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Objective Bayesian Analysis for the Student-t
Linear Regression

Daojiang He∗,‖, Dongchu Sun†,‡,¶,∗∗, and Lei He§

Abstract. In this paper, objective Bayesian analysis for the Student-t linear re-
gression model with unknown degrees of freedom is studied. The reference priors
under all the possible group orderings for the parameters in the model are derived.
The posterior propriety under each reference prior is validated by considering a
larger class of priors. Simulation studies are carried out to investigate the frequen-
tist properties of Bayesian estimators based on the reference priors. Finally, the
Bayesian approach is applied to two real data sets.
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1 Introduction

In traditional linear regression models, error terms are commonly assumed to follow a
normal distribution. However, when the data have thicker tails than the normal dis-
tribution, the Student-t distribution represents an attractive alternative to model this
behavior. Moreover, the Student-t regression model can significantly reduce the influ-
ence of outliers, leading to a more robust analysis. See, for example, West (1984) and
Lange et al. (1989). In particular, the degree of freedom of the t distribution, say ν,
determines the degree of robustness of analysis. Specifically, the smaller the number of
ν is, the more robust the analysis tends to be. Thus, the problem of estimating the
parameter ν has attracted much attention in the literature. There are some frequentist
approaches to deal with this problem, see Zellner (1976), Singh (1988), Liu and Rubin
(1995), Wang and Ip (2003), among others.

In this paper, we are concerned with Bayesian inferences, in which case the choice of
the prior for the parameter ν becomes very challenging. When the number of degrees of
freedom is considered as discrete, Jacquier et al. (2004) proposed a truncated uniform

∗Department of Statistics, Anhui Normal University, Wuhu 241003, China, djheahnu@163.com
†Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA, dsun9@unl.edu
‡School of Statistics, East China Normal University, Shanghai 200062, China, dsun9@unl.edu
§Department of Statistics, Anhui Normal University, Wuhu 241003, China, lhstat@163.com
¶Corresponding author.
‖The work was supported by the National Natural Science Foundation of China (Grant No.

11201005) and the Humanities and Social Sciences Foundation of Ministry of Education, China (Grant
No. 17YJC910003).

∗∗The work was supported by the Chinese 111 Project B14019, and the National Natural Science
Foundation of China (Grant No. 11671146).

c© 2021 International Society for Bayesian Analysis https://doi.org/10.1214/20-BA1198

https://bayesian.org/resources/bayesian-analysis/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
mailto:djheahnu@163.com
mailto:dsun9@unl.edu
mailto:dsun9@unl.edu
mailto:lhstat@163.com
https://doi.org/10.1214/20-BA1198


130 Objective Bayesian Analysis for the Student-t Linear Regression

prior to overcome improper posteriors, which is

π(ν) ∝ 1, 3 ≤ ν ≤ 40.

However, as commented in Fonseca et al. (2008), this type of prior is not appropriate
where there is no prior information on ν, in that the estimate of ν is sensitive to
the chosen truncation. In order to find an objective criterion to derive the prior for
discrete degrees of freedom, Villa and Walker (2014) introduced a new approach to
define objective priors based on loss functions rather than probabilities.

When the number of degrees of freedom is considered as continuous, Geweke (1993)
proposed an exponential prior for ν, which is of the form

π(ν) = λ exp{−λν}, ν > 0.

The hyperparameter λ was suggested to be chosen based on the prior information about
the problem at hand. However, estimating the number of degrees of freedom in this case
depends strongly on the value of λ. In order to make the prior more objective, Fonseca
et al. (2008) introduced two objective priors based on formal rules: the independence
Jeffreys prior

πIJ (ν) ∝
(

ν

ν + 3

)1/2 {
ψ′

(ν
2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2

}1/2

, ν > 0,

and the Jeffreys-rule prior

πJ(ν) ∝ πIJ (ν)

(
ν + 1

ν + 3

)p/2

, ν > 0,

where ψ(a) = d
da{log Γ(a)} and ψ′(a) = d

da{ψ(a)} are the digamma and trigamma
functions, respectively. It is shown in Fonseca et al. (2008) that the posterior under
the prior πIJ(ν) is proper, while it is corrected in Vallejos and Steel (2013) that the
posterior under the prior πJ (ν) is actually improper.

