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THE DECOMPOSITION OF MODULAR SYSTEMS
OF RANK n IN n VARIABLES.

(Presented to the Chicago Section of the American Mathematical Society,
April 24, 1897.)

BY PROFESSOR ELIAKIM HASTINGS MOORE.

L

THEOREM A. If in the realm R of integrity-rationality
R=[z, 2] R,..,R), where the , -, are independent

variables and the realm R=RN R s mdependent of the
@, -+ &,, the modular system

¢)) e =[L[z, ], L[z, 2]]

18 contained in the coefficient modular system F

(2) F=[~ )flq L0 1]

of the form

@) Pl =, 0% 3 fyn -

=h£I8( §1 (=, — Ehi) u'f)r. (t= 21 €,)

where the f,, . ., (=, -y ] belong to R and the &,, belong
to R ortoa famzly-rea, m contammg R, and where the s linear
forms 2 (:c‘ g)u, (h=1,2,-,8) are distinct, then in the

realm m* [wv 'y w,.] (ml ) 1§Rv’ mth 2,. n) the syste'm’ 8 de-
composes (tn the sense of equivalence) wnto frelatwely prime factors

[2, D,7],

(4) g ~1I 3[9’ D],

where D, =[x, — &+, 2, — E&,.] , s0that

(%) Dy D, ~[1] (h=W;h W =1,2,,5).

Ewvery such modular system  is of rank n in n variables.
Every modular system & of rank n in n variables decomposes in
this way in particular with respect to its resolvent form

F [uy, -, u,].
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1. Kronecker* in connection with his general theory of
elimination effected (l.c., §20) the decomposition of modu-
lar systems of rank n in n variables with non-vanishing dis-
criminant.

In elucidation and extension of certain of the Kronecker
Festschrift theories Mr. Molk T wrote the elaborate paper,
Sur une notion -

In Ch. IV., §1 (l.ec., pp. 79-107) Mr. Molk discusses the
general modular system |

(6) 8= [L1 [z, 91, -, L, [, 9] ]

of rank 2 in 2 variables [z,y]. The resolvent form F [u, v]
of this system g

(1) Flu,v] ={=20{",ui i =;.£1I s((x —&)u+ (y—mn,) v)»
(t=3e)

is a certain homogeneous form in the adjoined indeter-
minates wv, which factors into s distinct linear factors
((#—&)u+ (y—=n,)v) each to its proper multiplicity e,
The &, 7, are independent of the xy. These factors corre-
spond to the distinct solution systems (z, y) = (&, n) of the
system of equations L[z,y]=0 (j=1,2,:,m), and their
multiplicities are the multiplicities of those solution sys-
tems.

Now in all cases the coefficient modular system ¥ contains
the system &,

(8) %=[.ﬁ)7 S )ft]E 0 [2]7

and conversely, if the system € has o non-vanishing diseriminant,
that is, if every multiplicity e, is 1, then £ contains ,

® 2=0 (31,
so that € and § are equivalent,
(10) e~ .

Mr. Molk’s highly involved algebraic proof (I. ¢., pp. 91-97)

* KRONECKER: Grundziige einer arithmetischen Theorie der algebraischen
Grissen, Festschrift ... (1882 ; reprinted, Journal fiir Mathematik, vol. 93,
pp. 1-122, 1882).

+MOLK : Sur une notion qui comprend celle de divisibilité et sur la théorie
générale de I élimination (Acta Mathematica, vol. 6, pp. 1-166, 1885).

1 I use the notations of this paper.
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of this converse is not above criticism. Then the decom-
position of &

11) B~F~I 2 =&y — 0]

follows (L. ¢., p. 104) by resolvent considerations.

Similarly Kronecker for the general n» makes the decom-
position of the system & with non-vanishing discriminant
depend upon the equivalence of & with the resolvent sys-
tem .

It is, however, possible, by pure-arithmetic process, for the
general n and whether the discriminant vanish or mot, to effect
first a decomposition of § and then a corresponding decomposition
of &, from which, if the discriminant does not vanish follows the
equivalence of & and F. T proceed to prove the caption the-
orem A, from which these results follow easily.

