1893] PICARD’S TRAITE D’ANALYSE. 39

PICARD’S TRAITE ID’ANALYSE.

Traité &’ Analyse. By Emite Prcarp. Vol I., 1891, pp.
x11. -+ 4567; Vol. I1., 1898, pp. x1v. -} 512. Paris, Gauthier-Villars,

ONE of the ablest of American mathematicians said to the
writer not long ago, “we have waited fifty years for this
book ”! While neither the speaker’s age nor the state of
mathematical analysis would warrant one in taking this state-
ment literally, it nevertheless expressed a feeling which must
have been experienced during recent years by every student
of analysis. A great many treatises having the above title,
or one differing but little from it, have appeared, particularly
in France and Germany, during the last twenty-five years or
thereabouts, many of them good, some of them excellent—as
for example Jordan’s “Cours d’Analyse,” while some had per-
haps no really good reason for existence. None of these trea-
tises though, however valuable they may have been, have
filled or even attempted to fill the place which will be occupied
by Picard’s “Traité d’Analyse.”

The necesgity for a treatise on analysis which should pre-
gent the subject from the modern point of view has for several
years been most obvious. The extraordinary developments in
the theory of functions, in differential equations, and in cer-
tain purely algebraical theories, and the important applica-
tions of the results of these developments to geometrical,
physical, and astronomical problems, have made such a treatise
almost indispensable, The difficulties caused by the magni-
tude and complexity of the subject might well deter any one
from undertaking to give an account of it, so that any mathe-
matician, whatever his merit, would probably be thanked if he
had made a fair attempt in that direction. When, however,
such a mathematician as M. Emile Picard undertakes the
task more than ordinary gratitude is due. M. Picard is one
of the very first analysts of the age, both as an original in-
vestigator and in virtue of the vast range of his knowledge;
joined to these claims to be considered the proper person to
write the Traité d’Analyse of to-day, he possesses a most
remarkably clear and elegant style of presenting a subject,
whether it be in the form of a memoir embodying the results
of his own personal researches or in the form of a lecture or
chapter containing an account of the researches of others.
The eleganceand conciseness of M. Picard are not, however, at
the expense of rigor, as every reader of his work is aware,
and as every student who has had the pleasure of listening to
his lectures can testify.
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The first volume of M. Picard’s work is in a measure an in-
troductory volume, and is principally concerned with the de-
velopment of comparatively elementary subjects, though some
of the subjects treated and the general method of develop-
ment would hardly find place in a treatise for beginners.
There is in many places such a close relation between the
subjects treated in vol. 1. and wvol. 1L, that it was thought
better to notice these two volumes together. Vol. 1. is
divided into three parts: Part First, Simple and multiple
integrals ; Part Second, Laplace’s equation and its appliea-
tions; developments in series ; Part Third, Geometrical ap-
plications of the infinitesimal caleculns. Vol. 1. contains
seventeen chapters. Fifteen deal with functions of a complex
variable, further developments in series, conform representa-
tion, Dirichlet’s problem, roots common to two simultancous
equations (also discussed in vol. 1.), integrals of non-uniform
functions, algebraic functions of one variable, Riemann’s
surfaces, and Abelian integrals. There is one chapter on
general theorems concerning differential equations, and one on
the applications of these theorems. A word is necessary as to
the author’s primary intention and the reasons which caunsed
him to modify it. In the introduction to vol. 1. he says:
“ En publiant ce Traité d’ Analyse, j’ai pour but principal de
développer la partie de mon cours de la Faculté des Sciences,
relative 4 la théorie des équations différentielles. Cet ouvrage
sera donc surtout un traité général sur la théorie des équa-
tion différentielles & une ou plusieurs variables. Je n’ai ce-
pendant pas crn devoir adopter ce dernier titre, et cela pour
deux raisons.” The first of these reasons concerns principally
M. Picard’s students, and need not be cited. ¢ Un autre mo-
tif, d’un caractére tout scientifique, m’engageait encore a
garder le titre un peu vague de Traité &’ Analyse; c’est que la
théorie des équations différentielles est intimement lie a plus
d’une autre théorie qu’il nous fandra approfondir. Pour ne
citer qu’un exemple, ’étude préliminaire des fonctions algé-
briques est indispensable, quand on veut s’occuper de certaines
classes d’équations différentielles. Nous ne nous bornerons
donc pas strictement & I’étude des équations ditférentielles;
nous rayonnerons autour de ce centre.” In the introduction to
vol. I1. we find the following statement: ¢ J’avais annoncé dans
le premier volume que je comptais m’occuper surtout dans ce
Traité de la théorie des équations différentielles. On trouvera
ici un seul chapitre consacré & cette théorie telle qu’on l’en-
tend ordinairement dans les ouvrages classiques. Je pourrais
prétexter que ’équation de Laplace est une équation différen-
tielle ; j"»ime mieux avouer que mon plan sg’est un peu élargi.
Je m’occuperai particuliérement, dans le tome 111, de I’é-
tude des équations différentielles, mais je n’oserais pas
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affirmer cependant que je n’aurais pas encore plusienrs paren-
théses 4 ouvrir.” As an indication of a most important
subject to be treated later, the writer may perhaps be
ermitted to quote a line from a private letter: “. .. Les
onctions fuchsiennes, hyper-fuchsiennes etc. ne seront pas
oubliées dans la rédaction de mon traité.” That is certainly
pleasant news for the student of those functions.

Chapter 1. of vol. 1. is concerned with definite integrals,
The opening words of the chapter may be quoted : *Le cal-
cul intégral a pris naissance le jour ou Yon s’est posé la ques-
tion sunivante: nne fonction f{x) étant donné existe-t-il une
fonetion qui admette f(x) pour derivée, c’est-d-dire une fone-
tion telle que Pon ait

On a d’abord répondu 4 cette question par une représentation
géométrique qui n’a aucune valeur par elle-méme, mais qui
n’en a pas moins fait faire de grands progrés 4 la science. On
construisit la courbe y = f(z), et on considérait ’aire com-
prise entre cette courbe, 'nxe des # et denx paralldles 4 Paxe
des ¥, 'une fixe, Yautre variable; on montrait que V’aire, con-
sidérée comme fonction de I’abscisse z de cotte derniére or-
donnée, est une fonction de z ayant f(x) pour dérivée. Il est
clair qu’d moins d’admettre que la notion d’aire est une no-
tion premiére, il n’y & pas 1d une répounse rigoureuse an pro-
bléme posé.”

