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ON A CERTAIN CLASS OF CANONICAL FORMS.* 
BY MR. RALPH A. ROBERTS. 

A N interesting class of theorems occurs occasionally in the 
consideration of algebraical quantics, viz., when a quantic 
(or quantics) is not in general reducible to a form (or forms) 
which at first sight, when we count the number of constants 
involved, appears to be sufficiently general to admit of a finite 
number of reductions. Such cases bear an analogy to the 
porism in geometry, as the reductions are impossible, except 
when the quantic (or quantics) satisfies an invariant relation, 
and then the number of reductions is infinite. These cases 
are not common in binary quantics, and are not very remark­
able when they do occur. An instance is: Let xl9 xa9 x9 be 
three linear expressions in the variables. Then x1xixs and 
axt* + bx* + cxt* + dxxxjc% contain six constants, viz., three 
involved m x., x„, x„ and the three external constants 
a/b/c/d; but two general binary cubics which contain 
six constants cannot be simultaneously reduced to these 
forms, unless the combinantive invariant obtained by substi­
tuting differential symbols in one and operating on the other 
vanishes. This, however, is readily apparent from the fact 
that there is an identical linear relation connecting the three 
cubes 3 and the product x,x„x^, so that the second 
form is less general than it appears to be at first sight. 

But in ternary and quaternary quantics there are several 
striking cases. The most remarkable, perhaps, is that dis­
covered by Lüroth, viz, that a general plane quartic curve 
cannot be expressed linearly in terms of the fourth powers of 
five lines; say 

axx
4 + a^x4 + a%x4 + a,x4 + a6x6\ (1) 

I insert here a proof of this result, as it involves a method 
which I propose to use farther on. 

Consider the unique conic 2 which can be described to 
touch the five lines. Then substituting differential symbols, 

i.e., -7-, -T-, -7-, for A, /*, v in the tangential equation 

(A, By 09 F9 G9 H)(\y }Xy v)* of 2y and operating with the 
resulting expression on (1), the remainder vanishes identi-

f d d d\* 
cally. For, operating with (A, B, C9 F, G, # ) ( ^ > ^ jzJ 

on x4 = (axx + f3xy + y^Y> we get a result proportional to 
( J < + M 2 + Oyl

9 + HF/3lyg + 2arlal + 2Halfil)xl
9; and 

this vanishes because xx touches 2. 

* Read before the American Mathematical Society, December 28,1894. 
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But with the quartic in a general form, if we operate with 
the result of substituting differential symbols in the tangen­
tial equation of a conic we obtain another conic in its direct 
form, and in order that this should vanish identically the six 
coefficients must separately be equal to zero. Thus we can 
eliminate the six constants in 22 and obtain an invariant 
relation. The latter is in fact, the determinant formed by 
the six second differential coefficients of the quartic. (See 
Salmon's Higher Plane Curves.) 

Another form mentioned by Salmon is 

AtxtxtxAxê + etc. + A%xxxp%xK, (2) 

to which a general quartic cannot be reduced. 
In this case the proof follows from the fact that this form 

is a covariant of (1), and thus cannot contain any more con­
stants than the latter does. But another proof can be found 
by a method given by Darboux in his work " Sur une classe 
remarquable de courbes et de surfaces algébriques" (Paris, 
1873), viz., by using as co-ordinates the parameters of the 
two tangents which can be drawn from a point to the conic 
touching the five lines. It will then be seen that the form (2) 
is one of an infinite number of the same kind. 

It may be worth while observing that two cubic curves can­
not be written in the forms 

aixx% + a*xf + «VV + a*xî + a*x>*> i (*\ 

although they appear to contain 8 constants externally and 10 
constants in the lines; that is, 18 constants altogether, which 
should be exactly right for two cubic curves with 9 constants 
each. The proof easily follows as before, and the determi­
nant formed by the six first differential coefficients is found 
to vanish. 

Coming now to three dimensions, I observe that a remark­
able case is given in Salmon's Surfaces. It is shown there 
that three quadrics cannot in general be expressed linearly in 
terms of the squares of five planes, although it would appear 
that there were a sufficient number of constants; viz., 12 
constants externally and 15 implicitly in the five planes, that 
is, 27 altogether, which should be sufficient for three quadrics 
with nine constants each. It would also appear that a qua­
ternary quartic could not be expressed as the sum of nine 
fourth powers, although such a form would appear to contain 
35 constants—more than sufficient to express a general quater­
nary quartic, which contains 34 constants. The proof can be 
obtained by considering the unique quadric touching the nine 
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planes; and the determinant formed by the ten second differ­
ential coefficients is found to vanish. I am not aware whether 
this result, as well as that relating to the two plane cubics, 
has been noticed before. 

I now proceed to consider a result I have arrived at of the 
kind explained above ; but before doing so I propose to con­
sider a reduction which leads up to my theorem, as it throws 
light upon the processes employed in the more general case. 