2. A realm R of integrity-rationality* R = [R, -, R.]
(Russ, **y Rusv) consists of all functions F[R,, -, R.]
(Rut, ) Ruyo) integral in R, -+ R, and rationalin R, 1Ryt
the coefficients being integers. The realm is closed under
addition, subtraction, and multiplication, and likewise un-
der division by any function not 0 of ®'=(R.1 -, Rup)-

Any set of functions F, By - -, I, of a realm R constitutes
a modular system §F =[F,, Fm] of that realm. The whole
theory of such modular systems relates to this underlying
realm.

Any set of modular systems §, =[F, Fmi] (t=1,2,,n)
determines a modular system [F j:ié "] for Whloh we
use the notation [F,, -, F,.]-

3. The very useful theorem : If [F e F1~1[1], then
[30 §] [B &1~ 30§ §]: may readily be proved by the
use of the fundamental theorems concerning the composi-
tion and the equivalence of modular systems.

4. The decomposition (4) of theorem A depends upon
the decomposition (12) in the same realm J*,

(12) §~ D

[This is indeed a particular case of (4), viz., for & = §:
for F=0 [F] and F=0 [D,»] and so [§F, D] ~ D%
(h=1,2,-,8)]. This decomposition (12) will appear be-
low as the third corollary to the theorem B(II., §7 )

‘We have (5) [D,,D,] ~ [1] (A==l ;b W =1, 2, -, 3),
and hence (§3)

* A convenient refinement of Kronecker’s realm of rationality.
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(13) [D,5, D] ~ [1] (h==N 5 Ay =1,2,-,5).
Further since by hypothesis
(14) F=0 [g]

we have from (14,12,13) by §3 the desired decomposi-
tion (4)

15) &~ I[85 ~ [& T D] ~ L [2, D,].

The s factor systems [&, D,2] (h=1,2, - ,s) are by
pairs relatively prime (13).

The system D, consists of the totality of homogeneous
products of degree ¢, of the n differences», — &,,, -, ©, — &,..
If the m functions L, [z, -, x,] of € be arranged each ac-
cording to these n differences, then the system [, D,%] is
equivalent to the system obtained by retaining in each
function of € only those terms of degree less than e¢,. Hence,
in particular [2, D,»] ~ [1], unless =0 [D,].

On another occasion I shall develop the theory of modu-
lar systems capable of such decomposition into relatively
prime factors.

5. A modular system ¢ of rank n in » variables has
(Kronecker, I ¢, §20) a form F[u, -, u,]—its resolvent
form —of the kind called for by the hypothesis of theorem
A, and indeed every system £ to which theorem A applies
is of rank n. For this form F we have further

(16) =0 [9D,] (h=1,2, 8.

Thus the system 2 decomposes with respect to the resolv-
ent F according to theorem A.

For the particular case of non-vanishing discriminant we
have Kronecker’s decomposition and equivalence,

an E~I1 (8 DI~ 5

6. Let e denote the largest multiplicity e,, Let D denote
any function D[z, -, 2] of R* for which

(18) D=0 [9D,] (h=1,2,,8).
Then, from (5, 18) and § 3,

(19) [D, TID,]~TI[D, D,]~ I1D,
h=l,s h=1,8 h=1,s
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Hence
(20) D=0 ’l[!:[smh], D= Oggjbh"] , D=0 ’[:=1:IOSD,,"»].

Then from (20, 12, 14) we have
21) D=0 [2].
This theorem for the case n = 2 is due to Mr. Netto.*

II.

TaeorEM B. In any realm R of integrity-rationality the prod-
uct F of the coefficient modular systems D, € of two homogeneous
n-ary forms D[u, -, u,], E[u, -, u,] of the realm R is equiva-
lent to the coefficient modular system of their product form F=DE,
if for any certain system of n integerst a,, -+, a, whose greatest
common diwisor is 1 in the realm R

[D[av = a,], Ela, -, 0a,], %]"’ [11.