In addition to the Jeffreys priors, another kind of important objective priors are the
reference priors proposed in Bernardo (1979) and Berger and Bernardo (1992). A formal
definition for one block of parameters is given in Berger et al. (2009). Following this,
Wang and Yang (2016) showed that there are only two type of reference priors deriving
from all six one-at-a-time reference priors of (β, σ, ν) for the linear model with Student-
t errors with unknown degrees of freedom ν. They came to the conclusion that the
posteriors under the reference priors are all improper. In this paper, we systematically
investigate the reference priors for all the possible group orderings of the parameters. By
considering a large class of priors, we obtain the posterior propriety for each reference
prior. As a byproduct, we draw a different conclusion with respect to the posterior
propriety for the priors in Wang and Yang (2016). In addition, we compare all reference
priors from frequentist coverage and mean squared error loss.

The rest of the paper is organized as follows. In Section 2, the reference priors under
different group orderings for the parameters in the Student-t linear regression model
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are derived. In Section 3, the posterior propriety for each reference prior is validated by
considering a larger class of priors. In Section 4, the frequentist properties of Bayesian
estimators of ν based on the objective priors are presented. In Section 5, the proposed
Bayesian approach is applied to two real data sets. Some concluding remarks are given
in Section 6.

2 The model and priors

Consider the following linear regression model,

y = Xβ + ε, (2.1)

where y = (y1, · · · , yn)′ is the n × 1 vector of response variables, X = [x1, · · · ,xn]
′ is

the n × p matrix of explanatory variables with full column rank, ε = (ε1, · · · , εn)′ is
the error vector and εi’s are independent and identically distributed according to the
Student-t distribution with location zero, scale parameter σ and degrees of freedom ν.
The parameter space is Θ = {(β, σ, ν) : β ∈ Rp, σ, ν ∈ R+}.

Thus, the likelihood function of (β, σ, ν) for model (2.1) is given by

L(β, σ, ν) =

[
Γ
(
ν+1
2

)]n
νnν/2[

Γ
(
ν
2

)]n
πn/2σn

n∏
i=1

{
ν +

(yi − x′
iβ

σ

)2
}−(ν+1)/2

.

It follows from Fonseca et al. (2008) that the Fisher information matrix of the parameter
θ = (β, σ, ν) is

I(θ) =

⎛
⎜⎜⎝
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where

δ1(ν) = ψ′
(ν
2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 5)

ν(ν + 1)(ν + 3)
.

If we treat β and (σ, ν) to be independent, the so-called independent Jeffereys prior
of (β, σ, ν) is of the form,

πIJ (β, σ, ν) ∝
1

σ

(
ν

ν + 3

)1/2

{δ2(ν)}1/2,

where

δ2(ν) = ψ′
(ν
2

)
− ψ′

(
ν + 1

2

)
− 2(ν + 3)

ν(ν + 1)2
.

The usual Jeffreys-rule prior of (β, σ, ν) is of the form,

πJ(β, σ, ν) ∝
1

σp+1

(
ν + 1

ν + 3

)p/2

πIJ (β, σ, ν).
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Fonseca et al. (2008) showed that πJ(β, σ, ν) and πIJ (β, σ, ν) both result in proper
posterior. However, Vallejos and Steel (2013) and Fonseca et al. (2014) subsequently
corrected that πJ (β, σ, ν), in fact, results in improper posterior.

Recently, Wang and Yang (2016) derived all one-at-a-time reference priors for six
group orderings of (β, σ, ν). Interestingly, there are only two different one-at-a-time
reference priors. For the orderings of {β, σ, ν}, {σ,β, ν} and {σ, ν,β}, their reference
priors are identical and of the form,

πR1(β, σ, ν) ∝
1

σ

√
δ1(ν).

While for the orderings of {β, ν, σ}, {ν,β, σ} and {ν, σ,β}, their reference priors are all
the same, given by

πR2(β, σ, ν) ∝
1

σ

√
δ2(ν).

