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12. Apart from their properties as transformations, the 
above transformations are of interest because of certain 
applications to plane curves, notably to spirals which it 
is hoped to bring out in a subsequent note. 

Since finishing this note the writer finds that the finite 
forms of the transformations discussed were given by Lais-
ant in the Nouvelles Annales de Mathématiques, 2d series, vol. 
7 (1868), p. 318, in the solution of a problem proposed by 
Haton de la Goupillière, Nouvelles Annales, vol. 6 (1867), 
problem No. 803. The wide divergence between the proper­
ties and the points of view of the present note and the solu­
tion referred to seem to warrant its presentation to the 
Society. The above-mentioned volumes of the Nouvelles 
Annales are to be had in the Library of Congress. 

BALTIMORE, 
14 April, 1897. 

CONTINUOUS GROUPS OF CIRCULAR TRANS­
FORMATIONS.* 

BY PROFESSOR H. B. NEWSON. 

(Read before the American Mathematical Society, at the Meeting of 
April 24, 1897.) 

T H E object of this paper is to present the outlines of a 
fairly complete theory of the continuous groups of linear 
fractional transformations of one variable. The method 
employed is quite different from the methods of Lie. Lie's 
classic theory is based upon the infinitesimal transforma­
tion ; I shall make but little use of the infinitesimal trans­
formation, but shall develop the subject from the considera­
tion of the essential parameters of the transformation. 
The complex plane is chosen because it beautifully illus­
trates the methods. I have put together some old and 
some new facts and have sought to build up a general the­
ory. 

* Several terms have been proposed to designate the linear fractional 
transformations of the complex plane. Möbius introduced the term 
" Kreisverwandtschaf t. " Mathews' Theory of Numbers, page 107, 
translates this as u Möbius' Circular Relation." Professor Cole, in An­
nals of Mathematics, vol. 5, page 137, refers to " Orthomorphic Trans­
formation," following Cayley ; this seems too general for the special case 
here considered, since it is applicable to all conformai transformations. 
Darboux, in his Theorie des Surfaces, vol. 1, page 162, uses " transforma­
tion circulaire." It seems to me that "Circular Transformation " is the 
best yet proposed, for the fundamental property is expressed in the name. 
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A circular transformation T of the complex plane is rep­
resented by 

___ az + b 

Regarding the straight lines of the plane as circles through 
the one point at infinity, the fundamental property of this 
transformation is that it transforms circles into circles. I t 
interchanges among themselves the circles of the plane, but 
leaves unchanged or invariant the configuration composed 
of the oo8 circles of the plane. (See Forsyth's Theory of 
Functions, pages 512-524.) 

Since any two circular transformations T and 2\ each 
leave invariant this configuration of all circles of the plane, 
their product, i. e., the transformation which is equivalent 
to the successive application of the two, must likewise leave 
the same configuration invariant and hence be a circular 
transformation. 

This conclusion may be verified analytically by eliminat­
ing zx from two circular transformations T and 2\ as fol­
lows : 

m * _az+b _ Ö I * I + & I 

The product of T and Tx is T2 given by 

(ala+b1c)z + (axb + \d) 
K } 2 (cxa + dxc)z + (cxb + dxd) ' 

This has the same form as T and therefore is a circular 
transformation. 

But this is just what is known in modern mathematical 
language as the group 'property. Hence all circular trans­
formations of the complex plane form a group. 

If the coefficients a, b, c, d in (1) be made to vary contin­
uously, all the resulting transformations belong to the 
above group ; and conversely all transformations belonging 
to the above group are obtained by continuously varying 
the coefficients in (1) . Such a group is called a continuous 
group. The question of continuity will be more fully dis­
cussed later. 

