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angle is described as a something that is attached to the vertex 
of a triangle, although it is shown how angles may be added, 
multiplied or divided, this proves nothing as to the actual 
magnitude of angles. The angles of a spherical triangle are also 
attached to the vertices and can be added, multiplied or divided 
in a similar way, but their actual magnitudes are different from 
the similar angles in a space of two dimensions. Attention 
ought to be directed to the fact that saying the angle is included 
between the sides of the triangle which come together and form 
the vertex adds nothing to the determination of the term 
" angle." 

As a last point in criticism, many authors on geometry intro­
duce misconceptions and misapprehensions into the matter by 
employing the concepts of the next higher dimension in a dis­
cussion which ought to be exclusively in terms belonging to 
the dimension dealt with. The student should be warned that 
lines, either straight or curved, have no existence in a space of 
one dimension, and that planes and curved surfaces do not exist 
in a space of two dimensions. This would put an end to the 
talk about a geometry of two dimensions on the surface of a 
sphere. 

ON H I G H E R CONGRUENCES AND MODULAR 
I N V A R I A N T S . 

BY PROFESSOR L. E. DICKSON. 

(Read before the American Mathematical Society, February 29, 1908.) 

1. T H E object of this paper is to give a two-fold general­
ization of Hurwitz's* explicit formula for the number of 
integral roots of a given congruence modulo p, p being prime. 
On the one hand, we may derive an equally simple formula which 
gives, apart from a multiple of p, the number of the roots of 
a specified order ( = £) of irrationality; viz., the roots belong­
ing to the Galois field of order p\ On the other hand, the 
problem may, without loss of simplicity, be further generalized f 

*Archiv der Math. u. Physik (3), vol. 5 (1903), p. 17. 
t Other generalizations of theoretical importance, but not leading readily 

to explicit expressions in terms of the coefficients, are given by H. Kühne, 
Archiv der Math. u. Physik, vol. 6 (1904), p . 174. 
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by replacing the initial field of integers modulo p by an arbi­
trary Galois field, GF[pn], 

From his formula Hurwitz deduces an (absolute) invariant * 
of degree p — 1 of the general binary form under linear trans­
formations taken modulo p. He states that one of the funda­
mental questions in the theory of modular invariants is " die 
Frage der Endlichkeit ": whether or not all the invariants 
can be expressed as rational integral functions with integral 
coefficients of a finite number of the invariants. Emphasizing 
the difficulty of this question, he answers it only for a special 
case. As a matter of fact, this question is trivial for modular 
invariants, since any polynomial in av • • -, ar with integral 
coefficients is congruent modulo p to a polynomial in which the 
exponent of each ai is at most jp — 1 (in view of Fermât's 
theorem ap == a). 

2. Consider an equation, with coefficients in any given Galois 
field GF[pn] of order pn, 

(1) f{x) == a0+ axx H f- arx
r = 0. 

Let N denote the number of its roots, different from zero, 
which belong to the GF[pnm]. For brevity, set P = pnm. 
Then N is the number of the vanishing expressions ƒ(£), where 
£ ranges over the P —- 1 marks =|= 0 of the GFTP]. In that 
field, 

Hence N == N* (mod p), where 

N* = Z (! - {.Am*-1} » - i - E [/(f)]'-1-

Employing the algebraic expansion 

(2) W8]M = S V . 

and summing for the marks f =4= 0 of the GF[F], we get 

M £ 

* For a cubic form this invariant is exhibited in expanded form for p^ 13 
on p. 221 of my paper on modular invariants, Trans. Amer. Math. Soc., vol. 8 
(1907), pp. 205-230. At the time of writing that paper I did not know of 
Hurwitz's work. 
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By the writer's Linear Groups, page 54, 

_ , J — 1 for fi divisible by P -— 1, 
f 1 0 for /JL not divisible by P — 1. 

Hence 

(3) tf* + i = E < V - « o = o,i,...). 
Inserting the values of P and the C's, we get 

(4) JST +1 = Z a r a t . . . a i < w • • • «ft 

summed for all sets of integers a. = 0 for which 

(5) «0 + a , + . . . + a r = ! > » » - 1, 

(6) ax + 2a2 + 1- rar == 0 (mod pMTO — 1). 

In (4) the fractional form of the multinomial coefficient is to 
be replaced by its integral value. In fact, certain of the a's 
may be multiples of p *. 

3. When wm> 1, certain of the multinomial coefficients in 
(4) are multiples of p and the corresponding terms may be 
dropped from the equation. To this end, set 

mn—l 

(7) « < - E v > ' ( 0 S o v < p ) , 

for i = 0, 1, • • -, r. Further, 
mn—l 

i ) * - i = ^ ( j ) - i y . 

Then, by well-known theorems, the multinomial coefficient M 
in (4) is a multiple of p unless 

r 

(5') Z o ^ P - l ( i = 0, 1, . . -, mn - 1); 

while, if these relations hold, 

(8) * • I I / , * , . . ƒ , ,(«nodj>). 

In place of (5) we may employ the more exacting relations (5'). 

* As this is not true in Hurwitz's case n — m = 1, we may then place the 
factor (p — 1 ) ! before the summation sign. 
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Finally, the exponents of each a. may be made less than pn 

by employing 
(9) af = ae 

4. Instead of deleting vanishing terms of (4) by employing 
relations (5') in place of (5), we may modify our former method 
of determining the O^. Instead ol the algebraic expansion (2) 
we may employ the modular relation 

(io) imy-1 = n u($)Yilpn-l)=ÏÏ uitny-1, 
j=0 j=0 

which follows readily from (9). 
The plan of § 3, which employs (9) only at the final stage, 

has the advantage of furnishing simultaneously the number of 
roots in the GF^p^ of equation (1) with coefficients in any 
GF\_pn~], where n is a divisor of £. See the example in § 6. 