In addition to the one-at-a-time group orderings, it is possible to consider other
orderings for the parameters (β, σ, ν). As Ghosh and Mukerjee (1992) stated, changing
the group ordering of the parameters may yield priors with different properties. We
summarize the reference priors for other orderings in the following theorem, whose
proofs are straightforward and thus omitted here.

Theorem 2.1. Consider the Student-t linear model (2.1).
(a) The reference priors for the orderings {β, (σ, ν)} and {(σ, ν),β} are the same, which
is just the independence Jeffreys prior πIJ (β, σ, ν).
(b) The reference prior for the ordering {σ, (β, ν)} is given by

πR3(β, σ, ν) ∝
1

σ

(
ν + 1

ν + 3

)p/2 √
δ1(ν).

(c) The reference prior for the ordering {(β, ν), σ} is of the form

πR4(β, σ, ν) ∝
1

σ

(
ν + 1

ν + 3

)p/2 √
δ2(ν).

(d) The reference prior for the ordering {ν, (β, σ)} is given by

πR5(β, σ, ν) ∝
1

σp+1

√
δ2(ν).

(e) The reference prior for the ordering {(β, σ), ν} is

πR6(β, σ, ν) ∝
1

σp+1

√
δ1(ν).

Clearly, all of the reference priors aforementioned can be written in a unified form

πR(β, σ, ν) ∝
1

σα
π(ν),

for some constant α > 0 and some function of π(ν).
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3 Propriety of posterior distributions

In this section, we investigate the important problem whether the posterior distributions
are proper under the reference priors obtained in Section 2. To facilitate the proofs, we
consider priors for the parameters (β, σ2, ν) instead of (β, σ, ν). The prior for (β, σ2, ν)
is of the form

π(β, σ2, ν) ∝ 1

(σ2)a
π(ν), (3.1)

where a > 0 is constant, and π(ν) is the ‘marginal’ prior of ν.

The following theorem gives a detailed characterization for the order of the marginal
posterior of ν, which plays an important role in obtaining the posterior propriety.

Lemma 3.1. For the Student-t linear model (2.1) and the prior in (3.1), assume that
n ≥ p + 1 and 0 < a ≤ 1. Let f(· | ν) denote the density function of the Gamma
distribution Ga(ν/2, ν/2). The marginal likelihood of ν is

g(ν) = n!

∫
0<λ(1)<···<λ(n)<∞

(
n−p∏
i=1

λ
1
2

(i)

)
λ
−n+2a−p−2

2

(n−p)

n∏
i=1

f(λ(i) | ν)dλ(i),

(a) If a = 1, then

g(ν) =

{
O(νn−p−1), as ν → 0,
O(1), as ν → ∞.

(b) If 0 < a < 1, then

g(ν) =

{
O(νn+a−1), as ν → 0,
O(1), as ν → ∞.

In order to prove Lemma 3.1, we first present a lemma, which can be found in
Fernández and Steel (1999).

Lemma 3.2. Let a, b, λ > 0, then

λa

a
exp{−bλ} ≤

∫ λ

0

xa−1 exp{−bx}dx ≤ λa

a
. (3.2)

Proof of Lemma 3.1. Similar to Fernández and Steel (1999), the lower and upper bounds
of fY (y) are both proportional to

∫
(0,∞)

∫
(0,∞)n

( ∏
i �=m1,...,mp

λ
1
2
i

)
λ
−n+2a−p−2

2
mp+1

(
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f(λi | ν)dλi

)
π(ν)dν,

where

p∏
i=1

λmi ≡ max

{
p∏

i=1

λli : det(xl1 . . . xlp) 	= 0, l1, . . . , lp ∈ {1, . . . , n}
}
,
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p+1∏
i=1

λmi ≡ max

{ p+1∏
i=1

λli : det

(
xl1 . . . xlp+1

yl1 . . . ylp+1

)
	= 0, l1, . . . , lp+1 ∈ {1, . . . , n}

}
,

and λ1, . . . , λn are independent and identically distributed as the Gamma distribution
Ga(ν/2, ν/2), whose density function is f(· | ν).