The author proceeds now to give a precise meaning to the
notion of a degnite integral in the ease when the function to
be integrated, f(xg, is continuous between the limits within
which the variable z is restrained to lie. Admitting that
there exists a function y satisfying the equation

dy _
t-ifi "'f(w))

and taking the value y, for z = @ and the value Y forz =5 ;
divide the interval (a, b) into » intervals given by the values
X, Ly .. Byog,and let ¥, 9, ...y, be the corresponding
values of y. If the interval z, — e is small enough, the
quotient

y:".’l/_o
z, —a
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differs but little from f(z), and we can write the approximate
relations

V— Y%= (wn - a)f(a);
Y—Y = (Z‘, - xl).f(xl);
Y- @/n-—.l = (b - xn«l)_f(“’n-l)‘
Adding these, we get
Y_yo = (xx—a).f(a) + (xn - x:)f(xx) + L + (b —&p-1 (wn—l);

an approximate equality, which will be more and more accurate
a8 the number of intervals is increased, each of them becoming
smaller and smaller. A preliminary lemma is now estab-
lished where by the osctllation of a continuous function in an
interval is meant the difference between the greatest and the
least values which it takes in the inferval. The lemma is as
follows : Suppose an interval (a, ) where to fix the ideas ¢« < &
and a function f(z) continuous in this interval. Having given
a pogitive number € as small as we please, we can always find
a positive quantity O, such that in every interval contained in
(a, &) and less than O the oscillation of the function shall be
less than e.

This lemma established, the author proceeds to the demon-
stration of the following fundamental theorem. T%e sum

(xx - a)f(a) +...4+ (b - xn-l)f(xn-l)

tends towards « limit, when all the intervals (v,.,, 2;) tend
towards zero according to any law whatever at the same time
that thetr number increases indefinitely. Following the
establishment of this theorem come some geometrical appli-
cations to the areas and lengths of arcs of curves, and then the
notion of integration by parts is introduced. Under this head
Picard gives an important formula of Kronecker’s. Let f(2),
g() be any two functions of 2, and let as usual f™(2) denote
the nth derivative of f§x), and let ¢™(— x) denote the nth
derivative of g(z) when after differentiation « has been replaced
by — #. Start from the identity

O (@g*P(= 2) = foD(a)g (= 2)

= FLa)g (= )]
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Making successively 2 =1, 2, .. ., n, and adding, we have

FO@)g(— 2) — f(2)g*(-- 2)

=3 U@ )

integrate now between @ and b, and we have
b b,
S @)= a)de — [ Fa)g™(— 2)de

— :%‘:[‘f(h l)(w)g(n h)(_ .’0)]:. (a)

The calculation of the second integral is thus conducted to
that of the first. This formula of Kronecker’s was given in
1884, and has not before appeared in any treatise on analysis,
so far as the writer is aware. It is capable of many interest-
ing applications. Picard gives two applications. First
writing ( )

T _ (40"
f(w)_F(x)? g(x)—1'2...n’
we get

F(d) = F(a)+ (b —a)F'(a) + ...
+ 1(-b 7 a)% Fa) +f F ”“)(’”)1(-62—. .x) ne

which is Taylor’s theorem. The remainder here presents
itself in the form of a definite integral, but is readily changed
into the ordinary form. Again, writing

9@) = @ + a)*(z + B)",

and letting f(z) denote an arbitrary polynomial of degree
n — 1, we find from Kronecker’s formula (a)

7@ Pu@i =0,

where
d™(xz — a)*(x — b)"
dz" ’ B

A denoting a constant. The relation (8) is shown to define

P.2) =4
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completely the polynomial P, to a constant factor prés—ithis
polynomial is, of course, Legendre’s polynomial—i.e., a zonal
gpherical harmonie.

The case of the change of variable in the integral is now
congidered, and then the notion of a definite integral is ex-
tended to the case where one limit becomes infinite. Here
Cauchy’s rule relative to the convergence of series furnishes a
natural and interesting application, which, however, need not
be quoted. 'The conditions under which we may differentiate
under the sign /" are now carefully considered, and as a con-
sequence of this method of calculating an integral the

formula
sine, &«
f z TT%

is found. This chapter closes by an extension of the notion
of a definite integral to the case of complex functions of a
real variable. If F(z) is a real function of z, and if () is
a positive function between @ and b, we know that

I Playp(e)ds = F(E) ﬁ(w)da,,

where & is a value of x between ¢ and 4. Darboux has given
a formula analogous to this in the case where the function
F(z) is of the form f(2) 4+ i¢(x), « being a real variable. Write

I'= / "F(w)l,b(m)d:v,

where #(z) = f(z) + top(x) and where i(z) is positive be-
tween @ and 5. Darboux’s formula is

1 =AFE) [z,

where & is a value of 2 lying between ¢ and 5, and A is a
nantity whose modulus is at most equal to unity. From
alis formula we derive readily the extension of Taylor’s
theorem to the case where F(x) has the above form.

Chapter 11. is devoted to indefinite integrals. If begins
with a brief and elegant account of the integrals of rational
fractions, and then passes on to hyperelliptic integrals, and
50 on to the integrals of algebraic differentials in general.
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The hyperelliptic integrals are shown to reduce to the two

types
fl@)ds ¢(z)dz
VE@) Y E—aryRE)

where f(2), ¢(z), and R(x) are polynomials and « is a positive
integer. The cases where R(z) is of odd degree or of even
degree are seen to be conducted the one to the other, so that
R(z) is supposed at once to be of degree 2p 4 1. It is now.
phrovfed that there exist 2p integrals of the first type, and of
the form

e
2 d,  w=0,1,2%...(2 —1),
fVR(w) p (2p — 1)

and then that among these there are p integrals of the first
kind, that is, integrals which remsain finite when z increases
indefinitely, the remaining integrals of this type being of the
second kind.

Passing now to integrals of the second type,

-
(@ — aF ¥ B(ay

it is seen to be necessary to distinguish between the two cases
when « is and is not a root of R(x) = 0; and it is finally
shown that the integrals of the second type conduct to those
of the first type and to integrals of the form

dz
f (z — ) YR(z)

where @ is not a root of R(z) = 0.

The consideration of the hyperelliptic integrals includes
ag a particular case the elliptic 1ntegrals, and the case where
R(z) 18 a polynomial of degree two.

e pass on now to the case of the integrals of algebraic
differentials in general, <.e., to the case of the Abelian in-
tegrals. These are all comprised in the form

S Fa, yds,

where 7 is a rational function of z and y, and where z and y
are connected by the irreducible algebraic equation f(z, y) = 0.
The curve f = 0 is supposed of degree m, and, further, the
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aggregate of all the homogeneous terms of degree m is sup-
posed made up of m distinct linear factors, none of which
reduce to either z or y, which comes to saying geometrically
that the m asymptotic directions of the curve f are distinct,
and none of them are parallel to the axes of z or y. This is,
of course, a permissible supposition, as such a condition can
always be realized by a homogmé)hic transformation.

