clear that a greater variety could be 
treated on the basis 22 or S3 than on the basis S4. 

7. The Closure Property C2. The Basis S5. 

In response to the desire that our theory of the general 
equation G 
(G) m = rj(s)~zJtK(stMt) (s) 

shall possess a certain closure property C2, in addition to the 
fundamental property C\ of having as special instances the 
current theories for the regular cases of the equations (I, Hn> 
III, IV), we are led to the basis 25, 

Under the postulates to be imposed on the class 5DÎ, the kernel 
a{sf) of the class 51 = (-ïïï-iDÎ)* is, as in the typical instances, 
for every s as a function of t of the class 9ft* to which also rj(t) 
belongs: thus, the operation J enters the equation G in the 
form 

Ja/3 or JPa(p)p(p), 

where a and j8 are functions of the class 3)1. Now for the 
instance II n the expression 

n 

JIIna/3 or Z)a(p)/3(p) 
P=i 

is Grassmann's inner product of the n-dimensional vectors 

a = (a(l), • • -, a(n)); 0 = (0(1), • • -, j8(n)), 

and accordingly we term the expression JPa(p)P(p) or Ja& 
the inner product of the functions a, /3. In this we follow usage 
already established for the instances III, IV. 

For the basis S4 it is convenient temporarily to denote the 
operation J by J4 and the equation 0 by G\ J4 is then a 
functional operation on 9? = 9tt*2 to 21. The first question 
that suggests itself is the following: Is it possible to secure 
a basis S5 for the equation 6?5 

(G5) { = v - ZJ'KV 

of such a nature that the corresponding inner product 

J5a$ 
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shall have as one of its instances the generalized inner product 

J\JA
ua(f)<a(tu)P(u), 

where œ is a function of the class $? To that end we set 

and assign to G5 the meaning 

(G6) m = v(s) - zJLAstMu) (*)• 
Further, since the operand a(f)(3(u) belongs to the product 
class 3J13JÏ, just as we were led to replace J2 on 9J12 by J3 and 
J4 on 31 E= 9Jl|, we stipulate that J5 shall be a functional 
operation on the class (2J19JÎ)*, that is, on the kernel class ^. 
Thus we have reached the basis 

25 = (»; ?P; 3tt; « s (3JÏ3ÏÏ)*; J) , 

where J is a functional operation on £ to 31. 
This basis S5 is, by the omission of the class 9? = 9Ji|, 

simpler than the basis S4. Further, the equation G4 is an 
instance of the equation G5, viz., for the operation J5 with 

for every function cp of $. This stipulation is legitimate 
since for every function (p(tu) of &tu = (3#$WW)* the re­
duced function <p(tt) belongs to %lt = 9#«*. Accordingly, 
the general theory of the equation G5 based on S5 yields, as a 
special instance, a theory of the equation G4 based on S4. 

Furthermore, in accordance with the derivation of the basis 
S 5, the general theory of the equation G5 contains as an 
instance a theory of the equation 

(G4") *(*) = v(s) - zJ\ruK{st)^{tu)n{u), (,), 

where w is a function of $. The operation J5 for this instance 
is the operation 

Juu)<p(fu) = Jé
tJi<p(tu)œ(tu) 

for every function <p of ^. Under the postulates to be laid 
on the basis S4 the double operation J\Ji is applicable to 
the product <p(tu)a>(tu) of two functions of the class ^. 

It is to be noted, however, that the geometric analogy, let 
us say, between the sphere and the ellipsoid had as primary 
function not that of enabling us to treat the equation G4<rt 
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based on 24 as a special instance of the equation 05 based on 
S5; at least for the Fredholm theory, the equation G4(ü may 
be treated as the equation 6?4 with the kernel K(st) replaced 
by J*K(sf)a>(tu), since under the postulates to be imposed on 
the basis 24 this is a function of the kernel class ^ and the 
operations J*, J* are commutative. Its primary function was 
rather to lead us from the basis 24 to a basis S5, possessing 
in common with 24 the closure property C\, and possessing 
furthermore the closure property C2—that for the basis S 5 a 
similar use of the geometric analogy leaves us on the basis 25. 
In fact, if we seek a basis 2 for the equation G of such a 
nature that the corresponding inner product 

Ja/3 

shall have as one of its instances the generalized inner product 

where co is a function of the class $, we are led to set 

Jap s J(tw)a(t)p(w); 

thus the new operation J is still an operation J on 3JÎ9JÏ or 
preferably on (9J19JI)* = &, that is, an operation of precisely 
the same type as J5. 