The circular transformation T can usually be brought to 
the normal form* 

* Mathews: Theory of Numbers, p. 105. 
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(3) ? L ^ = J k ^ - _ ^ 
zx — n z — n 

Where m and n are the roots of the quadratic equation 
cz2 + (d — a) z — 6 = 0, and 

j = (a + d - V (a + a7)2 — 4(ao7 - 6c))2 

4 (ad — 6c) 

m, n and & are called the essential parameters of the transfor­
mation, m and n are the two invariant points and h is the 
multiplier of the transformation. Since 

7 z1 — mz — m 
3j_ — n z — n 

we infer that h is the anharmonic ratio of the two invariant 
points and any pair of corresponding points in the trans­
formation. Since m, n and h are complex quantities of the 
form a + ib, it follows that T involves six real variable 
parameters. 

When the invariant points m and n coincide, T can no 
longer be brought to the above normal form but is then re­
ducible to a second normal form 

(4) —*— = — - + a. 
zx — m' z — m 

The condition for coincident invariant points is (a + d)2 

= &(ad — 6c). 
, a — d T 2c 

m' = —-— and a = 2c a + d 

a is a constant whose properties are to be determined. 
When the condition for two coincident invariant points is 
substituted in the equation for k, we get h = 1. Hence the 
characteristic anharmonic ratio of a transformation Tf of 
this kind is unity. Every circular transformation can be 
brought to the one or the other of these normal forms. 

Let us consider two transformations T and Tx which have 
no invariant point in common. Their equations are 

(8') h ^ = h*^ a n d h^h = hh^h. 
zx — n z — n z2 — nx zx — n1 

Eliminating z1 we have the product T2 in the form 

z0 — n0 * z —- n0 
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where k2J m2, and n2 are given as follows : 

{ k* +J „ (M?i ~ ̂ 3 +1) A, * +3. 
(5) i 

I _ hR±A _ M + -P 
[ ™2~ C(&2 + 1 ) ; ™2~ C(*a + 1 ) ' 

J., D, C and ^ stand for the following expressions : 
f J. = kk^Çn —- m j — &mx(n — nx) — k^n^m — mx) 

+ m1(m-—nj. 
D = k\m(n — mx) -— km(n —- wj — k±n(m — mx) 

( 6 ) J + W(m —nx). 
0 = kkx{n — mx) — k(n — nx) — &t(m — m j + (m — nx). 

nx — m n — m ^ 
I m^ — nt ' m1 — n' 

i. e., À is one of the anharmonic ratios of the four invariant 
points (mnm^). 

The transformation T2 is not independent of the order of 
the components Tx and T; the value of k2 is independent of 
the order of Tx and T for A is unaltered when m and n are 
interchanged with mt and nx but not so with m2 and n2. 
Hence the two transformations Tand Tx are non-commuta­
tive. 

The results obtained may be formulated as follows : 
THEOREM 1. All circular transformations of the complex plane 

form a six parameter continuous group. The transformations of 
the group are non- commutative. 

Our task is now to enumerate and discuss all the sub­
groups of this six-parameter group, to develop their proper­
ties and to classify them according to their most character­
istic properties. 

Lie expounds in " Continuierliche Gruppen," page 113 an 
axiomatic principle which, for the purposes of this paper, is 
best stated in the following form : All point transformations 
of the plane which leave invariant a certain figure or configuration 
in the plane have the group property. The group may be either 
a continuous or a discontinuous group. A good example of 
the latter is the group of 18 linear transformations of the 
plane cubic into itself. We shall make frequent use of this 
principle in what follows ; but in each case the group ob­
tained will be seen to contain one or more continuously 
varying parameters and is therefore a continuous group. 
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According to Lie's principle all transformations leaving 
invariant a single point m form a group. Since there are 
oo2 points in the plane, the oo6 transformations of the six-

parameter group G6 are distributed into oo2 subgroups, one 
for each point. Accordingly each such subgroup should 
contain oc4 transformations and be a four-parameter group 
G4 or Gm. This group leaves invariant not only the point 
m but also the net of circles through m. The circles of the 
net are interchanged among themselves, but the net as a 
whole is unaltered. 