The above integral is now conducted by & known and purely
algebraic reduction to the two types

/’P(w,y)dx Q=, y)du
f’v T e (9' - a)“f’,,’

where P and ¢ are polynomials in 2 and y and a is a positive
integer; and, finally, it is here shown that in the integrals of
the first type the degree of the polynomial P (z, y) can be low-
ered to 2m — 4.

In the case of the integrals of the second type two cases have
to be considered, according as the straight line z —a =0
meets the curve /=0 in m distinct points, or is tangent to
the curve. Again, the curve f=0 may or may not have
singular points; if, however, the curve have only double
points with distinct tangents, it is shown that under both of
the above hypotheses as to the line 2+ — @ = 0 the integral

/‘ Q. y)de 51,

(x - a)“f .,u

can be conducted to an analogous integral, in which the ex-
ponent of x — a is equal to unity, say

R(x, y)dz
(‘73 - a)f’y ’

when R is a polynomial in (2, y). This can finally be reduced
by aid of the equation f(z, y) = 0 to the form

/‘ R(y)dex

G ary

where R is a polynomial in y alone of the degree m — 1 at
most. This chapter closes by a brief account of Hermite’s
researches on the integration of rational functions of sin @
and cos .

"The subject of the Abelian integrals is resumed in chapter
X1v,, of vol, 1., after having devoted one chapter, X1, to
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the general properties of algebraic functions of one variable,
a theorem of Nother’s, and Riemann’s surfaces. It will per-
haps be as well to notice these chapters in this place rather
than wait until they occur in the course of going over the two
volumes chapter by chapter. In chapter xI1i the author
begins by defining an algebraic function, and obtains its de-
velopment in the region of a point. These familiar results are
presented in an exceedingly simple and elegant form. Let
JS(u, 2) = 0 be the irreducible equation defining the function
u, and suppose it to be of the degree m in %, Introducing
now the notion of eritical points, and making use of the known
theorem (established in vol. 1.) that if this equation has for
%2 = a n roots equal to B, it will have for 2 near @ # roots and
n only near @, the following fundamental theorem of algebraic
functions is established: The roots which for z = a become
equal to B form one or several circular systems, and the roots
of any one circular system are, in the region of a, represented
by a development of the form

w=pg+ Az — a)$+B(z—a)7'27+. ..

A
"To the 2’ determinations of (z — a)* correspond »’ values of
u, and these are the values which permute circularly around
the point a.

This result is sufficient for the general theory of algebraic
functions and their integrals, but practically we need to know
how to obtain the different circular systems and the cor-
responding numbers »’. A very brief, but sufficient, account
is here given of Puiseux’s researches in this direction.

Following these classical investigations on circular systems
comes a most welcome account of the important theorem of
Nother’s, which shows that the generality of the theory of
algebraic functions is in no wise lessened if we confine our-
selves to curves having no other singular points than mulfiple
points with distinct tangents. The importance of this theo-
rem, which was given by Nother in vol. 1X. of the Mathema-
tische Annalen, is at once seen by any one who has studied
even a very little of the theory of algebraic functions. The
demonstration given of this theorem is due to M. Simart,
and is of such interest that it deserves to be reproduced hero.

Let f(2, y) = 0 be the equation of an algebraic curve of de-
gree m, and let the origin be a multiple point of order n on
the curve, that is, having » tangents. This equation can be
put in the form

¢,,($, :I/) + ¢-n+ )\(wJ .1/) + ... + DT, ;’/) = 0) (E)
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and we shall admit that aside from the origin the axes of 2
and y only meet the curve in simple points, that the tangents
at the origin do not coincide with the axes, and, finally, that
the asymptotic directions are distinct and different from the
directions of the axes. These hypotheses granted, make the

substitution y = % To the curve (#') will correspond point
by point the curve (Z’) of degree 2m — #, viz.,

WY, 2)= Y™ g (¥, )+ Fm-n-2¢ (¥, 1
(Y, z) (' - .)+x"“"¢,,,(Y, 1)+=A(0. )+ )

To a multiple point of order #’ of the curve (Z), not on the
axis of z or on that of y, corresponds evidently a multiple
point of order 2’ of the curve (£”). To the value x =0 on
the first curve correspond = values of ¥ which are zero, and
m — n other distinct values. To these points there correspond
in the second curve first a multiple point of order m —n
(z =0, ¥ =0) with m — 2 distinct tangents, since for # =0
the m — » corresponding values of y are different from each
other and different from zero; and again, # simple or multiple
points of the axis of y determined by

é.(Y,1)=0.

To the value # = ®» correspond m distinet values of ¥7; further,
for ¥ = o the m — » values of z are distinect.

We have then substituted for the curve (E’? a curve (E’),
which, outside of the axis of #, has the multiple points of the
first; but which has at the point 2 = 0, ¥ = 0 a multiple point
of order m — n with distinet tangents, and npon the axis of
Y (« = 0), n points determined by ¢,(Y, 1) = 0, which may be
distinet or coincident:

Let us suppose that the equation

D (Y, 1) =0
has a multiple root ¥ = Y, to which corresponds a multiple
point of order =’ S By an arbitrary homographic trans-
formation
v — ax’ 4+ by’ V¥ = a'y + by
- anzl + b”]/' + G", 17 a":L" —|—b”y' —I—(J”’

we can substitute for the curve (Z’) the curve (Z,) of degree
2m — n, viz.:

Gl YV S i@y YY) F -+ o+ Pom @, ¥) =0. (B)
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This curve satisfies the same conditions as the curve ('), und
its asymptotic directions are distinet and different from zero.
It has, aside from the points determined by ¢, (¥,1) =0,2=0,
multiple points corresponding to the multiple points of (&),
plus: one multiple point of order m — n with distinct tangents
arising from the point # = 0, ¥ = 0; one multiple point of
order m — n with distinet tangents arising from the point
Y = » ; and, finally, one multiple point of order m with dis-
tinet tangents arising from the point # = w.

We can now apply to the curve (%) the same transforma-
tions as to the curve (£), and continue until we arrive at an
equation such as ¢, (1, 1) = 0, all of whose roots are distinct.
Thix series of operations with certainty come to an end; for,
suppose that we have constantly »’ =»n. The curve (%)) of
degree m, = 2m — n has multiple points corresponding to those
of the curve (Z) plus ¢woe multiple points of order m — 2 with
distinct tangents equivalent to (m — n) (m — n — 1) dounble
points, and one multiple point of order s with distinct tan-

m(m — 1)

gents equivalent to —— double points. The curve (Z,)

of degree m, = 2m, — n differs from the curve (Z,) in the same
way that (%)) differs from (Z).