As in the preceding remarks, we notice that the equation 

(G5w) m = v(s)-zJttn)JlwA^Muv)v(w) (s) 

may be treated, either as the equation G6 with the kernel 
K(sf) replaced by J(tu)ic(st)ü)(uv), or as the equation Gb with 
the operation J6

{tu) replaced by a new operation J{tu) defined by 
the equation 

J[5
tu)<p(tu) = J5

itw)J
5
{vu)<p(tu)ü)(wv) 

for every function <p of ^. 

8. Resume. 

To summarize our course to this point: We have as data 
the four analogous equations (I, IIn, III, IV) with their four 
analogous theories. The theories are of two stages: for brev­
ity, F, the Fredholm theory of the general kernel, and H, 
the Hilbert-Schmidt theory of the real symmetric or of the 
more general hermitian kernel. 
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Guided by the heuristic principle of unification by abstrac­
tion, we formulate the general equation 

(G) £ = rj - ZJKTJ, 

embracing as instances the four typical equations; and we 
seek the foundations, viz., the terminology or basis, and the 
postulates, of a general theory of the equation G which shall 
embrace as instances the four theories of at least the regular 
cases of the respective equations. This is the fundamental 
closure property Ci. 

The form of the equation G dictates the basis Si, which by 
consideration of the typical equations and of the obvious 
nature of their theories we simplify to S2, S3, S4 in succession. 

The metric-geometric analogy of the sphere and the ellipsoid 
leads on to the present basis 

S5 = (» ; $; m; i t s (3JÎ9JÏ)*; J on 51 to 21), 

with the general equation 6? interpreted as meaning 

(G) £0) = i?W — zJ{tu)K(st)ri(u) (s). 

And for this basis and its theory there is the closure property 
C2. 

The operation J is a functional operation on & to 3Ï, that is, 
if <p is a function of the class $, 

J<P = J (tu) (P (tu) 

denotes a definite number a of the class 31. For purposes of 
application J or J(tU) is often definable as a double operation, 
in the form J(tU) = J/Ju"* For purposes of the general 
theory of the basis S5, however, J(tU) is an indivisible operation. 
Of course J(tu)<p(tu) is equal, e. g., to J(tw)<p(tw) or J(VU)<p(vu) 
or J(vw)<p(vw), but it is in general not equal to J(ut)<p{tu). 

9. The Definitive Basis Se. 

The basis S5 is in effect definitive for the general Hilbert-
Schmidt theory H. Suitable postulates will be given for 
both bases S4, S5. However, for the general Fredholm theory 
F the metric-geometric analogy, by leading us from the oper­
ation Jt on %t over to the operation J(tu) on §ttuy enables us 
to proceed to a still more general basis S6. 
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In fact, for the theory H we have the respective definitions 

K(ts) = K(st) and n(ts) = ic(sf), 

of the symmetry of the real-valued kernel K and the hermitian 
character of the complex-valued kernel K. These definitions 
require the arguments s and t to have the same range ̂ 3. 