If we make mx = m in (3') , (5), and (6), we find X = 1, 
]c2 = kkv and m2 = m. If m be a fixed point, the equations 
(3') or (3") contain only two essential variable parameters 
k and n and, hence, four real variable parameters; thus, it is 
shown analytically that the group Gm is four-parameter. The 
fact that k2 = kkx is very important as will be seen later. 
The transformations of the group are non-commutative, for 
n2 is not independent of the order of Tand Tv 

THEOREM 2. All transformations leaving a point m invariant 
form a four-parameter group. The law of combination of the es­
sential parameters k of this group is given by k^ = k2. The 
transformations of the group are non-commutative. 

Again by Lie's principle all transformations leaving in­
variant two distinct points m and n form a group. Since 
there are oo4 such pairs of points, the transformations of the 
six-parameter group G6 are distributed into oo4 subgroups 
each of which contains oo2 transformations and is a two-
parameter group. I t is clear that each four-parameter 
group Gm contains oo2 of these two-parameter groups G2 or 
Gmn1 one corresponding to each point of the plane taken with 
the fixed point m. Such a two-parameter group leaves in­
variant not only the points m and n but also the pencil of 
circles through these points. 

If we make m1 = m and nx~n in (3') , (5) and (6), we 
get I = 1, k2 = kkv m2 = m and n2 = n. Or we may eliminate 
z1 from (3') and get (3") by multiplication and thus get di­
rectly that k2 = kkv T in this case has only one essential 
variable parameter k and, hence, only two real variable 
parameters. Thus again the group Gmn is shown to be two-
parameter. Since k2 is independent of the order of k and 
Jcv the transformations of this group are commutative. 

THEOREM 3. All transformations leaving invariant two points 
m and n form a two parameter group. The law of combination of 
the essential parameters of this group is expressed by k2 = kkx* 
The transformations of the group are commutative. 

Thus far we have considered only transformations of the 
type T with two invariant points. The normal form of T' 
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(4) contains only two essential parameters m' and a and 
hence only four real variable parameters. There are there­
fore oc4 such transformations in the plane. Taken together 
do they form a group? This is readily answered in the 
negative. The product of two transformations T and Tx

r 

(4') 7 = - + a, and , = , + a, 

is a transformation of the kind T with two distinct invari­
ant points, as may easily be verified by eliminating zx from 
(4 ' ) . 

But if the two transformations T and 2\' leave invariant 
the same point m', they do form a group. Making m/ = m' 
in (4') and eliminating zx by addition, we get 

where a2 = « + «1# The group is evidently two-parameter 
and its transformations are commutative. Let it be sym­
bolized by G J or G2\ 

THEOREM 4. All transformations of the kind T' leaving a sin-
gle point invariant form a two-parameter group. The law of com' 
bination of the essential parameters is expressed by a2 == a + av 
The transformations of the group are commutative. 

The relationships of the groups thus far determined may 
be symbolized as follows : 

tf6= o o 2 £ 4 = œ 4 £ 2 + o o 2 # 2 ' . G,= oo2G2+ G2' 

or 

We now go on to examine more closely the two-parameter 
group Gmn and shall show that the transformations compos­
ing it can be distributed into one-parameter subgroups. 
The essential parameter k of the group Gmn may be written 
h = pei0. Here p and 0 are independent parameters and 
may vary independently. If we put p = ecQ, where c is some 
constant quantity, we have k == eed- eie = e(c+i)ö. Since in the 
group Gmn k2 = kkv we have k2 = e{c+i)e • e(ci+^ = ece+c^ • e<(«+% 
where c and 0 are two independent parameters. But if 
c = cv we have k2 = ecme^ • e w ^ = e(<H-™», where Q2 = 0 + ox. 
Here we have the conditions for a one-parameter group ; k2 is 
of the same character as k and kv and there is but one param­
eter, viz : 0. The effect of the successive transformations 
of the group upon a point P of the plane is to transform it 
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into PvP2,~Pn which lie on a curve called by Lie the Bahn-
curve or path curve. By a transformation Tevery point P i s 
moved along its path curve. The path curves of this group 
are the well-known double spirals of Holzmiiller* used so ex­
tensively by Klein and others. Their properties are so well 
known that it is unnecessary to develop them here. For a 
lucid account in English see a paper by Professor F . N. 
Cole in Annals of Mathematics, vol. 5, page 121. 