Finally, denoting by d, the number of double points of the
curve K corresponding to the multiple points with distinct
i}:}angents which have been suceessively introduced, we shall

ave

2

i=k~—1 -—
= Z f—('m; — ), —n— 1)+ (o -l-)]

i=0 i

Now we have
my = 2(m — n) + n;

hence

c 0% __
d, = -g('m — n)’(7 1)

21

o — )3 1)+ k’_.__—L("; 1),

The difference between this number and the maximw



50 PICARD’S TRAITE D’ANALYSE. [Nov.

number of double points of an irreducible curve of order
My, Vi,

(mk- - 1)(mk - 2)

L0 A N

is

_(m—=n) (m — n)2n2— 3 Lk n(n2— 1) (n—-l)z(n—z)

This difference would become positive if & were sufficiently
large; but this is impossible: it is therefore necessary that n
diminish until it becomes equal to unity, A time will come
when the multiple point at the origin of the primitive curve
will have been replaced in the transformed curve by multiple
points of a lower order, and during this transformation we
shall only have introduced multiple points with distinet tan-
gents. Procceding thus step by step, we shall finally arrive at
a curve whick has only multiple points with distinct tangents.

After a few words on birational transformations Picard
enunciates Nother's theorem in the following form: We can
always, by a Crentona transformation, transform any «lgebraic
curve whatever inlv another having only multiple points with
distinct tangents.

It is next shown that (leaving aside o certain difficulty which
need not be mentioned here) we can bly certain transforma-
tions always arrive at o curve having only double points with
distinet tangents. Finally, if «; denote the number of
multiple points of order i with distinct tangents, and w denote
the number of poiuts of ramification (that is, values of » for
which fuwo values of y from the equation f(,y) = 0 permute),
we arrive at the formula

wo=m(m — 1) — 2a;i(i — 1),

the sum 2 being relative to the different values of /(i Z 2).
This chapter concludes with a rather brief but very satis-
factory section devoted to Riemann’s surfaces. Very few
words are necessary in speaking of this section of the Traité,
but these may be preceded by unother quotation from the In-
troduction: “Un chapitre traite des surfaces de Riemanu,
dont Pétude a été luissée un peu trop de cOté en France; on
eut, par une représentation géometrique convenable, rendre
intuitifs les principaux résultats de cette théorie. Cette vue
claire de la surface de Riemann une fois obtenue, toutes les
applications se déroulent avec ln méme facilité que dans la
théorie classique de Cauchy relative an plan simple. Mais il
importe de juger 4 su véritable valeur la belle conception de
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Riemann. Ce serait une vue incompléte que de la regarder
geulement comme une méthode simplificative pour présenter
1a théorie des fonctions algébriques. Si importante que soit
la simplification apportée dans cette étude par la considération
de la surface & plusieurs feunillets, ce n’est pas 14 ce qui fait
le grand intérdt des idées de Riemann. Le point essentiel de
sa théorie est dans la conception @ priori de la surface con-
nexe formée d’un nombre limité de feunillets plans, et dans le
fait qu’d une telle surface congue dans toute sa généralité
correspond une classe de courbes algébriques. Nous n’avons
donc pas voulu mutiler la pensée profonde de Riemann, et
nous avons consacré un chapitre 4 la question difficile et capi-
tale de ’existence des fonctions analytiques sur une surface
de Riemann arbitrairement donnée; le probléme méme est
susceptible de se généraliser si 'on prend une surface fermée
arbitraire dans V’espace et qu’on considére P’équation de Bel-
trami qui lui correspond.”

It was undoubtedly well to thus enunciate ana emphasize
the essential point in Riemann’s theory, a8 many students of
the subject, purticularly those who work it up privately, are
prone to regard the Riemann surface as simply an ingenions
way of representing an algebraic function.

'%he well-known theorems of Clebsch aud Liiroth are given
in a very simple form in chapter xirr. In a foot-note io
page 371, Picard says ¢ propos of Riemann’s fundamental
memoir: “On tronvera dans le premier chapitre de la Thése
de M. Simart (Paris, 1882) un exposé trés complet et trés
rigoureux des théorémes relatifs d la connexité de ces sur-
faces, qui pour la plupart ne sont qu’énoncés par Riemann,”
The writer can cordially recommend this thesis to the stu-
dent of Riemann’s original memoir. Amnother foot-note on
page 375 will be of interest to English readers: ¢ C’est le
géométre anglais Clifford qui parait avoir, le premier, rem-
placé la surface de Riemann sur le plan par une surface i p
trous dans l'espace. Pour fairve cette transformation, nous
nous sommes servi de la méthode qu’il a employée dans un
petit mémoire, d’une remarquabie simplicité, consacré & cette
théorie ” [On the canonical form and disgection of a Riemann’s
surface, Proceedings of the London Mathematical Society,
vol. viir.]. The memoir of Clifford’s is well known to all
English readers, but it may be a little surprise to some to learn
that Clifford was the first to replace the Riemann surface on
the plane by u surface in three dimensional space having p
holes.

The section on Riemann’s surfaces closes with the applica-
tion of Cauchy’s theorems to functions of a complex variable
on a Riemann’s surface, and a proof is given of the theorem
that every function which is uniform over @ Riemann’s sur-



52 PICARD’S TRAITE D’ANALYSE. [Nov.

Jace and which has over the swiface no other singular points
than poles is a rational function of © and y.

Chapter X1v. begins with a study of the periodicity of the
Abelian integrals. The student of the theory of the Abelian
integrals is well aware of their different determinations be-
tween given limits, these differences being linear functions of
the periods and depending on the path followed from the
lower limit of the integral to the upper limit. It is therefore
scarcely worth while to do more than mention Picard’s con-
cise and elegant account of these different determinations of
the integrals of the first category (that is, where the poles of
the function to be integrated give rise to no logarithmic
terms) and also of the integrals of the second category where
polar periods arise from the fact of one at least of the poles of
the function to be integrated giving rise to a logarithmic
term.

We pass now to Abel’s theorem, which Picard first gives in
the form in which it was stated by Abel. He says: ¢“Sous
cette forme, le théoréme parait tout & fait élémentaire, et il
n’y a peut-étre pas, dans ’histoire de la Science, de proposi-
tion ?uis’si importante obtenue 4 I’aide de considérations aussi
simple.