There is, however, no such necessity in the theory F> 
Thus we are led to the following definitive basis for the 
theory F, viz., 

^«= \%' & û; à = mm*' Jon * )' 
Here 5|3, $ are two conceptually but not necessarily actually 
distinct classes of elements p, p respectively; 3ft, 9JÏ are two 
classes of functions /I on $ , jx on 9|3 respectively; $ and È are 
the * -composites of the two classes 9K, 9JI in the respective 
orders 2JI, 2JI; m, Wl—that is, the functions K of $ bear their 
arguments p, p in the order (pp), while the functions /c of È 
bear their arguments in the reverse order (pp) ; thus there is a 
correspondence of the functions K, îc of such a nature that for 
two corresponding functions K, îc we have n{pp) = ^(pp) 
for every pair of arguments p of %, p of ĵ3; and functions K, K 
occurring together are understood to be in this sense corre­
sponding functions, each the transpose of the other. Finally, 
J is a functional operation on & to 91, so that for every function 
K of È the expression 

JK S J(tuyl<(tu), 

denotes a definite number a of 9Ï. Here, in order to make 
the formulas based on S6 readily comparable with those based 
on 2 5, we agree that the elements 

p, s, u, ID ; 

p, i, v, r, 

are generic elements of the classes ^ ; $ respectively. 
Based on S 6 we have the general pair of adjoint equations 

(G) ? == V - zJicrj; 

((?) | = v - zJ^/c, 
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with the meanings 

(G) % (s) = rj (s) - zJ(tu) K (st) rj (u) ($) ; 

«?) l(t) = ij(t) - zJ(r8)v(r)K(st) (0. 

Introducing the functional operation J, the transpose of «7, 
by the equation: JK = JK, for every function K of $, so that 
J is on £ to 21, we have the adjoint equation G6 in the form 

(G) 1 = 5 - J**, 
viz., in the form G for the transpose basis 26> which is the 
basis SO with the interchange of rôles of ^3, $ ; 3ft, 501; SÎ, $; 
J, J. 

The basis 25 is secured from the basis 26 by the supposition 
$ = $ E= ^5; 9ft = 3ft m 9ft. 

Thus the theory for the basis S6 has the closure property C\. 
It has moreover the closure property C^ on the understanding 
that the function co or u(uv) is any function of the class $; 
that is, the functional operation J' 

JL)<P(tu) s J6
(tw)Jlu)<p(tu)œ(wv) 

for every function #> of the class &, is a functional operation 
of the type J6 on IE to 2t. Further, as on the basis S5, the 
equation 

may be treated, either as the equation Ge with the kernel 
n(st) replaced by J^tu)K(st)o)(uv), or as the equation GQ with 
the operation J6 replaced by the operation J' defined above. 

Setting 

\h • • •' tn) S ' ^ ^ ' ^ ^ ^ 1 ' ' ' *' n ^ 

we define the Fredholm determinant FK(&) of the kernel K 
and the parameter z, for the general theory of the adjoint 
equations G9 G based on S6, as follows: 

^(S) s h~krJ(hsd • • • « ^ K U • ••,<*;• 
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Here </(*l8l) . . . (tksk) denotes the &-fold operation 

J(hSl)J(t2S2) • • • J(tk8k)-

The M i minor (h = 1,2, •••) has the definition 

p f su •••, shf \ 

~ ( 1} k h\ J«>»•>»>• ~«»*»**\tu ..., tv»)' 
The initial terms (jk = 0) of the determinant and of the M i 
minor are respectively 

i ; (- I)HK(*1' '"' S h \ 

Under the postulates to be specified below, Hadamard's 
theorem on determinants may be utilized to show that these 
series are permanently convergent power series in z, as to 
the M i minor for all values of the arguments sh • • •, th. 
Further, on every finite circle in the s-plane the fab. minor 
series converges uniformly over the composite range ^$i • • • $/» 
relative to the class 

ft* . . . * s (9W* • • • afc>; 
and its terms belong to the class ft* • • • th; and, as this class is 
closed, the M i minor for every s as a function of the arguments 
si, • —,th belongs to the class ft* • • • th. 

The general theory of the adjoint equations G, G proceeds 
along the usual lines. Thus, if the parameter z is not a 
root of the determinant FK{z), the kernel K has the reciprocal 
kernel X 

X(rf)r - V ' ' 
FA*) ' 

belonging to the class ^ and satisfying the equations 

n(st) + \(st) = zJ(VW)K(sv)\(wt) — zJ(VW)\(sv)i<(wt) (st) ; 

and the equations O, G have the solutions 

^ = 1 - zJ\% v = % - zJ%\. 
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10. Adjundional Composition. The Closure Property C$* 

In the algebraic domain we proceed from the single equa­
tion I 
(I) x = y - zky 

to the system I I n of n simultaneous equations 
n 

(IIn) Xi = yi — zShjyj (i = 1, • • -, n). 