Within the group Gmn there is a sub-fold group for every 
real value of c and a corresponding set of double spiral path 
curves. 

THEOREM 5. The transformations of the group Gmn are distri­
buted into oo1 one-parameter subgroups. The path curves of these 
subgroups are double spirals about the invariant points m and n. 

The chief properties of one of these one-parameter sub­
groups are easily deduced from the expression for the 
parameter, k = e(c+i)ö. When 6 = 0, k = 1 ; when the anhar-
monic ratio of the four points (mnzz^) = 1, z coincides with 
zv Every point of the plane is unaltered by such a trans­
formation, which is called the identical transformation of 
the group. The two transformations corresponding to 
values of 0 numerically equal but of opposite signs are called 
inverse transformations. Their product is the identical 
transformation of the group. When k = oo or 0, all points 
of the plane are transformed respectively to the invariant 
points m o r n . I have elsewhere called these pseudo-trans-
formationsf {ausgeartete Transformationen, Lie). 

Within the two-parameter group Gmn are two one-parame­
ter subgroups of special importance ; these are the groups 
for which c = 0 and c = oo respectively; i. e., for which 
\k\ = 1 and for which k is real. In the first case, for which 
k = eie, the path curves reduce to coaxial circles having m 
and n for vanishing points. All transformations of this 
one-parameter group are elliptic. In the second case, when 
k is real, the path curves reduce to a pencil of circles through 
m and n. The transformations of this group are all hyper­
bolic. The other one-parameter subgroups of Gmn are made 
up chiefly of loxodromie transformations. 

THEOREM 6. Every two-parameter group Gmn contains one one-
parameter subgroup of elliptic transformations, one one-parameter 
subgroup of hyperbolic transformations, and oo1 one-parameter 
subgroups of loxodromie transformations. For each group of 
loxodromie transformations c in the formula k = e(c+i)e is a constant. 

The continuity of the two-parameter group Gmn is based 
* See Holzmüller : Isogonale Ver wand tschaf ten, \ 19. 
t Kansas University Quarterly, vol. 5, page 79. 
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upon the continuity of the complex number system ; for 
there is a transformation of the group corresponding to 
every value of k, which is a complex number. Let the 
values of k be represented as usual by the points of a com­
plex plane (not to be confused with the plane of our opera­
tions). We wish to see how the values of k which give 
transformations belonging to a one-parameter subgroup are 
distributed in the plane. We have k = e(c+i)e where c 
is a constant and 6 is variable. The locus of the point k 
satisfying this equation is a logarithmic spiral about the 
zero point cutting the axis of real numbers at an angle 
whose cotangent is c. This is a continuous curve from the 
zero point to the infinity point, and consequently our one-
parameter subgroup is a continuous group. 