Sgarting from the algebraic relation

(1) Sz, y) =0,
consider a family of algebraic curves
(2) A’(x’ Y a5 g5 v v s a')=0

depending on r arbitrary parameters a,, a,, ... a,. We will
suppose that A contains these parameters rationally The
curves (1) and (2) have a certain number, say u, of points in
common,

@ 1)y (@05 )5+« « (@us Yu)s

which vary with the parameters . The abscissas z,,,, . . . T
are roots of a certain equation of degree u, say

(3) 0z, a,, @,y ...0a)=0,
whose coefficients are rational in the a’s. If the axes do not

occupy any particular position relative to the two curves, we
can always admit that the corresponding value of y is given by

Y=, a,, ... a),



1893] PICARD’S TRAITE D’ANALYSE. 53

where ¢ is rational in 2, «,, a,, .. .a,. This granted, con-
sider any Abelian integral whatever,

(;?(gv, y)dwz,

(@0: Vo)

where R(z, y) is a rational function of z and y, and form the
sum
n=p (@, Un)

§=2 | R(z,y)de.

n=1% @y ¥,

This sum is determinate to a sum prés of multiples of the
polar and cyclic periods of the integral, periods which are
independent of the a’s. The object of Abel’s theorem is to
determine the nature of this sum considered as a function of
the parameters @¢. Denoting by & a total differential with
respect to these parameters, we have

08 = R(z,, y,)02, 4. . . + B(@u, Yu)02,.
Now by differentiating (3) we can calculate successively
ox,, 02,,...0%,;

substituting these values in 68 and replacing the #’s by their
values #, we shall have for the coefficient of da, a rational
function of z,,%,, ..., 2, and of the a’s. Further, it will
evidently be symmetrical with respect to z,,#,, ... 2,,and
consequently the coefficient of da, will be a rational function
ofa, a,, ... a,, and the same is of course true of the other
coefficients. We have therefore

08=P(a,a,,...a)0e, +...+ PJfa,a,,...a,)ba,,

where the P’s are rational functions of «,,a,, . . . a,.

This equality constitutes Abel’s theorem in its primordial
form; it expresses the fact that § is an algebraico-logarithmic
function of the parameters a. In fact, integration of the
total differential in the second member leads necessarily to
an expression of the form

¢+ 24 log O,

tl}:e A,’s denoting constants and ¢ and & rational functions of
the a’s.

Next follows the well-known form of Abel’s therorem when
applied to Abelian integrals of the first kind. The derivation
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of this most important form of the theorem is so brief and
simple that it may be given here.
e consider the Abelian integrals of the first kind,

®, ¥)
S B, y)ie,

(@4, ¥o)

that is the integrals which remain finite for every value of
and y on the Riemann’s surface. Apply Abel’s theorem to
such an integral. In the first place, the algebraico-logarithmic
function of the a’s must remain finite for every finite or
infinite value of the «’s, since § itself remains always finite.
Now a function of the form

¢$+ 24 log D,

where ¢ and & represent rational functions of the «’s and
where the A’s are constants, cannot remain finite for every
value of the parameters a; it must therefore reduce to a con-
stant It follows then that the sum § is independent of the
arameters @. For integrals of the first kind we can there-
ore enunciate Abel’s theorem as follows: 7The sum

n= (@0, Yn)
2 [ R(z, y)d=,

n=1¢/(xq: yo)

where (%, y.) denote the points of intersection of the curves
(1) and (2), points which vary with the parameters a, does
not depend on these parameters.

The sum has a constant value, leaving aside, of course,
linear functions of certain fixed periods which can always
be introduced by varying the path between («,,y,) and
gx,,, ¥a). The theorem for this case can also be put in the
orm

R(z,,y,)dz, + R(z,, y,)dz, 4+ . . . + B(@u, yu)d. = 0,

the d’s denoting total differentials with respect toe,, a,,.. ., a,.

The great importance of this special form of Abel’s theorem

in analysis and in the theory of algebraic curves seems to the

writer a sufficient justification for reproducing here Picard’s
very concise and simple statement of it.

he consideration of integrals of the first kind is now taken

up and it is first shown that these integrals are necessarily of

the form _
=z, y)dz
5

where Q(z, y) is a polynomial, and then the necessary and
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sufficient condition is found in order that an integral of this
form may really be an integral of the first kind; viz., that
Q(z, y) must be a polynomial of degree m — 3 in z and y
and the curve

Q@ y)=0

must have as multiple points of order ¢ — 1 the multiple
points of order ¢ of the curve f(z, y) = 0.

An exceedingly interesting investigation now follows con-
cerning the number of linearly independent integrals of the
first kind, but it cannot be entered into here. Certain funda-
mental theorems concerning integrals of the first kind are now
given, and incidentally a new demonstrution is given of the
theorem concerning the number of linearly independent in-
tegrals of the first kind. In finishing the subject of integrals
of the first kind it must suffice to merely state the following
theorem established on page 409: We can form an integral
of the first kind for which the real pasrts of the 2p periods
have arbitrary given values. This chapter closes with a
brief but most admirable account of the integrals of the
second and third kinds.

Chapter xv. of vol. 11. is entitled Des fonctions wniformes
sur une surface de Riemann. Tt is impossible to give here
any adequate account of this most interesting and important
chapter; it will not submit to condensation—any condensa-
tion would mevely be mutilation. The different sections of
the chapter are as follows : 1. Decomposition of rational func-
tions of z and y into simple elements. 1. The Riemann-
Roch theorem. Special functions. This section contains Brill
and Nother’s law of reciprocity. m1. Birational transforma-
tions of curves into themselves. This section contains a
demonstration by Picard of an important theorem of Schwarz,
viz., the curves of genus zero and of gemus one are the only
ones which can be transformed tnto themselves by a birational
substitution involving an arbitrary parameter. This demon-
stration is peculiarly interesting, as Picard obtains it by follow-
ing the same path which led him to an analogous theorem for
algebraic surfaces in his celebrated ¢“mémoire couronné” of
1888: “ Mémoire sur la théorie des fonctions alyébriques de
dewx variables indépendantes,” chap. 111 (Journal de Mathé-
matiques, 1889). 1v. Classes of aFgebmic curves, Normal
ocurves, V. Curves of genus two. In section 1v. there are so
many interesting theorems that it is difficult to select any one
or two as illustrations of the section. From section v., how
ever, we may quote one theorem which is established, viz.,
every curve of genus two corresponds point to point to a curve
of the fourth ovder having one double point.
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Chapter XVI. is entitled Théorémes générauz relatifs a
Pexistence des fonctions sur une surface de Riemann.