Similarly, on the basis S6, we proceed from the single equa­
tion G 

(G) ÎO) = rj(s) — zJ\tu)ic(st)rj(u) 0) 

to the system Gn of n simultaneous equations 
n 

(Gn) ?• (*) = rji (*) — z Z) J(tu)Kij (st) rjj (u) (si). 
3=1 

Here we have given the parameter z, the n2 functions K# of 
the kernel class ft, and the n functions & of the class 9)i; and 
we are to determine the n functions rji of the class 9ft. For 
the instance IV on the linear interval a-b Fredholm showed 
how to reduce the system IVn to a single equation IV on the 
linear interval a-bn (bn = a + n(b — a)). A similar pro­
cedure is effective to reduce the system Gn on the basis 26 

to a single equation G on an enlarged basis. The procedure, 
however, is capable of further generalization, and, as thus 
generalized, of an important application to the theory of mixed 
linear equations. 

To this end, consider a system of n bases 26* (i = 1, • • •, n), 
viz., 

/ t}* W ft* s (WW) ~ \ 
Ze "" v * sp*' W' a* s (aR*a»o' / 

The class 21 is the same in the n bases 2*; otherwise the bases 
are conceptually but not necessarily actually distinct; it is 
however convenient to suppose that no two of the n classes 
^ have common elements and that no two of the n classes $* 
have common elements; this state of affairs, being always 
securable by transformation, involves no restriction of 
generality. 
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As a generalization of the system Gn on the basis S6 we 
have on the system of n bases S6* the system Gn1 ' * *n 

n 

(Gn1 * ' ' ») ?(*9 = W) " 2 £ Ji^isHWiu*) (8% 
4=1 

of n simultaneous equations. Here we have given the param­
eter z, the n functions |* of the respective classes 9JI', and 
the 7i2 functions K*' of the respective classes &ij = (9Ĵ 9JîO*> 
so that $** = £*; and we are to determine the n functions y* 
of the respective classes 3Jt\ The n equations (i = 1, • • -, n) 
of the system (?„* ' * *n are to hold for every value of the 
respective arguments si of the class ^\ 

We impose on each of the n bases Se* the postulates to be 
specified below. Then the adjunctional composite Se1 * ' *n of 
the n bases S6* is a basis S6 satisfying the same postulates, 
and the system Gn1 * * ' n of n simultaneous equations is equiva­
lent to a single equation 6? on the composite basis S6. This 
is the closure property Cz of the theory of the linear equation 
G on the basis S6. 

For the adjunctional composite S6
X * * 'n of the n bases Se* 

the class 3Ï is the common class 2Ï of the component bases Se*. 
The ranges $, $ are the adjunctional composites or logical sums 
respectively of the ranges $*, ^5*; the range 3̂* is the ith com-
ponent of the range Ç, and the range $* is the ith component 
of the range $. A function 0 on the range % determines n 
component functions di on the respective component ranges 
^3*; and, conversely, any n functions 0* on the respective ranges 
5p* are the n components of a definite function 0 on the com­
posite range ^ ; this function 0 is the adjunctional composite 
of the n functions 0\ The functions /x on the range % obtained 
thus by adjunctional composition of n functions /x* of the 
respective classes 9JÎ* on the ranges %l constitute the ad­
junctional composite 9JÏ of the n classes Tt\ The classes 3JÏ, 
9JÏ of functions ju, jx on the composite ranges Sp, % of the com­
posite basis Se1""* are the adjunctional composites, in this 
sense, respectively of the classes 2ttl', 3JI* of functions jut*, /I* 
on the component ranges $*, $ \ The product ranges %%, %% 
are the adjunctional composites respectively of the n2 product 
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ranges f̂ -7', $*^ ' . Then, under the postulates, the classes 
? f (ftp)*> & = ( ™ ) * of functions *, Ï on the ranges 
$P$, $^3 are the adjunctional composites respectively of the 
classes ft* = (2R*t»0* & * s (%"#") * of functions Kl\\ij on the 
component product ranges $P*$', %iÇ$j. The functional 
operation J on the class ^ of the composite basis 26* ' " ' n is 
the afunctional composite of the w functional operations J* 
on the respective classes $1* or £** of the component bases 
2*, viz., if the function K is the adjunctional composite of the 
functions Hcij, 

