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equation g(x + 1) = xg{x) which have the properties that 

r ( l ) = 1, T(x) = (1 - e*"x^)T{x), 
and 

lim T(x)x~x+hx exists. 

If one starts from these definitions and makes use of the general 
theory of linear homogeneous difference equations of the first 
order, the fundamental properties of T(x) and Y(x) are readily 
obtained. The theory, as worked out recently by Professor 
Carmichael in his academic lectures, is decidedly simpler and 
more elegant than the usual theory of the gamma function, as 
developed, for instance, in Nielsen's Handbuch. 

H. E. SLAUGHT, 
Secretary of the Section. 

AN IDENTICAL TRANSFORMATION OF THE ELLIP­
TIC ELEMENT IN THE WEIERSTRASS FORM. 

BY PROFESSOR F. H. S AFFORD. 

(Read before the American Mathematical Society, April 29, 1911.) 

THIS paper is based upon a formula published in 1865 in 
a pamphlet entitled "Problemata quaedam mechanica func-
tionum ellipticarum ope soluta.—Dissertatio inauguralis," 
by G. G. A. Biermann (Berolini), where it is quoted as de­
rived from Weierstrass's lectures. The formula is, after 
correcting slight misprints in Biermann's pamphlet, 

(1) F(x) = x0 + 

}/R(xoWS + IR'(XO)[S - ~R"(xo)] +Y4CR(XO)R'"(XO) 

2[S-^R"{XÇ>)Y-\A-R(XQ) 

F is the solution of 

(2) (F'f = AF* + 4J&F* + QCF2 + 4B'F + A' = R(F). 

The accents -used with F and R denote differentiation, x0 
is an arbitrary constant, and A, B, C, B', A' are constant 
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coefficients. Also 
8 = 4s3 — g2s - 03 = 4(* — ei)($ - e2)(s — €3), 

(3) s = f(x), g2 = ,4,4' + W2 - 4B5', 

03 = AC A' + 2BCB' - AB'2 - ,4'£2 - C3. 

In Enneper, Elliptische Functionen (Halle, 1890), pages 27-
30, may be found considerable discussion of the preceding 
formulas, while on page 59 another form of (1) is used in 
obtaining the addition theorem for 9(u). 

Greenhill, Elliptic Functions (London, 1892), page 151, 
mentions (1) in connection with the reduction of the general 
elliptic element dx/VX to Weierstrass's canonical form dsjVS. 
HaentzschePs use of Weierstrass's formula will be considered 
later. __ 

From (1) an identical transformation of dsjVS may be ob­
tained as follows: By a proper choice of constants a, 0, y, Ö, 
the linear transformation 

(4) F = T , v J yv + ô 
changes (2) into 
(5) (v')2 = 4fl3 - g2v - 03, 
whence, writing 
(6) f-x0 = v, 
(5) becomes 

(7) (fy = 4(F - *o)3 - 9*0? - a*) ~ 9s = R(F). 
Hence __ _ 

R(Xo) = - 0 3 , R'(Xo) = — 02, 

(8) R"(x0) = 0, R'"(zo) = 4! R""(zo) = 0. 

Then using the form R as indicated in (7) for R in the funda­
mental formula (1) gives 

| / (~~ #3)1/(4s3 - 92$ - 0s) - ifhfi - 03 
(9) t> = ^ . 

When (9) is rationalized and simplified by writing g2 = 4a, 
03 = 26, it gives 

(10) v2s2 + 2avs + 2b(v + $) + a2 = 0. 
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Referring to (5), it appears that the general biquadratic X 
or R(F) has now, by the changes above, become the same as 
in Weierstrass's elliptic element, so that the transformation 
(10) changes dsjVS into itself, i. e., is an identical transforma­
tion, a fact which may be easily verified. 