1. Statement of the question; preliminary theorems. 1. Ex-
istence of harmonic functions on an open Riemann surface.
111. Existence of harmonic functions on a closed Riemann
surface. Iv. Functions of a complex variable on a Riemann
surface. In this section a demonstration of the fundamental
theorem of the chapter is given, viz., fo an arditrarily given
Riemann surface corresponds a class of algebraic curves. The
importance of this theorem, as p]aciniin its true light the
conception of the Riemann surface, can hardly be exaggerated.
v. Moduli of a class of algebraic curves. This is & most
important section, but no account of it can be given here.
vi. Existence theorems for Beltrami’s equation corresponding
to any surface whatever. This section deals with Beltrami’s
ﬁ‘enera,lization of Laplace’s equation to any surface whatever.

his generalization will be referred to later. In the present
connection it will be sufficient to quote the fundamental
theorem concerning this generalization: 7o the given surface
8 in space having p holes corresponds uniformly an algebraic
curve of genus'p. The footnote to page 493 gives an inter-
esting history of thistheorem. A limiting case of the surface
considered gives the following theorem due to Schottk{. To
every plane disk with p holes there corresponds a class of
algebraic curves.

Chapter xviI., which closes vol. 11., has for title Cowurdes
des genres zero et un. It is divided into three sections: I
Unicursal curves, II. Curves of genus one. IIL. Generalities
on doubly periodic functions. The theorems in this short
chapter are well known and need not be recapitulated. It
is sufficient to say that they are presented in the graceful
way peculiar to Picard. An historical remark in a footnote
to page 498 is interesting, Picard says: ‘“Les mots courdes
untcursales ont été employés pour la premiére fois par
M. Cayley.”*

We return now to vol. 1. Chapters 111, 1v., and V. are respec-
tively entitled Intégrales curvilignes, Des intégrales doubles,
and Des Intégrales multiples. These chapters, interesting and
important as they are, mnst be passed over with a mere men-
tion; they will be of great interest to the physicist as well as
to the mathematician, The conditions that a line integral
shall depend only on the limits and not on the path and that
asurface integral shall depend onlyon the limiting contour
ot the surface are given in an exceedingly elegant form ; the
fundamental notion of the calculus of variations is introduced
here. The sections dealing with the question of the roots

* See Oomples rendus, vol. Lx1I,
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common to two equations (chap. I1L.), and the roots common
to three equations (chap. I1v.) are of particular interest, as
Picard has himself probably said the last word on the subject
of the number of roots common to n simultaneous equations
in his memoir in the Journal de Mathématiques (1892). The
reader may recall a brief discussion between Picard and Kro-
necker, just before the latter’s death, on this subject. It is not
necessary to enter into that discussion here; it will suffice to
say that Kronecker gave a formula for the difference between
the number of roots contained in a given region for which a
certain determinant is positive and those for which it is nega-
tive. The ezact number of roots in the region is thus not
given by Krenecker’s formula. Picard has, however, shown
how the difficulty which presents itself in Kronecker’s formula
can be overcome, and proves that the number of roots common
to two equations and contained in a certain contour can be
represented by a double integral; and, as already mentioned,
he gives the analogous theorem for the case of # simultaneous
equations. These latter results are contained in chapter viL
of vol. 11.  The final theorem of this chapter may be quoted:
“On peut donc par swite' trowver, par un calcul algébrique
régulier, le nombre des racines des deux équations,

Sz, y) =0,

Pz, y) =0,

¢(lf et ¢ btant deux polyndémes) contenues dans un contour
éfini par les n inégalités,

Az, y) <O, =12 ... n),

les A étant des polyndmes,”

Part second of volume 1. treats of Laplace’s equation and
its applications and of developments in series. 'This second
Eart 18 also of much interest to physicists, dealing as it does with

aplace’s equation, Dirichlet’s principle, the theory of attrac-
tion and of the potential, and particull)ar) with trigonometric
series. These subjects are all classical and need not be further
spoken of, though it may be mentioned that the theorems of
Cantor and Schwarz probably appear here for the first time in
any treatise on analysis.

n taking up the subject of multiple series Picard first gives
a generalization of Cauchy’s rule for convergence in the case
of simple series with positive terms. This rule is readily ap-
plied to series whose general term is of the form

1
[fom,, m,, ... my)]*"’
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f denoting a definite and positive quadratic form. An inter-
esting example of a double series is given by the absolutely and
uniformly convergent development in a double trigonometric
series of a function f(z, y), which, together with its first four
partial derivatives, is continuous and possesses the property
defined by the equations

fl&+ 27, y) =1z, y), S, y +2m) = flz, ).

Another illustration of double series is taken from the
theory of the elliptic functions, and then the author considers
a quadruply periodic function of two variables investigated by
himself in a paper contained in the Buwlletin de la Société
Mathématique, 1889. This function is the sum of the double
series

m=+% n=+% em+m¢+u§ ev+ma'+np'
z = . i)
Mm= -0 nN=- tm(]."‘8‘”‘*‘""’“'-”5)s (1 -+-e”+"'“ +1Ip )2

where «, B, a’, B’ are real numbers such that the determinant
af’ — &' is different from zero. This series is by very sim-
ple transformations changed into a trigonometric series.

The last section of this chapter is of special interest to the
student of the more recent developments in the theory of
functions. It treats of series where the indices are not arbi-
trary, that is, do not make up all possible systems of integers,
but are confined to the substitutions of a certain group.
Picard then shows how it is possible to form functions of two
variables which are entirely analogous to Poincaré’s theta-
fuchsian functions. These hyperfuchsian functions are not
gtudied here, but it is probable that the anthor will return
to them in another volume.

Part 111. of vol. 1. is devoted to geometrical applications of
the infinitesimal calculus. The subjects first treated are the
theories of envelopes, developable surfaces, ruled surfaces, with
a special stndy of the most general ruled surface of the third
order, congruences, and complexes of lines. The essential
properties of the focal surface of a congruence are investigated
and a proof is given of Dupin’s theorem that the necessary and
sufficient condition that the straight lines of @ congruence shall
be normal to a surface is that the tangent planes to the two
nappes of the focal surface corresponding to any generatriz
whatever shall be rectangular.

Here follow some brief considerations of complexes, espe-
cially the linear complex, and chapter XI. closes with the theo-
rem that the tangents of a skew cudic belong to a linear complex.

In chapter x11. the theory of contact of plane and skew
curves is discussed, and among other things are derived Cay-
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ley’s formula for skew algebraic curves, which are analogous
to Pliicker’s formule for plane algebraic curves. In this
chapter is also contained an investigation of curves whose
tangents belong to a linear complex.