Different values of c give us different spirals each of 
which corresponds to a one-parameter subgroup of GMn. c 
varies continuously through all real values from — oo to 
+ oo so that these spirals lie infinitely close to one another 
and, as we shall see, cover twice over the entire plane. 
These spirals all pass through the unit point. For c = 0 
the corresponding spiral becomes the unit circle ; for c=oo 
the spiral reduces to the straight line which is the axis of 
real numbers. The family of spirals for which c is positive 
fills the entire plane and no two of them intersect except 
in the unit point. The same is true of the family of spirals 
for which c is negative. But every spiral of one family in­
tersects an infinite number of times every spiral of the 
other family. Every point in the plane not on the unit cir­
cle or the axis of real numbers lies on two of these spirals ; 
from which we infer that every loxodromic transformation 
of the group Gmn belongs to two distinct one-parameter sub­
groups. Every hyperbolic transformation in Gmn except 
the involutoric transformation, for which k = — 1, belongs 
to three one-parameter subgroups ; for two spirals and the 
axis of reals pass through every point for which k is real. 
The elliptic transformations in Gmn belong only to the ellip­
tic subgroup. The involutoric transformation is common 
to the hyperbolic and elliptic subgroups. The identical 
transformation is common to all subgroups ; and the two 
pseudo-transformations are common to all except the ellip­
tic subgroup. Two loxodromic subgroups for which the c's 
have the same signs have no transformations in common 
other than the identical and the two pseudo-transforma­
tions; while two loxodromic subgroups for which the c's 
have opposite signs have in common an infinite number of 
discrete transformations. 
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THEOREM 7. Every one-parameter subgroup in Gmn is con­
tinuous. Every loxodromie transformation in Gmn belongs to two 
distinct subgroups. Every hyperbolic transformation in Gmn, ex­
cept the involutoric transformation, belongs to three distinct sub" 
groups* 

This same geometric representation enables us to discuss 
intuitively the generation of finite transformations by the 
repetition of an infinitesimal transformation. Every spiral 
passes through the unit point, and corresponding to the two 
points on the spiral adjacent to the unit point we have two 
infinitesimal transformations belonging to a one-parameter 
group. These are given by k = e+{c+m and k = e~(c+tjSö. The 
identical transformation divides the one-parameter group 
into two portions, each of which contains an infinitesimal 
transformation. Every finite transformation in each por­
tion of a one-parameter loxodromie group can be generated 
by the repetition of the corresponding infinitesimal trans­
formation. In the elliptic group, for which the spiral re­
duces to a circle, every transformation can be generated 
from either elliptic infinitesimal transformation. In the 
hyperbolic group, for which the spiral reduces to the axis 
of real numbers, the transformations for which k is nega­
tive can not be generated by the repetition of either of the 
hyperbolic infinitesimal transformations. Every loxo­
dromie transformation in Gmn can be generated from either 
of two distinct infinitesimal transformations, for every loxo­
dromie transformation belongs to two distinct subgroups. 
Every hyperbolic transformation for which k is positive can 
be generated from three infinitesimal transformations ; while 
every hyperbolic transformation for which k is negative, 
except the involutoric transformation, can be generated 
from two distinct loxodromie transformations. 

THEOREM 8. Every hyperbolic transformation in Gmn for which 
k is positive can be generated from three distinct imfinitesimal trans-
formations; every other transformation in Gmn can be generated 
from two distinct infinitesimal transformations. 

The two-parameter group Qm' likewise contains oo1 one-
parameter subgroups. The law of combination of the 
parameters in this group is «2 = a + av or in another form 
rae^a=s re*9 + rxe

i0^. If now we take 0Y = 0, this becomes 
r2e

i9 5= (r +r 1)e i 0 . We have here the conditions for a one-
parameter group ; a2 is of the same form as a and ax and 
contains only one parameter r. I t is clear that we have a 
one-parameter group for every value of 6. The effect of 
successive applications of transformations of one of these 
one-parameter groups on a point in the plane is to move it 
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along a path curve. The path curves of one of these groups 
consists of the system of circles tangent at m to each other 
and to the line through m which makes with the axis of 
reals an angle 0. All transformations of the group Gm' are 
parabolic. For details see the above mentioned paper by 
Professor Cole. 

The properties of one of these one-parameter groups are 
easily determined. Let a = reie ; when r = 0, we have the 
identical transformation of the group ; the two transforma­
tions corresponding to two values of r equal but with op­
posite signs are inverse transformations. When r = oo , all 
points of the plane are transformed to m and we have a 
pseudo-transformation. There are two infinitesimal trans­
formations in the group given by the values + dr and — dr. 
Each infinitesimal transformation generates its correspond­
ing portion of the group. Two one-parameter subgroups 
of Gm' have no transformation in common except the iden­
tical and the pseudo-transformation ; these are common to 
all subgroups of GJ. 