To reduce a conic and a plane cubic curve to the forms 

axx? + ajc* + azx* + a4x4\ ) U) 

axx* + a^ + azx* + a,xA\ J v ' 

Counting the constants, we have 6 externally and 8 implicitly; 
that is, 14 altogether, which are exactly right for a cubic and 
a conic, with nine and five constants, respectively. 

Now consider a conic 2 touching the four lines xlfxi,xiyxiy 
then if we substitute differential symbols in the tangential 
equation of 2 and operate on the cubic and the conic, both 
the results will vanish identically, exactly in the way I have 
explained before; for the result of the operation on the power 
of any line, Ln say, is proportional to Ln~% multiplied by the 
condition that L should touch the conic. 

But suppose we write the cubic in one of its canonical 
forms, i.e., 

x% + y* + £ + §mxyz = 0; 

and that the conic at the same time is {a, b, c, ƒ, g, h)(x, y, z)* 
= 0 : then, operating with the result of substituting differen­
tial symbols in the tangential equation of the other conic 2 
(A, B, 0, F, G, H)(\, /*, vf which touches the four lines 
xl9 xif x3y x4 in (4), we get 

(A + 2mF)x + (B + 2mG)y + {G + 2mH)z, 
and Aa + Bb + Gc + 2Ff+2Gg + 2Eh; 

and in order that these expressions should vanish identically, 
we must have, from the first, 

A + 2mFe = 0, B + 2mG = 0, G + 2mH = 0; 

thus 2 must be 

A(rn\* - juv) + B(mjt - v\) + G(mv* - Xju) = 0, 

subject to the condition 

A(ma - ƒ) + B(mb - g) + G(mc - h) = 0; 
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that is, 2 must touch the four lines determined by the equa­
tions 

nik9 — jxv __ ra/*a — vk ___ mv* -- À,/* 
ma — ƒ ~~~ mb ~ g ~~ mc — h ' 

Hence it is plain that these four lines are the lines xl9 x9, xs9 xA 
in (4), and that the reduction is unique, as it has appeared that 
there is only one system of such lines. If it is required to 
find the constants a 9 etc., al9 etc., in the forms (4), there is 
no difficulty in finding equations to determine these quan­
tities. 

Now this result in a plane suggests an extension to three 
dimensions. Suppose we wish to reduce a quaternary cubic 
and a quadric to the forms 

«A1 + «.«." + ",«,' + "A8 + a*x* + <*&?> I (K\ 
ttXXl + atâ + azK + a*X* + a*X* + «6«6% ) 

respectively. Counting the constants, we have 10 externally 
and 18 implicitly in the 6 planes; that is, 28 altogether, 
which are exactly right for a quaternary cubic with 19 con­
stants and a quadric with 9 constants. In proceeding to con­
sider the reduction in this case, the extension is from a conic 
in the plane to a twisted cubic curve in space. Let us con­
sider a twisted cubic osculating the six planes in (5). This 
is a definite unique curve, for the problem is precisely the 
same, though in the tangential sense, as to describe a twisted 
cubic passing through six points ; and the latter admits of a 
single solution (see Salmon's Surfaces). Now (see îoc. cit.) 
there are three quadric surfaces touching all the osculating 
planes of the twisted cubic, which are not connected by a 
linear relation, precisely as there are three quadric surfaces, 
not connected by a linear relation, which can be described to 
pass through the curve. Let 2l9 2^, 29 be the tangential 
equations of these three quadrics: then from the forms (5) 
we see that the results of substituting differential symbols 

for the tangential co-ordinates in any one of 

^he quadrics, or the quadric 12\ + m2^ + n2 8 , and operat­
ing on the cubic surface and quadric vanish identically; for 
the result of substituting differential symbols in the tangen­
tial equation of a quadric and operating on the power of a 
plane, Ln say, is proportional to Ln~% multiplied by the con­
dition that L should touch the quadric. 

Now, if we consider the cubic surface in the general or any 
other form, the result of substituting differential symbols in 
the tangential equation of a quadric and operating on the 
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cubic will be of the form Ax + By -± Cz + Du, and in order 
that this should vanish identically we should have A=0, B=0, 
O=0, D = 0; that is, four conditions. Consequently, from 
the three non-linearly connected quadrics touching the oscu­
lating planes of the twisted cubic curve, we should have, ap­
parently, twelve conditions connecting the curve with the 
surface, that is, sufficient conditions to determine the curve 
completely if the surface were given. Then since the curve 
also should satisfy three conditions with the quadric, it might 
at a rough inspection appear that three invariant conditions 
should connect the quadric with the cubic. Such, however, 
is not the case. The apparent twelve conditions satisfied by 
the twisted cubic curve with the cubic surface are in reality 
only equivalent to ten, as I proceed to show. 

Let the lines of reference be chosen so that the cubic curve 
may be represented tangentially by the equations 

fi* _ ya = o, aS - Py- °; Y* ~ Ps = °> (6) 

and let the canonical planes of the cubic surface, according 
to Sylvester's unique canonical form, be 

*<P + / % + Yi% + âiu = °> 

so that the cubic surface itself is 

2ê
l(a& + fry + Yi* + W = 0. 