It can be shown that, up to a set of measure zero,

{λm1 , . . . , λmp} = {λ(n), . . . , λ(n−p+1)}, λmp+1 = λ(n−p),

where λ(1) < λ(2) < · · · < λ(n) are the ordered statistics of λ1, λ2, . . . , λn. Denote

g(ν) =

∫
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2
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then we have

g(ν) = n!

∫
0<λ(1)<···<λ(n)<∞

(
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)
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(n−p)
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First, we derive an upper bound for the integral in (3.4). Using the inequality of
(3.2), when integrating with respect to λ(1), we have
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From this, when integrating with respect to λ(2), the upper bound is proportional to
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Inductively, after integrating with respect to λ(3), . . . , λ(n−p−1), the upper bound is
proportional to

(ν + 1)−(n−p−1)λ
n−p−1

2 (ν+1)

(n−p) .

Thus, when integrating with respect to λ(n−p), the upper bound is proportional to
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Note that n ≥ p+ 1 and 0 < a ≤ 1, hence (n−p)ν
2 + 1− a > 0. It follows that the upper

bound for the integral in (3.5) is

(ν + 1)−(n−p−1)
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Inductively, after integrating with respect to λ(n−p+1), . . . , λ(n−1), the upper bound is
proportional to

(ν + 1)−(n−p−1)λ
(n−1)ν

2 +1−a

(n)

p−1∏
j=0

[
(n− p+ j)ν

2
+ 1− a

]−1

.

Thus, when integrating with respect to λ(n) on (0,∞) in the end, the upper bound is
proportional to

(ν + 1)−(n−p−1)
(ν
2

)−nν
2 −1+a

Γ
(nν

2
+ 1− a

) p−1∏
j=0

[
(n− p+ j)ν

2
+ 1− a

]−1

. (3.6)

Therefore, the upper bound of g(ν) is proportional to (3.6) multiplied by the factor
(ν2 )

nν
2 /[Γ(ν2 )]

n, which is

gu(ν) ≡ (ν + 1)−(n−p−1)
(ν
2

)a−1 Γ
(
nν
2 + 1− a

)
[Γ

(
ν
2

)
]n

p−1∏
j=0

[
(n− p+ j)ν

2
+ 1− a

]−1

. (3.7)

Note that Γ(a) ∼ a−1, as a → 0. Therefore, if a = 1, then

gu(ν) = O
(
νn−p−1

)
, (ν → 0);

if 0 < a < 1, then
gu(ν) = O

(
νn−1+a

)
, (ν → 0).

Second, we find an lower bound for the integral in (3.4). By the inequality on the
left side of (3.2), when integrating with respect to λ(1), there is

∫ λ(2)

0

λ
1
2

(1)λ
ν
2−1

(1) exp
{
−ν

2
λ(1)

}
dλ(1) ≥

(
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2
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(2) exp
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−ν

2
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}
.

Consequently, when integrating with respect to λ(2), the lower bound is proportional to

∫ λ(3)

0

λ
1
2

(2)λ
ν
2−1

(2) exp
{
−ν

2
λ(2)

}
(ν + 1)−1λ

ν+1
2

(2) dλ(2) ≥ (ν + 1)−2λν+1
(3) exp{−νλ(3)}.

The subsequent derivations are similar to that for the upper bound gu(ν), then we can
obtain a lower bound for g(ν), which is

gl(ν) ≡ (ν + 1)−(n−p−1) (ν2 )
nν
2

(nν2 )
nν
2 +1−a

Γ
(
nν
2 + 1− a

)
[Γ

(
ν
2

)
]n

p−1∏
j=0

[
(n− p+ j)ν

2
+ 1− a

]−1

.

If a = 1, then
gl(ν) = O

(
νn−p−1

)
, (ν → 0);



136 Objective Bayesian Analysis for the Student-t Linear Regression

if 0 < a < 1, then
gl(ν) = O

(
νn−1+a

)
, (ν → 0).

Till now, we have obtained the order of g(ν) as ν → 0.