1. We set, calling m,, m,the degrees respectively of D, E,

(1) 'D[ul’ ) un] = E dq woin ulil oo unin,
ALs venr inlmg
Eluy =y u,]=3 €., 5% u,n
Tps erdy | g
(2) F[uv ) u-n] = Efkl - kﬂulkl u"kn
ke, oo Ky | My

= D[u,, -, u,]. E[uy, -, u,] (m=m,+m,)

8o that

(3) qu wkpy 2 dil wein €1t (kv ) kn I m/)
01, s in | g
Ty eedy I,
1y oy B | mp

where the summation remarks of (1, 2; 3) have the defini-
tions (4; b)

(4) hu ) hnlme"’hv ) hn=07 1, ey mg; h1+"'+"‘n='m’c

*NETTO: Zur Theorie der Elimination (Acta Mathematica, vol. 7, pp.
101-104, 1885).

1 Or, more generally, the ay, ..., @, may be any column of an unimod-
ular matrix (as) (s, 8/=1, 2, ..., n) of the realm R, | asw | =1. The
proof then needs change only in ¢ 3.




1897.] DECOMPOSITION OF MODULAR SYSTEMS. 377

5) Uy oy 3, M , , . .

¢ Ty gy ~ Gt MG Gy ey I m;
bk m,  eTh=h s=1,2,-,n)
1 "y N [ 18

For the corresponding coefficient modular systems we write
(6) D=1[, dil;--li%"‘]’ €= ["'/ € ..juw " 1)

Ty eer U 1 o jn | Me

F=1L) fu i 1;

9
K1 yeees by | mp
and in general we denote the coefficient modular system of
any form G [u, -+, %] of the realm § by the corresponding
Gothic capital letter (8.
‘We are to prove that under a certain hypothesis H

M DE~ F
2. Under an unimodular linear homogeneous substitution
(8) ua = 2 au’ u,s' | [22% I = 1 (3, 8, = 1, 2, tty 17/)
8'=0,n

whose coefficients a,, belong to the realm R, the form
QG [u,, -, u,] of the realm is transformed into the form
G [w/, -, u,'], and the corresponding coefficient modular
systems are equivalent, & ~ '.

Since identities in the u’'s transform into identities in the
«'’s in order to prove for the two forms D, E under the
hypothesis H the equivalence (7) ® € ~ § it is sufficient
to prove for the two transformed forms D', E’ under the
transformed hypothesis H' the corresponding equivalence
(7) DG N%!.

3. By hypothesis H there exists a system of n integers
a, -, a, of greatest common divisor 1 such that in i

9 [D [ay @], E[a,,a,l, %] ~ [1].
There exists* then a substitution (8) with integral co-
efficients in which

*We can pass from (a;, a5 ..., as) to (1,0, ...,0) by a sequence of
elementary transformations, 1. e., interchange of two elements with change
of sign of one and addition to one element of another element. The ap-
plication of the reverse sequence simultaneously to the » columns of the

identity matrix
10..0
<0... 01 >
00..1

carries us to the matrix (as) desired.

This determination of (as) is suggested by Kronecker’s Reduction der
Systeme von n? ganzzahligen Elementen (Journal fiir die Mathematik, vol.
107, pp. 135-136, 1891).
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(10) o, = a, (6=1,2,,n).
For this substitution (8), since

(A1) (uyy Uy =y w,) = (@, @y, @) ~ (), u), -, u)) =
(1> O) "ty 0)7

the transformed hypothesis H’ affirms the equivalence in ®
(12) [D' [1> 07 "y O]’ E [1) Oa ) 0]’ %] ~ [D' [17 07 ) 0]7
E [17 Oa "y 0]7 %'] ~ [d,mdou-m el?ne 009 %l] ~ [1]

4. Thus the theorem holds if it holds for the special case
(@ @y =+ @,) = (1, 0, -+, 0), when

(13) [dmdo 03 Cmg0.0y ]~ [1]1

so that, by I. §83,

(14) [dngs.o et o0 &1 ~ [11.
The equivalence

(15) DE~F

in R is nothing but the two congruences

(16) DE=0 [F], F=0 [DE].