Then, U being one of the three expressions in (6), if we 
operate with the result of substituting differential symbols in 
U on the cubic surface, and express that the result vanishes 
identically, we get 

^ 0 1 = 0, 2/3iUi = 0, 2riUt = 0, 20^ = 0, (7) 

which, on account of the three values of U, apparently gives 
twelve conditions. This is, however, not the case, in conse­
quence of the two identical relations, 

y(jp _ ya) + ft\aa - M + "(Y* - P°) = 0. J W 

Hence there remain ten conditions; and when these are 
satisfied I propose to show that the five canonical planes are 
osculating planes of the twisted cubic. Solving the equations 
(7), we have 

A, An A' 
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where Ax9 zf2, etc., are the determinants formed by the coef­
ficients of the five planes. Hence the ratios TJJTJ%, etc., must 
have the same values, no matter which of the quadrics U we 
select ; that is, 

A3 - r,«, _ 
A3 - w " 

Hence 

_ «A - Ar, _ r' - fiA pfo 
' «A - Ax, ~ y; - PA' 

A' - r,*, _ A' - r.«, et 
«A-Ar t «A-P,r*' 

From which it follows that all the five planes must satisfy 
equations of the form 

P- ya- h{ad - /3y) = 0, y* - pô -k'(aô - /3y) = 0, 

where k, ¥ are constants. Hence from the identities (8), if 
fi* — ya, ad — /3y and y* — pâ do not all vanish, we should 
have 

ky + /3 + Jc'a = 0. 

But if such equations were satisfied by the planes, they 
should all have a line in common, which result is contrary to 
hypothesis; therefore fi* — y a, ad — fly, and y* — /3a must 
all vanish for each of the planes; that is, the planes must be 
osculating planes of the twisted cubic. Hence the latter 
curve having five given osculating planes satisfies ten con­
ditions, and therefore has still two degrees of freedom. But 
operating with the results of substituting differential symbols 
in the three tangential quadrics on the given quadric we get 
three conditions, which are one greater than the degrees of 
freedom. Thus it would appear that one relation must exist 
between the cubic surface and the quadric. In other words, 
the cubic surface and the quadric cannot be reduced to the 
forms (5), unless a certain invariant relation between them is 
satisfied. I proceed to find this relation in the case when the 
cubic surface and quadric are written in the forms 

Ax9 + By9 + Gz9 + Du9 + Ev9 = 0, ) (9) 

(a, b, c, d9f, g, h, I, m, ri){x, y, z, u)% = 0, j { > 

where x^-y-^z-\-u-{-v=^09 identically. 
Now it can easily be verified that a twisted cubic curve 

osculated by the five planes, x9 y9 z, u, v, can be represented 
parametrically thus : 

\ : p ; v : p = {t - a)-1 : (t - fi)'1 : {t - y)"1 : (t - Ô)'1, 
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where A, /t, v, p are tangential co-ordinates. The ratios of 
the differences of a, ft, y, ô give the two degrees of freedom 
which the curve still possesses. Now by eliminating t we may 
write down 

(ft - y)/xv + (y- a)v\ + (a - ft)\p = 0, ) 
(ft - o>/> + (Ô - a)p\ + (a- ft)XM = 0, [ (10) 
(y - d)vp + (â- ft)9fx + (ft - y)Mv = 0, ) 

which are three tangential quadrics touching the osculating 
planes of the curve and not connected by a linear relation. 

Substituting, then, ^ , ^-, ^-, -^ for A, /*, v, p, respectively, 

in these three expressions and operating on the quadric given 
above, we get 

(/» - r)f + (r- <*)g + (* - M = o, 
(ft - 6)m + (ô- a)l + (a - ft)h = 0, 
( r _ tf)w + (<y « /?)m + (ft _ r ) / = o, 

whence 

(* - Ote - ƒ ) ( / • - «0 + (A - )̂(m - »)(» - ƒ) 
+ ( A - / ) ( f t - 0 ( » - / ) = 0, (11) 

which is consequently the invariant relation connecting the 
cubic surface and the quadric when they are capable of being 
written in the forms (5). Thus it appears that a cubic sur­
face and a quadric cannot, in general, be reduced to the 
forms (5), and that when they are reducible to these forms, 
the reduction can take place in a singly infinite number of 
ways, all the planes etc., involved being osculating 
planes of a given twisted cubic. 

HAYWARD'S VECTOR ALGEBRA. 

The Algebra of Goplanar Vectors and Trigonometry. By R. 
BALDWIN HAYWARD. Macmillan & Co., 1892. 8vo, pp. xxix 
+ 343. 

IT is a curious fact that while the English are the one nation 
which in elementary geometry clings to Euclid, the prototype 
of mathematical rigor, not only is most recent English mathe­
matical work, however excellent in many respects, decidedly 
lacking in rigor of form, but many English mathematical 
writers of the present day show an entire lack of critical 
sense which if shown in elementary geometry would discredit 
a schoolboy. 