Chapter XIIL. deals with the curvature and torsion of skew
curves, and chapter X1v. with curves traced on surfaces.
Here the theorems of Euler and Meunier are first obtained,
and then the subject of lines of curvature is taken up and the
theorems of Joachimsthal and Dupin are established. Surfaces
which are the envelopes of spheres, and in particular Dupin’s
cyclide, generalities on asymptotic lines and asymptotic lines on
certain ruled surfaces form the subjects of the closing sections
of this rather long and very interesting chapter. Chapter xv.
is entitled Surfaces applicables. Representation conforme.
Cartes géographiques. The expression for the square of the
element of arc of a curve on a surface is first found, and the
subject of surfaces applicable to one another, and in particular
to the plane, is developed. In the second section the conform
representation of a plane upon a plane is studied, and the
third section gives some examples of conform representation
and a little introduction to the linear substitutions

(z az+ b
> ez + d)’
for which ad — bc = 1.

After obtaining some of the familiar properties of such a
substitution he defines a group and then a discontinuous group,
viz. Poincaré’s Fuchsian group. Following this he consid-
ers with more detail the group formed by the substitutions

(s 2t

>ez4-d )’

where a. b, ¢, d are four real integers, satisfving the relation
ad — be=1.

This group is first proved to be discontinuous, and then it
is shown that it leads to a division of the half-plane into
an infinite number of triangles. The proof which Picard gives
of this result is based upon the arithmetical theory of the re-
duction of definite quadI;atic forms, which makes 1t necessary
to give a very brief account of these forms—or, more exactly,
of the notion of a reduced quadratic form ( forme quadratique
réduite). Picard then shows very briefly how the notion of
connecting the theory of the substitution

sl



60 PICARD’S TRAITE D’ANALYSE. [Nov.

with the theory of quadratic forms can be extended to obtuin
the substitutions for a half-space analogous to those found for
the half-plane. This investigation is contained in a paper by
Picard in the Bulletin de la Société Mathématique for 1884,
The title is Sur un groupe de transformations des points de
Vespace situés du méme c6té d’un plan. 'The final section of
this chapter and volume is a very brief one on map projections.
It is a matter of regret to the writer that this beautitul part 111,
of vol. 1. has to be noticed so briefly, but he has thought it
better to touch lightly on these applications of analysis to
geometry in order to leave more space for the analysis itself.

The closing chapters of vol. IL. have already been noticed
and need not be particnlarly referred to again. The prineci-
pal part of vol. 11. is devoted to harmonic and analytical func-
tions. Picard says in the introduction: ¢“Sans négliger le
point de vue de Caunchy dans la théorie de ces derniéres fonc-
tions, je me suis surtout attaché 4 une étude approfondie des
fonctions harmoniques, ¢’est-d-dire de ’équation de Laplace;
une grande partie de ce volume ost consacrée & cette équation
célébre, dont dépend toute la théorie des fonctions analy-
tiques, Je me suis arrété longuement sur le principe de
Dirichlet, qui joue un si grand role dans les travaux de Rie-
mann, et qui est aussi important pour la physique mathé-
matique que pour Panalyse.”

The first chapter begins with the definition of a function
of a complex variable and the familiar conditions of Cauch
that it shall be monogenic—that is, if the function be denote
by # + ¢ we must have

ou_ov ou_ _ov
oz~ oy’ 2y = o«
Following this is given the interesting generalization due to

Beltrami of these equations to the case of any surface = on
which the element of length is given by the equation

ds* = Edp® + 2Fdpdg + Gdg’.
Beltrami’s generalized equations are

0% _ 40U
oo _ Yo = Yoy
o~ VEG=F

o ou

o9 _ <
o _ Yoo — "5
3¢ VEG-F
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The combination % -+ v can now be called a complex function
of the point (p, ¢) on the surface 2. There follows now a
careful study of Jg_lap]ace’s equation and then a most impor-
tant extension to the general linear partial differential oqua-
tion of the second order, with two independent variables, of
some of the results obtained for Laplace’s equation. The
author’s important contributions to the theory of these equa-
tions are well known to all students of differential equations.
The last section of chapter 1. is principally concerned with
Neumann’s method for the solution of Dirichlet’s problem.

Chapter II. is a very important chapter in the theory of
functions: it is entitled Dévelopments en series et prolongement
analytique des fonctions harmoniques et des fonctions d’une
variable compleze.

In concluding certain generalities concerning harmonic
functions and developments in series the author gives a proof
of the following theorem of Harnack’s: Let there be given a
series

Uyt U, + Uy v ao Uyt s

of harmonie functions which are all positive inside an area
limited by a contour C. If this series is comvergent at a
point O in the interior of the area, it will be convergent at
every point in the interior of the area and will represent @
harmonic function.

The pages devoted to the subject of the extension of an
analytical function, to the examples of functions which cannot
be extended (Freedholm’s, for example), and to the recent
theorems given by Hadamard, particularly his theorem rela-
tive to the region of convergence of a power series (Taylor’s
series), are full of most interesting ang valuable results, but
can only be alluded to here. The next two chapters, 111. and
1v., are devoted wholly to Dirichlet’s problem, and contain an
account of the methods of Schwarz and Poincaré—the latter
method being developed in a memoir contained in vol. 1X. of
the American Journal of Mathematics.

Chapter v. contains a direct study of functions of a complex
variable and begins by establishing certain well-known and
general theorems of Cauchy. The second section, dealing with
poles and essential singularities, gives further theorems of
Cauchy’s and introduces Weierstrass’s motion of essential
singular points and a mere mention of a most important
theorem of the author’s on entire functions. Section 11IT. con-
tains familiar elementary examples of functions of a complex
variable, Section 1v. deals very briefly with convergent prod-
ucts, and section v. is concerned with the decomposition of
uniform functions into primary factors. A very elegant and
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rigorous demonstration of Weierstrass’s results is given first
and then » most interesting generalization is given of these
results (which are too well known to need statement).

Picard shows that a formula similar to that of Weierstrass
can be found for uniform funetions which are continuous for
all points of the plane except such as are situated upon a cir-
cumference C of radius /2 and having the origin as centre,

Let A,, A,, ... 4,,... beu series of quantities such that
on writing .1, = p,e*» we have

| P — IEI =>_- | pn+l'~<lil

and further nhj}e P, = R. It isnow shown that we can form
an expression depending on z which shall be uniform and con-
tinuous in all points of the plane, points of the circumference
exc«apted, which shall represent an analytical function of 2
inside and outside the circumference and shall vanish for the
values 4, 4,,...d,, ... 0f 2

Another series of quantities

B, B, ...Bu...

are taken on the circumference C and such that

lim (An - Bn) =\

n=ew

The product
n=ow
p Z - A,. @
(),
ern
n=1 z n

where

*'171—3:; 1 An_An 2
Pule)= =B, +2(\ z—-B,,) Tt

1 (A,,~B,, w-1
n—1 z—B,,,) ?

is shown to be conver%ent and to represen. an analytical
function (/(z) having the properties mentioned. Two in-
teresting examples of this theorem are given. The chapter
closes with a theorem due to Painlevé and which is derived
from the fundamental Cauchy formula

A=~ [ FO g4,

2 z—
(o}

The theorem is: Every function whick is holomorphic in an
area limited by a convex contour can be developed vn this areo
in a series of polyrominls.
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It must suffice simply to mention the matters treated in
chapter vI., which is devoted to applications of Cauchy’s
theorems: Investigations of certain definite integrals; Devel-
opments in series of rational fractions; (here some importunt
remarks are made concerniug the Weierstrass decomposition
of a function into primary factors;) Cauchy’s method for
obtaining Fourier’s and analogous series; Number of roots
of an equation contained in a contour; and the Theory of
indices.