n 

Now we see readily that the linear equation 

(G) 1 — y — ZJKTJ 

for the composite basis 26* * ' ' n , and the system 
n 

(Gn1'"") f = y - 2 E W ? ( i = 1, - , n ) 

of n simultaneous equations for the system of component 
bases 26*, are precisely equivalent. The functions £, ??, K 
are the adjunctional composites respectively of the functions 
V, V\ K\ 

Accordingly, the theory of the equation G based on 26 
covers the theory of the system Gn

1'"n based on the 26*. 
Thus, if the parameter z is not a root of the Fredholm de­
terminant FK(z), the kernel K, the composite of the functions 
nij, has a reciprocal kernel X, the composite of certain functions 
\ij, and, corresponding to the equations 

K + X = ZJK\ = ZJ\K, 

we have the system of equations 
n n 

Kij + \iJ = Z ] T JkKikXkj = z ] T Jk\MKkJ (ij)f 

and for the system Gn1 ' '% n we have the solution 
n 

rf = £*' - 3 2 JjXijf' (i = 1, • • -, ri). 
7 = 1 

For the adjoint system of equations 
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{Gn1 •••") & = tf - zZ JWj 0 ' = 1, • • •, n) 

we have, with the same functions \ij, the solution 
n 

V = £ - * E J'ÏW (j = 1, • • •, n) . 

T7^ Mixed Linear Equation.—Consider a basis S6 with w 
functional operations J i , • • •, Jn (instead of merely one) on 
the class ^ , and the corresponding mixed linear equation 

n 

Here the function £ of the class 3JÎ and n functions KJ of the 
kernel class $ are given, and the function rj of the class 9ft 
is to be found. 

We may treat this mixed basis as a system of n bases S6*, 
identical except that the functional operations J1 of the bases 
2* are the respective operations Ji of the mixed basis SO. 
Then the mixed linear equation n times repeated constitutes 
a particular case of the system Gn1 " 'n of n simultaneous 
equations on the system of bases Se*. Accordingly, if the 
parameter z is not a root of the Fredholm determinant, the 
system of kernel functions KJ has, with respect to the system 
of functional operations JJf a reciprocal system of kernel 
functions Xy; and we have the equations 

n n 

*3 + X; = Z 2 Jk Kkkj = Z ] £ Jk^kKj (j), 
k=l ?c=L 

and for the mixed equation the solution 
n 

3=1 

11. ^-Composition. The Closure Property C±. 

We have seen that the theory of the general linear equation 
G based on S6 has (closure property Ci) as instances the theories 
of the equations (I, I I n , I I I , IV), and furthermore (closure 
property C3) as instances the theories of the systems Gn, 
Gn1 ' * 'n of linear equations based respectively on S6 and on 
a system of bases S6

Z. Now the step from G on S6 to Gn 

on S 6 was analogous to and has as instance the step from I 
to I I n . The question arises whether the general theory has 
as instances the theories of equations arising from G by steps 
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analogous to the steps from I to I I I , IV, and even to the general 
equation 0 based on 2 6 . Under the postulates to be speci­
fied, this question is to be answered in the affirmative, and this 
is the closure property (74 of the general theory. 