Finally, we prove the order of g(ν) as ν → +∞. According to the upper bound of
(3.7), it is readily that g(ν) is finite on (0,+∞) for 0 < a ≤ 1. Moreover, it follows from
(3.4) that

g(ν) ≤ n!

∫
(0,+∞)n

( n−p−1∏
i=1

λ
1
2
i

)
λ
−n+2a−p−3

2
n−p

n∏
i=1

f(λi | ν)dλi

∝ E

( n−p−1∏
i=1

λ
1
2
i

)
E
(
λ
−n+2a−p−3

2
n−p

)

≤ E
(
λ

1
2 (n−p−1)
1

)
E
(
λ
−n+2a−p−3

2
n−p

)
≡ g∗(ν),

where λ1, . . . , λn are independent and identically distributed as Ga(ν/2, ν/2). When
ν > max{n+ 2a− p− 3, 0}, straightforward computation yields that

g∗(ν) =
1

(ν2 )
1−a[Γ(ν2 )]

2
Γ

(
n− p− 1 + ν

2

)
Γ

(
ν − n− 2a+ p+ 3

2

)
.

Using the result that Γ(t − 1) ∼
√
2πt( te )

t as t → +∞, it can be shown that the
limit lim

ν→+∞
g∗(ν) exists and is positive. Consequently, we have

g(ν) = O(1), (ν → +∞).

Thus, the proof of Lemma 3.1 is completed.

By Lemma 3.1, we can obtain the following result.

Theorem 3.1. For the Student-t linear model (2.1), assume that n > p + 1, then the
posterior distributions of (β, σ, ν), under the reference priors πR1, πR2, πR3, and πR4,
are all proper.

Proof. It suffices to show the propriety of the posterior distribution under the prior πR4

in that the proofs for the other cases are similar. The prior πR4 for (β, σ, ν) is equivalent
to the following prior for (β, σ2, ν)

π(β, σ2, ν) ∝ 1

σ2
π(ν), (3.8)

where

π(ν) =

(
ν + 1

ν + 3

)p/2

{δ2(ν)}1/2 .

Under the prior (3.8), it follows from Lemma 3.1 that g(ν) = O(νn−p−1), as ν → 0 and
g(ν) = O(1) as ν → +∞. On the other hand, it can be shown that π(ν) = O(ν−1),
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as ν → 0 and π(ν) = O(ν−2) as ν → +∞. Therefore, when n > p + 1, we have∫ +∞
0

g(ν)π(ν)dν < +∞. This completes the proof of Theorem 3.1.

Remark 3.1. For the special case that n = p+ 1, the proof of Theorem 3.1 shows that
πR1, πR2, πR3, and πR4 yield improper posteriors.

In order to study the propriety of the posterior under the priors πR5 and πR6, we
give the following theorem, whose proof is analogous to Theorem 1 in Vallejos and Steel
(2013).

Theorem 3.2. For the Student-t linear model (2.1) and the prior in (3.1), assume that
n ≥ p+1 and a > 1, then a necessary condition for posterior propriety is π(ν) = 0 a.e.
on (0, (2a− 2)/(n− p)].

According to Theorem 3.2, we have the following result.

Theorem 3.3. For the Student-t linear model (2.1), assume that n ≥ p+1, then under
the reference priors πR5 and πR6, the posterior distributions are both improper.

4 Frequentist properties

We now investigate the frequentist performance of Bayesian estimators of ν based on
those reference priors in Section 3, as well as the discrete prior (say, πVW ) proposed in
Villa and Walker (2014). Two simulation studies are carried out here.

4.1 Independent and identically distributed Student-t sample

In the first simulation study, as in Villa and Walker (2014), we draw an independent
and identically distributed sample from a standard Student-t distribution with location
parameter μ = 0 and scale parameter σ = 1. Under this case, the available reference
priors are only πR1, πR2 and πIJ . Two different sample sizes are considered, which are
n = 30 and n = 100. The simulations are performed for ν = 1, 2, . . . , 25, where the
number of replications is taken as 5000. The frequentist mean squared error and the
frequentist coverage probability of 95% credible interval are included to compare the
estimators of ν based on different priors.