Chapter ViL, on the number of roots common to two simul-
taneous equations, has already been mentioned.

Chapter viiL. has' for title Julégrales des fonctions non-
wntformes. The first section shows the different determina-

7

tions which an hyperelliptic integral of the type / —f;—r;)-fi-'-

w, ¥V (2
(f(z) a polynomial) can have when the path between the lin(xit)s
is varied. The second section considers the integrals of the
first kind and the reduction of the number of periods; here a
proof is given that there must be at least two distinet periods.
The elementary properties of the periods of the elliptic in-
tegral of the first kind are given now, including a proof of the
theorem that the ratio of the two periods is imaginary.
Section III. contains an example of a non-uniform function
represented by integrals, an application to the h);pergeometric
series, and finally some important properties of the ratio of
the periods of an elliptic integral regarded as a function of
the modulus, The employment of this function now enables
the author to give proofs of his two celebrated theorems on
uniform functions. The first is: An entire function G(2)
which can never become equal o' bwo values o and b 8 neces-
sarily a constant. For the second theorem we consider a
uniform function f(z) having throughout the plane only
poles as singular points; Picard then shows that there cannot
be more than two finite values a and b which this function
cannot take for a finite value of the variable; if there are
more than two, the function reduces to a constant.

Chapter 1X. is a most admirable introduction to the study of
functions of several independent variables. This chapter is
rendered particularly interesting and valnable by containing
the author’s presentation of Poincaré’s extension of Cauchy’s
fundamental theorem for one complex variable to the case of
two such variables. As it is impossible to give any adequate
account of this beautiful piece of analysis here it seems better
to puss it over with a mere mention. The chapter closes with
a study of Lagrange’s formula for one and two equations.

Chapter X. resumes the theory of conform representation,
the elementary propositions in which were given m vol. 1. In
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this chapter the author is particularly occupied with the ques-
tion of the representation of a given area upon another area
equally given. It is necessary first to give a definition of an
arc of an analytic curve. Suppose a curve such that the co-
ordinates  and y of an arbitrary point are analytical func-
tions of a parameter ¢,

z = f(f), y = @),

J and ¢ being supposed holomorphic functions of ¢ in the
region of the real value ¢ =4, the coefficients of the de-
velopments in geries according to powers of ¢ — £, being of
course real. We say, then, that this arc is analytic; further-
more, this analytic are will be regular at the point corre-
spounding to £ = ¢, if we can choose the parameter ¢ on which
z and y depend analytically in such a way that f”(#,) and ¢’ (%)
are not both zero at the same time. A determinate arc af is
said to be regular if it is regular at all its points. Suppose we
have a closed contour C, and let us admit that a portion af of
this contour is a regular arc of an analytical line. Assi%u now
a succession of values along the contour, and suppose that the
ensemble of values along the arc af forms an analytical fune-
tion of the parameter . Under these conditions the following
theorem due to Schwarz is demonstrated: The harmonic fune-
tion taking the given values along the contour can be prolonged
analyticulfy beyond the arc of.

The conform representation of a simple area on a circle
is next taken up, and then a presentation is given of Schwarz’s
method for Dirichlet’s principle. The chapter concludes with
the consideration of a simple case of two areas limited by sev-
eral contours, and it is shown how a function which is holo-
morphic in the interior of an ellipse can be developed in a
series of polynomials.

Chapter XI. contains general theorems in differential equa-
tions; the theorems are classical, but their mode of ?reseuta.-
tion is modern, and it need hardly be said that it is both elegant
and rigorous. The theorems of the existence of an integral
for a differential equation, or of a system of integrals for a
system of ordinary or of partial differential equations, occupy
the entire chapter. Cauchy’s methods are given, and also the
author’s own method Ly successive approximations, which is
familiar to the readers of this BULLETIN by Dr. Fiske’s transla-
tion. "The unique determination of a system of integrals for
given initial values is emphasized strongly by the author for
reasons which need not be gone into.* The chapter is a

* See page 817,
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thoroughly satisfactory one on this fundamental question in
the theory of differential equations.

Chapter X11. contains some applications of the general theo-
rems, and begins with some of the well-known theorems of
Briot and Bouquet and then follows a most important theorem
due to Painlevé and the latter’s notion of fixed and movable
critical points. The writer has given a brief explanation of
what Palnlevé means by these terms in another number of this
BuLLETIN, and it need not be repeated here. Riccati’s equation
is next studied, and the chapter closes with an account of the
inversion of the elliptic integral and of certain entire functions
associated with the elliptic functions. The fuller study of the
subject of differential equations and of the functions defined
by them is reserved for another volume.

The writer is quite conscious of the inadequacy of the pre-
ceding notice to give a satisfactory idea of this most impor-
tant work of M. Picard’s. The attempt has been made to show
how in each theory or its application M. Picard goes at once
to what is essential and in particular in the applications how
he has selected really important problems in analysis, geom-
etry, and mathematical physics. No applications are given
simply because they afford pretty exercises in analysis or give
rise to very symmetrical sets of formulee. It is customary to
say something about the typography of a book reviewed and
concerning errata. As for the former, it is hardly necessary to
comment on Gauthier-Villars’ manner of getting up a book.
As for the latter, they are too few and trifling to mention:
still one might mention one which the reader will not find out
is an error until he has read nearly a page further. In the
third line from the bottom of page 45, vol. 1., we find the words:
““Je me place d’abord dans le premier cas.” Instead of the
“ firgt case ” it should be the second case.”

T. Crarc.

BarnTIMORE, Oct. 10, 1893,

NOTES.

A RrEqULAR meeting of the NEW YORE MATHEMATIOAL
Socrery was held Saturday afternoon, October 7, at half-past
three o’clock, the president, Dr. McClintock, in the chair.
The following persons, having been duly nominated and being
recommended by the council, were elected to membership :
Mr. John M. Colaw, Monterey, Va.; Mr. David Lyman Pette-
grew, Worcester, Mass.; Dr. Isaac J. Schwatt, University of
Pennsylvania; Professor David Eugene Smith. Michigan State