THEOREM 9. All transformations of the two-parameter group 
GJ are parabolic and are distributed into oo1 one-parameter sub­
groups. The path curves of a one-parameter subgroup are circles 
through m, touching each other at m. 

We have already shown how the four-parameter group 
Gm breaks up into oo2 two-parameter groups Gmn. We shall 
now show that the transformations of Gm may be distributed 
into oo1 three-parameter subgroups. The law of combina­
tion of the parameters h within the group Gm is expressed 
(Theorem 2) by h\ = hr Written in another form this is 
e(c+i)e . 6(e1+otf1 ^ ec0+clel e(s+ wm i f C = cv w e have 

e(c+i)0 . 6(o+*>e1 __ 6(c-H)02 w here 02 = 0 + 0V 

Hence, we see that if we chose from each two-parameter 
group G^ the one-parameter group characterized by a cer­
tain value of c, the totality of the transformations comprised 
in these oo2 one-parameter groups forms a three-parameter 
group. I t is clear at once that there is one such three-
parameter group for every value of c. Thus, for example, 
all the elliptic transformations contained in Gm form a three-
parameter subgroup. The same is true of all hyperbolic 
transformations. 

THEOREM 10. The oo3 transformations having a common in-
variant point at m, and for which the value of c in the formula 
h= e{c+i)d is the same, form a three-parameter subgroup of the 
four-parameter group Gm. 
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A very important special case of Gn remains to be noted, 
viz : when the invariant point n is at infinity. All trans­
formations of the group leave invariant the net of circles 
through the point at infinity. But this net of circles is the 
net of all straight lines in the plane. Thus the transforma­
tions of this group transform straight lines into straight 
lines ; they are therefore projective transformations. These 
transformations retain the common property of all circular 
transformations that angular magnitudes are unchanged. 
The four-parameter group Gœ is therefore identical with 
the projective group of similitude, whose invariant figure is 
the line at infinity and the two circular points. 

This result can also be shown analytically. Let n = oo 
in equation (3), whence we have 

(7) zl — m = k(z — m), 

Equating real and imaginary parts we get 

x1 = kfx — k"y — kfm! + k"m,f + m', 

yx = h"x + kfy — k'm" — k"mf + w&". 

This is a projective transformation the vertices of whose 
invariant triangle are the point (m', m") and the two cir­
cular points. 

The subgroups of G^ give some interesting results. The 
path-curves of a one-parameter subgroup of loxodromic 
transformations are logarithmic spirals * around the point 
m, and the constant of the group c in k = e(c_H)0 is the cotan­
gent of the angle between the curve and the radius vector. 
The path-curves of the one-parameter group of elliptic 
transformations are concentric circles about m ; and the 
path-curves of a one-parameter group of hyperbolic trans­
formations are straight lines through m. 

Within G^ all loxodromic transformations with constant 
c form a three-parameter subgroup of logarithmic spiral 
motions with constant angle <p. All elliptic transformations 
in GM form the three-parameter group of all rotations in 
the plane. All parabolic transformations in Gw form the 
two-parameter group of all translations in the plane. To­
gether all elliptic and all parabolic transformations in GM 
form the three-parameter group of all Euclidian motions in 
the plane. All hyperbolic transformations in GM form the 
three-parameter group of all affine transformations (i. e., 
dilations) of the plane. 

* Klein : Modulfunctionen, vol. 1, p. 168. 
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THEOREM 11. All circular transformations leaving the point 
at infinity invariant are projective transformations, and the four-
parameter group Gx is identical with the four-parameter project-
ive group in the plane ivhose invariant figure is the line at infin­
ity and the two circular points. 