Consider again a system of n bases 26* having the same class 
3Ï of all real or of all complex numbers, and otherwise conceptu­
ally, but not necessarily actually, distinct. From this system 
of bases 2* we determine the ^-composite basis 21 * * *w* or 2* 
as follows. The class 21 of 2* is the common class 31 of the 
constituent bases 2 \ The ranges ty, $|3 of 2* are the product 
classes respectively of the ranges $*, 9|3* of the bases 2 \ The 
classes 9R, 5DÎ of functions on f$, Sp are the -^-composites re­
spectively of the classes 2tt*", SOI' on 5p', $*' of the bases 2*. 
Then the product ranges $ $ , $ ^ of 2* are the product classes 
respectively of the product ranges $*$*, $*$* of the bases 2*; 
and the classes, $ = (3ÏÏ3JI)*, ^ = (9K$!tt)* of functions K, K 
on ^3^3, $ $ are the -^-composites respectively of the classes 
fl* s ( $ » % , «* s (3tt*2R% of functions K\ Ï* on $ ' $ ' , $ < $ * 
of the bases 2 \ The functional operation J on the class K has 
the definition 

for every function Àc of the class ^ . 
This -^-composite basis 2* satisfies the postulates laid 

on the bases 26 , and accordingly the general theory of the 
equation G based on 2 6 has as instance the theory of the equa­
tion G for the basis 2*, that is, of the equation 

The -^-composition of the bases I I n and 2 6 leads to the 
equation 

n 

1 (is) = v (is) —zJ2 J (tu) K (isjt)y (ju) (is), 

which is, notation apart, the system Gn on the basis 2 6 . In 
fact, the -^-composite of I I n and 2 6 is identical with the ad-
junctional composite of n systems identical with 2 6 . But 
the general ad junctional composition of n systems possibly 
distinct is not an instance of the -^-composition here defined • 
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12. Additional Definitions. 

We are to specify postulates on the bases S4, S5, 2 6 enabling 
us to secure general theories F, H. To that end we have need 
of several additional definitions. 

Consider a class 9JÎ of functions /* on the range 5)3 to 31. 
We have already defined the properties linearity (L), closure 
(C), and now define two dominance properties (D, Do) and 
a reality property (R). 

The function a is dominated by the function 0 in case for 
every argument p \a(p) | ^ | p(p) |. The class 9JI has the 
dominance property D0 in case every function /x of 3JÎ is domi­
nated by some real-valued nowhere negative function /x0 of 
9JI; the function ju0 may vary with /*. The class Tt has the 
dominance property D in case for every finite or infinite se­
quence {tin} of functions of 3JI there is a function /x of 3JI such 
that the functions /xn of the sequence {fin} are dominated re­
spectively by certain numerical multiples anii of the function 
/x, that is, for every n and p \iin(v) | ^ | #WM(P) |. 

A complex number a has a conjugate complex number â. 
A function a has a conjugate function a, whose functional 
values a(p) are conjugate to the corresponding functional 
values a(p), of the function ce. A class 9JI of functions ju has 
a conjugate class 9JÏ consisting of the functions /* conjugate to 
the various functions /x of the class 9JÎ. A number a is real if 
a — a. A function a is real or real-valued if a = a. Simi­
larly, a class 9Jt is rmZ (JS) if 9JÏ = Sft. Thus, the class of 
complex-valued continuous functions on a linear interval is 
real. In general, a real linear class of functions is a linear 
class of real-valued functions or a class of complex-valued 
functions whose constituent functions have real and imaginary 
components which range independently over a linear class of 
real-valued functions. 

Consider a functional operation J on a class 9JÎ of functions 
fji. The operation J is linear (L) in case ix = aux\ + a2M2 
implies J/JL = aiJm + a2JM2- The operation J has the mod­
ular property (M) in case there exists an associated modulus 
M, viz., a functional operation M on real-valued nowhere 
negative functions fi0 of 5DÎ such that M/x0 is a real non-negative 
number, for which a relation | /x(p) | ^ Mo(p) holding for 
every p implies the relation | Jfx | ^ M/x0. 
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13. Postulates for the Theory F. 

We secure the general Fredholm theory F of the adjoint 
equations G, G based on the respective systems 24 ; 2s î S6 by 
postulating that the respective classes 9ft; 9ft; 9ft, 9ft have the 
properties LCD D0, and that the functional operation J on 
9t s 3»i; fl s (9ft9ft)*; I s (9ft9ft)* has the properties L M; 
and for this theory we have the four closure properties 
C\ Ci Cz C4; the theory F based on 2 4 however lacks the 
closure property (72. 