The square root of the relative mean squared error of ν,
√
MSE(ν)/ν, for the poste-

rior medians from the four priors when n = 30 and n = 100 are shown in Figures 1 (a)
and 1 (b), respectively. For the case of n = 30, when the true value of ν is not greater
than 13, the performance of πR1, πR2 and πIJ outperforms that of πVW in an obvious
way. In addition, the prior πR2 behaves slightly better than the others at this time.
While as the value of ν gets large, the relative mean squared errors based on the prior
πVW become smallest. For the case of n = 100, the situation is analogous.

Figure 2 shows the frequentist coverage probabilities of 95% credible intervals for ν.
In terms of coverage, the priors πR1, πR2 and πIJ perform relatively robust, the coverage
probabilities are close to the nominal level 0.95 whether n = 30 or n = 100. While for
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Figure 1: Square root of relative mean squared error of estimators of ν based on the
independent Jeffreys prior πIJ (solid), the reference prior πR1 (dotted), the reference
prior πR2 (dashed), and Villa and Walker’s prior πVW (dash-dotted). Panel (a) is for
n = 30, panel (b) is for n = 100.

Figure 2: The frequentist coverage of the 95% credible intervals for ν based on the
independent Jeffreys prior πIJ (solid), the reference prior πR1 (dotted), the reference
prior πR2 (dashed) and the Villa and Walker’s prior πV W (dash-dotted). Panel (a) is
for n = 30, panel (b) is for n = 100.
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the prior πVW , there is a drop for small values of ν. In addition, as ν gets larger, the
coverage probabilities under πVW are undesirably approaching 1.

4.2 Student-t regression model

In the second simulation study, following Fonseca et al. (2008), we consider samples from
a Student-t regression model in (2.1). The configuration of simulation is set as follows:

p = 5, xi = (1, xi1, xi2, xi3, xi4)
′, i = 1, . . . , n, β = (2, 1, 0.3, 0.9, 1)′, σ2 = 1.5.

Also, it is assumed that xij ’s are independent and identically distributed as standard
normal.

We employ the Metropolis–Hasting (M–H) within Gibbs sampling to generate sam-
ples of posterior distributions. Note that t distribution can be considered as a scale
mixture of normals, the full conditional distributions for Gibbs sampling are given by

β | Λ, σ2, ν,y ∼ N
(
β̂, σ2(X ′ΛX)−1

)
, (4.1)

σ2 | β,Λ,y ∼ IG
(n
2
,
s

2

)
, (4.2)

λi | β, σ2, ν,y ∼ Ga
(ν + 1

2
,
di + ν

2

)
, i = 1, . . . , n, (4.3)

π(ν | λ1, . . . , λn) ∝
(ν2 )

nν
2

[Γ(ν2 )]
n

( n∏
i=1

λ
ν
2−1
i

)
exp

(
− ν

2

n∑
i=1

λi

)
π(ν), (4.4)

where β̂ = (X ′ΛX)−1X ′Λy, Λ = diag(λ1, . . . , λn), s = (y − Xβ)′Λ(y − Xβ), di =
(yi −x′

iβ)
2/σ2, and IG(a, b) stands for the inverse Gamma distribution with the shape

parameter a and the scale parameter b.

While for the conditional distribution (4.4), the M–H algorithm is used to gener-
ate random numbers. Following the idea of Kang et al. (2018), the proposal distri-
bution is taken as the truncated normal distribution N(0<ν<300)(μν , τ

2
ν ), where μν =

x − q′(x)/q′′(x), τ2ν = −1/q′′(x), and q(v) = log(π(ν | λ1, . . . , λn)). Specifically, the
sampling algorithm is as follows:

• Generate a candidate parameter value νcand from N(0<ν<300)(μν , τ
2
ν ), where μν =

vj − q′(vj)/q
′′(vj), τ

2
ν = −1/q′′(vj);

• Generate u from the uniform distribution on (0, 1), and let vj+1 = νcand · 1(α >
u) + νj · 1(α ≤ u), where

α = min

(
1, exp

{
q(νcand) log(p(νj))

q(νj) log(p(νcand))

})
,

and p(·) is the density function of N(0<ν<300)(μν , τ
2
ν ). That is to say, the candidate

value νcand is accepted with probability α.