5. In (1) set x = x2\xx and consider the binary form 

(11) f(xv x2) = a0x[ + a1x[~1x2 + \- ax\ 

in the 6rF[p n ] . Two pairs of marks (xv x2) and (x[} x2) of the 
GF[pnm~\ will be said to give the same set of solutions of 

(12) S(xv*2) = 0 

if, and only if, there exists a mark p of the GF\j>nm~\ for which 
x[ = pxv x2 = px2 in that field. Let A denote the number 
of distinct sets of solutions, not both zero, of (12) in the 
GF[pnm]. Evidently 

A = A7, when a0 =f= 0 and ar 4= 0 in the GF[pn] ; 

A = N+ 1, when just one of the coefficients a0, ar is zero; 

A = N+ 2, when a0 = ar = 0. 

Hence in every case A == A* (mod p), where 

A* + af-1 + of-1 = N+ 2. 
THEOREM. The number A of distinct sets of solutions, not both 

zero, in the GF\_pnm^ of a homogeneous equation (12), with coef­
ficients in the GF[pn~\, is congruent to A* modulo p, where 

(13) A* - 1 = - a f - 1 - a^-1 + V ^\—1 '—. a W 1 . •. a*r, 
\ J 0 r ^ £-é a \ a } . a \ 0 I r > 

a 0 1 r 

subject to (5) and (6), or to (6), (7) and (5'). 
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2 he function defined by the second member of (13) is an abso­
lute modular invariant of the binary form (11). 

6. Examples. Let r = 3, so that (11) is a binary cubic. 
First, let p = 3, m = n = 1 ; the invariant * is seen to be 

(14) K—a\ + a\ — a0a2 — axaz. 

Next, let p = 3, nm = 2. As in (7), set 

« « - ° « + 3«fl (o,. = 0 , 1 , 2 ) . 
Then, by (5') and (6), 

I > , „ = 2 > 2> i i= 2 > C i o + ^ o + ^ s o + ^ n + ^ + ^ i ^ 0 (mod8). 

The sets of values of the cv are as follows : 

C01 

~2~ 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 

«u 

0 
0 
1 
0 
0 
2 
0 
1 
0 
0 
1 
2 

C21 

IT 
l 
0 
l 
l 
0 
2 
0 
2 
0 
0 
0 

C31 

"T 
0 
0 
0 
l 
0 
0 
1 
0 
2 
1 
0 

coo 

IT 
l 
0 
0 
1 
1 
0 
0 
0 
0 
0 
0 

C10 

0 
0 
2 
1 
0 
0 
0 
1 
0 
1 
2 

C20 

IT 
1 
1 
0 
0 
1 
2 
2 
0 
0 
0 
0 

«30 

~o" 
0 
1 
0 
0 
0 
0 
0 
1 
2 
1 
0 

In view of (8), the resulting function (13) is 

a\a\ + a\a\a2az — a\a\a\ + ^0
aia2a3 ~ aoaia2 

5) 
+ a\ — a^2a3 — ̂ ^2a3 + a î a 3 + a r 

Taking n = 2, m = 1, we have in (15) an absolute invari­
ant f of the binary cubic in the GF [32] . 

Taking n = 1, m = 2, and reducing by a3 == a, we get 

(15') 
J = a^2 — a^afls + # 0

aïa2 + a; 

+ a ^ ^ g + a\a\ + a* (mod 3), 

an absolute invariant of the binary cubic in the GF [3 ] . 

*See (14), Transactions, 1. c , p. 211. 
fSee (78), Transactions, 1. c , p. 227 ; direct by (58), p. 222. 
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Now K and J, increased by unity, give (apart from a multiple 
of 3) the number of sets of values for which a cubic form (with 
the coefficients not all zero) vanishes in the GF [3] and the 
GF [32] , respectively. We find that * 

J= K+ A2 — A (A = discriminant), 

K2 + K=J2 + J. 

But K is not a rational function of J (in view of the first and 
second forms below), nor J a rational function of K (in view of 
the second and third forms) : 

Form. 

x3 — xy2 + y3 

Xs + xy2 

X3 

x2y + xy2 

x2y ^ 
Vanishing 

K 

- 1 
0 
0 

- 1 
1 
0 

J 

- 1 
- 1 

0 
- 1 

1 
0 

A 

1 
- 1 

0 
1 
0 
0 

Every cubic can be transformed modulo 3 into one of those 
given in the table (Transactions, 1. c , page 232). 

THE UNIVERSITY OF CHICAGO, 
January, 1908. 

NOTE ON JACOBFS E Q U A T I O N I N T H E 
CALCULUS O F VARIATIONS. 

BY PROFESSOR MAX MASON. 

(Bead before the American Mathematical Society, February 29, 1908.) 

I N Weierstrass's theory of the calculus of variations f it is 
shown that the determinant 

dy dx dx dy 
"~ dt da dt da 

formed from the equations x = x(t, a), y = y(t, a) of a family 
of extremals of the integral 

* If we employ the invariant P= A -j- 1 — K (1. c , p. 211), we have 
J=K* + K+P— 1. 

f See for example Bolza, Lectures on the calculus of variations, Chicago, 
1904. 