14. Postulates for the Theory H. 

We secure the general Hilbert-Schmidt theory H for the 
complex-valued hermitian kernels K(H = K) based on the sys­
tem 2 4 or 25 , by postulating that the class 21 is the class of 
all complex numbers, that the class 9ft has the properties 
L C D Do R, and that the functional operation J on the class 
9Î s 9ft; or fl s (9ft9ft)* has the properties L M H P PQ. The 
operation J is hermitian (H) in case for every two functions 
a, /3 of 9ft Jaj8 = J/to, from which, in view of the properties 
of 9ft and the properties L M of J , follows the relation J v = J^ 
or JK = JK for every function v of 9Î or /c of $. The operation 
J is definitely positive (P Po) in case for every function // of 9ft 
the result J/x/x (for a hermitian operation J necessarily a real 
number) is (P) a real non-negative number (P0) vanishing only 
if ju = 0. Thus the operation J may be described as a <fe/£-
mtefo/ positive (PPo) foViear ( i ) hermitian (H) operation having 
(M) an associated modular operation M. 

The general theory H based on the system 24 or S5 has the 
four or three closure properties C\ Cz (74 or C\ C2 Cz C4, where in 
O2 the function co of ^ is hermitian (w = co) and positively 
definite, viz., for every function /x of 9ft J(rs)J«M)pt(r)(o(^)ju(w) 
is a non-negative real number vanishing only if fx — 0. 

If we postulate that the class 2Ï is the class of all real numbers, 
we secure the general Hilbert-Schmidt theory H for (real) 
symmetric kernels K(K = ïc) based on the system S4 or S5, by 
imposing the same conditions as before on the class 9ft and the 
operation J . However there are certain simplifications. Since 
all the functions and the operations J are real-valued, the 
class 9ft is necessarily real (R) ; and the hermitian property 
(H) of J is the symmetry (S) Jap — Jpa, holding necessarily 
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for the theory based on 24, and for the theory based on S5, 
implying JK = J/c; and the property (PPo) of being a definitely 
positive operation J is that Jfxfx is (P) a real non-negative 
number (P0) vanishing only if fx = 0. 

We have specified the bases or terminologies and the postu­
lates of the general theories F and H, and conclude this ad­
dress on the foundations of the theory of linear integral equa­
tions with the expression of grateful appreciation of your so 
prolonged attention. 

T H E UNIVERSITY OF CHICAGO. 

SHORTER NOTICES. 
Lectures on Fundamental Concepts of Algebra and Geometry. 

By J. W. YOUNG. Prepared for publication with the co­
operation of W. W. DENTON, with a Note on the Growth of 
Algebraic Symbolism by U. G. MITCHELL. New York, 
The Macmillan Company, 1911. vii + 247 pp. 
T H E book contains twenty-one lectures on the logical 

foundations of algebra and geometry in substantially the same 
form as delivered at the University of Illinois during the 
summer of 1909, with an appended note on the growth of al­
gebraic symbolism. "The points of view developed and the 
results reached are not directly of use in elementary teaching. 
They are extremely abstract, and will be of interest only to 
mature minds. They should serve to clarify the teacher's 
ideas and thus indirectly serve to clarify the pupil's." "The 
results nevertheless, have a direct bearing on some of the 
pedagogical problems confronting the teacher." "Let the 
teacher be vitally, enthusiastically interested in what he is 
teaching, and it will be a dull pupil who does not catch the 
infection. I t is hoped these lectures may give a new impetus 
to the enthusiasm of those teachers who have not as yet con­
sidered the logical foundations of mathematics." Such is the 
purpose of the author. 

The first five lectures, of 57 pages, form an introduction 
which makes clear the nature of the problems to be discussed 
and the point of view from which they are approached. 
Euclid's Elements, a non-euclidian geometry, the history of 
the parallel postulate, the logical significance of definitions, 


