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while the symbols Sn are determined by the harmonic ele­
ments of the initial distribution of velocity and condensa­
tion.* 

9. Free vibrations between two eoncentrie spherical surfaces. 
Since the radial velocity at the surface r = rx is zero, then 

Fm(hrx) Sn sin hat + S'n cos kat 

+ F„m(hrx) \sr,
n sin hat +£ '"wcos kai\= 0; 

and there is a similar equation involving r2. 
These must be satisfied for all values of 0, <p, t, 

•:8nFm(hrx)= -&>nF_m (hr±); S'HFm (hrx)= ~S>\F_m{hn), 

with two similar equations in r2, 

. 8"n __ Sf\ __ F^hr,) __ F_m(hr2) _ 
Sn — S'n — Fm(hn) - Fm (Ar,) 

:/o, say. (17) 

The possible values of h, and of the wave length 2 n/Jc, are 
to be found from the third of these equalities ;f and then 
S"n, S"'n are known multiples of Sn, S'w. Thus (3) takes the 
form 

rvH\~ \Jm(Jtr)+pJ_m(hr)~\ (Snsinkat+S'neoshat ) , (18) 

an equation which, extended to the whole of space, gives a 
series of nodal spherical surfaces, of which r = r1? and r = r2 
are a pair. At such surfaces the superposed divergent and 
convergent waves interfere. 

ADDITIONAL NOTE ON DIVERGENT SERIES. 

BY PROFESSOR A. S. CHESSIN. 

In a previous note (pp. 72-75) it has been shown that 
every divergent series oscillating between finite limits can 
by a proper arrangement of its terms be made convergent. 
We will now extend those results to the case when one or 
both limits between which the series oscillates are infinite. 
To this end it suffices to consider, together with regular se-

* The work is exemplified for the case n = 1, Theory of Sound, pp. 236, 
237. 
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quences of numbers, such sequences as tend to infinity in a 
determinate way. The number JVi then may be + oo or— oo 
and the infinite series 

<h,i + <h,t + ••• + anti + ••• 

of Theorem I. (p. 73) then tends to infinity in a determinate 
way. This series is unconditionally divergent. A similar 
change in the considerations of Theorem I I . (p. 74) shows 
that the series 

{ux + u2 H h ^ , i ) + (^ l f l+i+ ... + ufJLk>.) + -
tends to infinity in a determinate way, but it must be re­
membered that here each expression in parenthesis is to be 
considered as a single term, and that this determinateness 
would be lost at once if the brackets were dropped. 

Example: 1—2 + 3—4+5 
g = 2- j \ T 1 = = + a > = l + ( - 2 + 3 ) + ( - 4 + 5) + ... 

JV 2 =_oo = ( 1 - 2 ) + ( 3 - 4 ) + .» 
We will say that an infinite series tends to infinity only 

if it does so in a determinate way. I t was also in this sense 
that the expression was used in Theorem I I I . (p. 75). We 
may now add 

Theorem VL Every oscillating series can by a proper ar­
rangement of its terms be made convergent or tending to infinity. 

To conclude, a remark must be made with regard to the 
different rearrangements of the terms of an infinite series. 
On p. 75 it was mentioned that by a proper arrangement, 
both commutative and associative, of the terms of a condi­
tionally divergent series, this series can be made to converge 
to any arbitrarily assigned number. I t is important to take 
into consideration whether the associative change precedes 
the commutative or whether the inverse takes place. Of 
course the remark just mentioned applies only to series such 
that lim (um) = 0, if um be the general term of the series, 

m=cc 

this condition being implicitly assumed in the extension 
of Eiemann's proposition to conditionally divergent series. 

Consider now a divergent series as given in Theorem I I . 
(p. 74) and let again 

Here each expression in parenthesis is to be regarded as a 
single term, and the series may be either absolutely convergent 
or only semi-convergent. I t seems, therefore, that we were 
not justified in saying (Theorem V.) that every conditionally 
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divergent series can by a proper arrangement of its terms 
be made semi-convergent ; that we should have used the word 
convergent instead. But the character of semi-convergence 
appears at once if we reverse the order of our changes in 
the original series, i. e., if we first introduce a commutative 
and then proper associative changes. An oscillating series 
having necessarily an infinite number of positive and nega­
tive terms, the numbers JVi of Theorem I I . will in general 
change their values if the order of terms in the given oscil­
lating series be changed. Indeed, provided lim (um)=0, it 

m—oo 

is possible by a proper commutative arrangement to make 
not only the JV* but also their number g quite arbitrary. 
This is why we have used the word semi-convergent, and 
not convergent, in Theorem V. 

As an example, let us take again the series (2) of the 
first note : 

* - § + 1 - 1 + 1 - -
which may be written as follows: 

y i (2n—1 2n 2n 2n+l } 

If we now introduce the following communicative change 

If l ^ f 2 ^ 2n 2n+l 2n 
2n 2n+l 2n+2 ' 2n+l 

we obtain g — 3 and 

JVI = i = \ -v 
00 C 2n 2n+l 2n 2n+\\ 

j^\2n^^ + 2n~+2 2n+l 2n+2) 

N2 i 
2 

00 2n—1 2n 2w+l 
2n 

2n 
2n+l 2n+2 ' 2n+ i} 

jy^-^i-^l+X-f^n 2 ^ + 1 2n+2 2n+S) 
^\§ri+l't"2n+2 2n+S 2n+i J 

Thus the particular change here introduced has increased 
the number g by unity. I t is easy to apply a number of 
other modifications by following the same process. 