Equation (10) is obviously symmetrical in v and s, while (9) 
shows that the transformation is irrational in both directions. 
The curve corresponding to (10) has no node, except when 
#23 = 27#32, but consists of two distinct branches, asymptotic 
to both axes. Evidently the line v — s = 0 is an axis of 
symmetry and it may be shown to intersect the curve twice 
or not at all, according as g^ — 21 g^ is negative or positive, 
this expression being also the criterion for the two types of 
^-function curves, the basis of Haentzschers discussion. 

Haentzschel, in his Reduction der Potentialgleichung (Berlin, 
1893), wished to obtain a pair of families of orthogonal curves 
by the aid of conjugate functions. To this end he wrote 

(11) s = 9(t + iu), <r= 9(t- iu), 

(12) x + iy = F(f + iu), x — iy = Fi(t — iu), 

in which F and its conjugate F\ were defined by (2), and Xo 
was complex. The orthogonal families came from the elimina­
tion of u or t respectively from (12) and writing either p or pi 
as a parameter, where 

(13) p = f(2t) Pl = 9(2iu). 

He treated in detail the cases in which #o is any one of the 
roots of R(x) = 0, equation (2). 

In the Archiv der Mathematik uni Physik} series 3, volume 
10, Hefte 3/4, pages 234-237, the writer has discussed some of 
Haentzschers results and referred to other articles on the same 
point. On pages 33-37 (Potentialgleichung), Haentzschel 
treated the general case, i. e., XQ unrestricted. This depends 
upon the f4unction curves obtained from 

x + iy = s = 9(t + iu), 

x — iy = o- = f(t — iu) 

[p and pi as in (13), a = jfo/4, b = gz/2], viz., 

(15) «V + 2pb + a2 + (s2 + a2)p2 - s<r(s + <r)2p 
+ s<r(2a - 2P

2) + (* + <r)(2pa + 26) = 0. 
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Haentzschel's work upon this topic concluded with an outline 
of the elimination of s and <r between (15) and two equations 
analogous to (10). 

In the BULLETIN for June, 1899, pages 431-437, the writer 
has discussed the case in which 

(16) R(F) = A[±(F- x0y ± c(F - x0)
2 ± 1], 

and has factored the result, obtaining four curves each of the 
fourth degree. 

The remainder of this paper is to be devoted to the case in 
which 
(7) R(F) = A(F - x0y - g2(F - x0) - g*. 

First s and a are to be eliminated from (15) and (10) together 
with the conjugate of the latter, i. e., from 

(17) v2s2 + 2avs + 2b(v + s) + a2 = 0, 

(18) w2<r2'+ 2aw<x + 2b(w + <r) + a2 = 0, 

(19) [v = x + iy, w = x — iy]. 

In conclusion the resulting equation will be resolved into three 
components, of which two are the original ^-function curves. 
Following Haentzschel, radicals may be avoided by writing 
(17) thus: 
, 9 m 2 _ 2s(av+b) + 2bv+a2, 
\ M ) S — ^2 > 

with a similar value for a2. 
Substituting these values of s2 and a2 in (15) gives 

(21) Dsff + Ps + Q<r + E = 0, 

| D = atfw2 — pVw2 + 2pav2w + 2 pauw2 + 2ahw + 2pb# 

+ 2Pbw2 + 2abv + 2abw + 2b2, 
JP = pav2w2 + bv2w2 + 2pbv2w — p2avw2 + 2abvw + paV 

- p2bw2 + ah + 2b2w + a2b, 

|Q = pav2w2 + bv2w2 + 2pbvw2 — p2av2w + 2abvw + pa?w 

- P26D2 + a3w + 2bh + a% 

E = 2pbv2w2 + aVw2 - 2p2bvw2-2p2bv2w+éb2vw-pW 

- P
2a2w2 + 2a2bv + 2a2bw + a\ 
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Solving (21) for s and substituting in (17) gives a quadratic 
in <r, between which and (18), another quadratic, <r is to be 
eliminated. The result is 

(23) L2 - b2(PQ - DE)2(4:V* - 4av - 26) (4w3 - ±aw - 26) = 0, 

L = v2w2E2 - 2(PQ - DE)(av + b)(aw + 6) 

+ Pw2[P(a2 + 2bv) - 2E(av + b)] + Qv2[Q(a2 + 2bw) 
( 2 4 ) - 2E(aw + 6)] + [D(a2 + 2bv) - 2Q(av + b)][D(a2 

+ 2bw) - 2P(aw + 6)]. 