I t seems to be a favorite method with Klein to express 
whenever possible projective groups in terms of the com­
plex variable both in the plane and on the Neumann 
sphere; see for example Nicht-Euclidische Geometrie, vol. 2, 
page 184 ff and Höhere Geometrie, vol. 2, page 229 ff, and 
many other places. 

We come now to the consideration of another group type 
of great importance. According to Lie's principle all trans­
formations leaving a circle invariant form a group. Con­
sider first a group of hyperbolic transformations leaving in­
variant m and n and every circle of the pencil through m 
and n. Choose one of these circles G and another point nx 
on ft The group of hyperbolic transformations with in­
variant points at m and nx also leaves G invariant. Thus 
all hyperbolic transformations having one invariant point 
at m and the other also on C leave C invariant and form a 
two-parameter group. In this two-parameter group is in­
cluded the one-parameter parabolic group whose invariant 
point is m and whose invariant line is the tangent to C a t 
m. In like manner there is a two-parameter group for 
every point on ft AH the transformations contained in 
these QO1 two-parameter groups form a three-parameter 
group leaving ft but no point on ft invariant, oo2 of these 
transformations are parabolic; these are distributed into oo1 

one-parameter groups, but taken together do not form a 
two-parameter group. 

There are also oo3 elliptic transformations which leave G 
invariant. Let m be any point within C and n its inverse 
point with respect to the circle ft The one-parameter 
group of elliptic transformations having its invariant points 
at m and n has ft among its pencil of invariant circles. In 
like manner all one-parameter groups of elliptic transfor­
mations whose invariant points are a pair of inverse points 
with respect to G leave G invariant. There are oo2 such 
pairs of points, and hence there are oo3 elliptic transforma­
tions in the group leaving ft invariant. 

THEOREM 12. There are oo8 circular transformations which 
leave invariant any given circle; these form a three-parameter 
group. This group is composed of all hyperbolic transformations 
whose invariant points are on the circle, of all elliptic transforma­
tions whose invariant points are a pair of inverse points with re-
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spect to the circle, and of all parabolic transformations whose 
invariant point is on the circle and whose invariant line is a tan­
gent to the circle at the invariant point 

The transformations of this group Gc are distributed into 
subgroups as follows: The elliptic transformations are 
distributed into oo2 one-parameter subgroups, but not into 
two-parameter subgroups. The hyperbolic transformations 
are distributed into QO * two-parameter subgroups ; each of 
these two-paramefcer groups break up into oox one-parame­
ter subgroups, one of which is parabolic. 

Since a straight line is considered as a circle through the 
point at infinity, it follows at once that there is a three-
parameter group of transformations leaving a straight line 
invariant. This group GL is in all respects similar to the 
group Q0. 

A very important special case of the group GL is when 
the line L is the axis of real quantities.* GL then becomes 
the group of real projective transformations of the points on 
a real line. The properties of the real projective group are 
at once known from the properties of Oc. 

THEOREM 13. The three-parameter group of real projective 
transformations of the points on a line is a special subgroup of the 
six-parameter group of circular transformations of the points of 
the complex plane. 

There is still another type of three-parameter group con­
sisting entirely of elliptic transformations which is closely 
related to the group GG. This is the group of transforma­
tions of the complex plane which corresponds to the three-
parameter group of rotations of a sphere about its centre. 
Every rotation of a sphere when projected stereographically 
upon the equatorial plane produces an elliptic transforma­
tion in that plane. Klein discusses the group of rotations 
of the sphere on pages 32-36 of his Ikosaeder, and on page 
35 gives an analytic proof of the group property. The rela­
tion of this group in the plane to the group G0 is shown as 
follows : 

The invariant points of a one-parameter elliptic subgroup 
of Ûo, being inverse points with respect to C, form a pair of 
corresponding points in a hyperbolic involution on the line 
joining the two points with the centre O of the circle. The 
double points of the involution are the two points where the 
line cuts the circle. Every line through the centre of the 
circle Cis the bearer of such an involution; and all the 