Of these the second holds by (8), and the first holds by
(14) if
amn) D E[dnet. o nlt™y F1=0  [F],
and this holds if simultaneously
(18) &'D[eﬁ:;‘a“ 0] = [ di] g i e’l‘ng’f{.‘.. 0 ] =0 [%],

1) 121 ey i | Mg

(19)  Cldnbl.ol E[5 4,4 g, dmghiey 120 [F].

J11 325 +eiin | me

‘We prove that (18) holds; the similar proof applies to
(19). Wehavefrom (38) ford, .., t,=m, (20), ,,<<m, (21):

(20) @ng0..0 €mg0...0 =fYnf0 =0 [F],

(21) dil 19 vein Ome0 ... 0 =ﬁt1+me ig e ip T 2* d}q ng ot €4y 4y iy
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h_v h.zy ) {"n m, 7".1 >4
(* ~ Ju o Jalm, N <m,

. . . ’
By My By, | m,

(21,) di1 2w dp Omg0.,0 = — 3k dh1 P A [%] .

Hence, applying (21') m, — ¢, times and (20) once, we
see that
(22) Aoty 300 =0 [F],

and so that (18) does hold.

5. Cor. 1. The product ¥ of the coefficient modular sys-
tems D,, -, D, of ¢ n-ary forms D,, -, D, of the realm R is
equivalent to the modular system of their product-form F,
if for any certain system of » integers a,, -+, @, with greatest
common divisor 1

(23) [Dg [ay =+, @], Dy [ay, -+, a]] ~ [1]
(9+9599=12,0
6. Cor. 2. The s linear forms
(24) D, [u,, = ,u] =i=21,1‘?m'“¢ (h=1,2,-,5)
belong to the realm R and have leading coefficients by pairs
relatively prime
(25) [du, dun] ~ [1] (h==W;h, W =1,2,,3).
Then, setting
(26) D,[w, -, =0F, [u,,u], (Hr=1,2,-,s),
@) IF [, u)=Flu, -, ul,
we have the equivalence in R

(28) hl—il; fbneh NhEs%h ~F

This appears from Cor. 1 for (a, a, -, a,) = (1,0, -, 0)
since obviously for any linear form D, and its power
D= F, we have D,» ~ &, and since from (25) by I § 3
[dey, dx] ~ [1] (h==W; kK =1,2,,5).

L)
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7. Cor. 3. We consider the realm ® of integrity-ration-
ality

(29) R=[z, 2] & =m0

where the z, -, #, are indeterminates and where the &,, be-
long to a realm #* not containing the indeterminates z and
in that realm are such that the s forms

(30) D, [uy -y w,] =¢.§1 (nwi — &Y% (h=1, 2, -, s)

are distinct linear forms. Then we have (in the notations
of Cor. 2) the equivalence (28).
The particular case, in which

(31) EutSpp [0 — & 2 — &0 ] ~[1]
(h=|=h'; bW =1,2, -,38),
follows at once from Cor. 2

The general case is reduced to this particular case by
transformation of the u, - u, by a properly chosen unimod-
ular substitution in the realm [1]

(32) U, =i’.—.21 g’n’ vy (t=1,-,n)

and simultaneously of thez, - », and the§,, - &, (h=1, )
by the substitutions contragredient to (32)

(33) Z; —_zl:gu 1 (i=17 ),
(34) ht = 2 a” E (,‘: = 11 “‘7’”’)’

/=1, n

Since the forms D, (30) are distinct we can determine in-
tegers o, a, with' greatest common chwsor 1 such that
2 EM a,+ E Eh ¢y (h==h';hy h'=1,-,s). Then any uni-
modula,r matrlx (@) in [1] having o, =a, (=1, ,n
will yield satlsfactory reducing substitutions (32, 83, 34)

THE UNIVERSITY OF CHICAGO, April 20, 1897.