As would be expected, (21), (22), and (23) are symmetrical in 
v and w, while (v — ei)(fl — €%) (v — e3)(w — ei)(w — €2)(w — 
€3) from the last two factors of (23) may be used to find the 
foci of the curves represented. Each term in (24), on reduc­
tion, is found to contain the factor v2w2, and this being true of 
PQ — DE which occurs also in (23), it is possible to cancel the 
factor fl%4 from the latter and at last obtain in v and w co­
ordinates the equation of either of the pair of orthogonal 
curves. The factoring and consequent resolution of (23) is 
much facilitated by first treating the simple case for which 
p = 0. The degenerate form of (15) is 

(25) «V + 2as<T + 2b{s + <r) + a2 = 0, 

which is of the same type as (17) and (18). Elimination of 
s and a from these three gives 

(26) [v2w2 + 2avw + 2b(v + w) + a2]z[<p(v, w)] = 0. 

The last factor of (26) is the form which (15) becomes when 
p = — 4(262 — a*)/aA, s = v, a = w. But the triple factor 
in (26) is not preserved when the general case p 9^ 0 is treated. 
However (15), which it will be remembered is the equation of 
the ^-function curves, has the remarkable property of being 
symmetrical in all three of the quantities p, s and <r. 

By reasoning which will presently be given, it may be 
inferred that one factor of (23) is the first member of 

v2w2 + 2p6 + a2 + (fl2 + w2)p2 — vw(v + w)2p 
(27) 

+ vw(2a - 2p2) + (v + w)(2pa + 26) = 0. 
Now (23) is the result as stated of eliminating s and a from 

the following: 
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«V + 2pb + a2 + O2 + <r2)p2 — S<T(S + a)2p 

+ sa(2a - 2p2) + (s + p)(2pa + 26) = 0, 

(17) «V + 2avs + 2b(v + s) + a2 = 0, 

(18) wV + 2aw<r + 2b(w + a) + a2 = 0. 

Elimination of s from (15) and (17) gives an equation symmetri­
cal in v and c, which is thus identical with the result of eliminat­
ing w from (27) and (18), so that (27) is consistent with (15), 
(17) and (18). It may be shown by actual division that the 
square of (27) is a factor of (23). In carrying out the division, 
the symmetry of (27) as to p, v and w, in connection with the 
assumed symmetry of (23) in the same quantities, permits many 
terms of the quotient to be written by inspection after a few 
have been obtained. At this stage the knowledge of the factors 
for the special case p = 0 determines many coefficients in 
the general case. The entire computation has been carefully 
checked, and the single assumption of symmetry verified, 
but the length of the quotient (one hundred ninety-eight 
terms) prevents its reproduction in this paper. It is of par­
ticular importance that this identical transformation, when 
employed to obtain new curves from the 94unction curves 
in connection with the theory of conjugate functions, repro­
duces the original curves. 

UNIVERSITY OF PENNSYLVANIA, 
April, 1911. 

SURFACES IN HYPERSPACE WHICH HAVE A TAN-
GENT LINE WITH THREE-POINT CONTACT 

PASSING THROUGH EACH POINT. 

BY PKOFESSOR C. L. E. MOORE. 

(Read before the American Mathematical Society, December 27, 1911.) 

THROUGH each point on a surface in ordinary space Sz pass 
two tangents having with the surface three-point contact 
(tangents to the asymptotic lines). The osculating planes 
to these curves are also tangent to the surface at the point of 
osculation. It is easily seen that the lines on a ruled surface 
in hyperspace have these same properties. The question 