* Poin^aré has investigated many of the properties of these groups Oc 
and OL in his papers in Acta Mathematica, vols. 1 and 3, " Theorie des 
groupes fuchsiens" and " Theorie des groupes kleiniens." 
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one-parameter groups of elliptic transformations whose in­
variant points are a pair of corresponding points in one of 
these involutions belong to the three-parameter group G0. 
Let us consider a similar system of elliptic involutions on 
all lines of a pencil through 0, such that the product of the 
distances from the centre of a pair of corresponding points 
is the same in all the involutions. Thus OP- OP' = — h2, 
constant for all the involutions. When a sphere is projected 
stereographically upon the equatorial plane, every pair of 
opposite points on the sphere project into a pair of corre­
sponding points in one of these involutions. Thus all one-
parameter groups of elliptic transformations whose invariant 
points are a pair of corresponding points in one of these invo­
lutions form a three-parameter group. 

This three-parameter group leaves no figure of the plane 
invariant ; but if it were allowable to use the language of 
projective geometry in speaking of the complex plane, we 
should say that this group leaves invariant an imaginary 
circle with centre at O and radius equal to hi. We shall, 
therefore, designate this group as QiC. 

This completes the discussion of the subgroups of the 
general circular group. I t remains to be shown that there 
are no other types of subgroups besides those discussed 
above. I shall attempt no formal proof, but shall only 
bring forward some general considerations bearing upon 
the question. 

A circular transformation transforms points into points 
and circles into circles. We have considered all possible 
groups which leave invariant one or two points ; a transfor­
mation leaving invariant more than two points is identical. 
We have also considered all possible groups of transforma­
tions leaving a circle invariant. If there be a continuous 
group characterized by the invariance of some curve other 
than a circle, such a curve must be the path curve of a one-
parameter group. The only other path curve besides the 
circle is the double spiral of Holzmüller. This has two 
singular points and is invariant only under those transfor­
mations whose invariant points are these two singular points ; 
hence, there is only one one-parameter group leaving in­
variant such a double spiral. These considerations indicate 
that there are no other subgroups of the general circular 
group. 

Lie's theory of continuous groups based upon the infini­
tesimal transformation is better adapted than the method of 
this paper for determining the complete list of types of sub­
groups of a given group. I t may be likened to a net which 
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gathers in its meshes all types of subgroups and lets none 
escape. My list of groups should be verified or corrected 
by the application of Lie's methods. 

I append here a list of the group types discussed in the 
foregoing pages with a brief characterization of each. 

(1) The six-parameter group G6 of all circular transfor­
mations. 

(2) The four-parameter group G± leaving a single point 
invariant. 

(3) The two-parameter group G2 of type T leaving a pair 
of points invariant. 

(4) The two-parameter group G2 of type T' leaving a 
single point invariant. 

(5) The one-parameter group Glc of type Tand constant 
c in k = e{c+i)d leaving two points invariant, (a) The one-
parameter group of elliptic transformations for which c = 0. 
(6) The one-parameter group of hyperbolic transformations 
for which c = oo and 0 = 0. 

(6) The one-parameter parabolic group GJ with con­
stant 0 in a = reid leaving a single point invariant. 

(7) The three-parameter group Gio of type T and con­
stant c in h = e(c+i)e leaving a single point invariant. 

(8) The three-parameter group Gc of elliptic, hyperbolic 
and parabolic transformations leaving a circle invariant. 

(9) The two-parameter group G20 of hyperbolic transfor­
mations leaving invariant a circle and a point on it. 

(10) The three-parameter group of elliptic transforma­
tions Ui0. 

The real projective transformations of the plane and of 
space may be treated in the same spirit and by the same 
methods here employed for the circular transformations. 
The writer hopes to be able in the near future to publish 
the full results of his investigations in these fields. 
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