In the simulation, the size for Gibbs sampling is 5000 after 1000 burn-in samples.
The square root of the relative mean squared errors of ν for the posterior medians based
on the priors πIJ , πR1, πR2, πR3 and πV W are shown in Figure 3. The simulation results
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Figure 3: Square root of relative mean squared error of estimators of ν under Student-
t regression based on the independent Jeffreys prior πIJ (solid), the reference priors
πR1 (dotted), πR2 (dashed), πR3 (long-dashed), and the Villa and Walker’s prior πVW

(dash-dotted). Panel (a) is for n = 30, panel (b) is for n = 100.

for the reference prior πR4 are similar to πR3, which are not reported here. For n = 30 or
n = 100, generally speaking, the performance of πIJ , πR1, πR2 and πR3 is better than
πVW when the true values of ν are not greater than 11. Furthermore, the prior πR2

behaves best under this case. While for large values of ν, the behavior of πV W shows
its superiority.

Figures 4 (a) and (b) show the frequentist coverage probabilities of 95% credible
intervals for ν based on the five priors for n = 30 and n = 100, respectively. It can
be seen that the performance of the priors πIJ , πR1, πR2 and πR3 is similar to each
other, and the corresponding coverage probabilities are relatively close to the nominal
level. While the behavior of πVW in this circumstance is analogous to that in the
first simulation study. That is, there is a drop for small values of ν, and the coverage
probabilities are undesirably close to 1 for large values of ν.

Based on the two simulation studies, in the light of the relative mean squared error,
it can be seen that the prior πR2 behaves best for small values of ν, while the prior
πVW outperforms the others for large values of ν. Therefore, it is suggested to use the
reference priors if there is evidence that the model is a Student-t.

5 Real data analysis

To show how the objective priors discussed above work in practice, we consider two data
sets from financial markets. The first data set relates to the U.S. Treasury bond prices.
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Figure 4: The frequentist coverage of the 95% credible intervals for ν under Student-
t regression based on the independent Jeffreys prior πIJ (solid), the reference priors
πR1 (dotted), πR2 (dashed), πR3 (long-dashed), and the Villa and Walker’s prior πVW

(dash-dotted). Panel (a) is for n = 30, panel (b) is for n = 100.

The second data set is a sample of the daily closing prices of the Brazilian IBOVESPA,
which is an index of about 50 stocks traded on the São Paulo Stock, Mercantile &
Futures Exchange.

5.1 Application to the US treasury bond prices

The first data set is from Siegel (1977), which has been previously analyzed by Sheather
(2009) and Yang and Yuan (2017). As in those previous analyses, we take the bid price
as the dependent variable and the coupon rate as the regressor variable. It is shown
in Yang and Yuan (2017) that the normal model does not fit the data well and some
heavy-tailed distributions may be appropriate. Yang and Yuan (2017) then analysed
the data by using scale mixtures of normal regression models including the Student-t
regression model. However, it should be pointed out that the degrees of freedom in their
analysis are assumed to be known as 1.

Now, if we set ν = 1 in the Student-t regression model (2.1), then it can be seen
that the independent Jeffreys prior and the corresponding reference priors in πR1, πR2,
πR3 and πR4 for (β, σ) are the same, which is

π∗(β, σ) ∝ 1

σ
. (5.1)

Using the prior (5.1), we can obtain that a Bayesian estimator (i.e., the posterior me-
dian) of σ2 is 0.2650.
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Prior Parameters Median 95% Credible Interval
πR2 ν 0.7940 [0.4501, 1.3842]

σ2 0.2049 [0.0455, 0.6643]
β1 58.0622 [55.3476, 60.8905]
β2 4.7778 [4.4833, 5.0510]

πIJ ν 0.8254 [0.4686, 1.4828]
σ2 0.2124 [0.0530, 0.6906]
β1 58.1029 [55.3294, 60.9247]
β2 4.7738 [4.4800, 5.0552]

πVW ν 1 [1, 1]
σ2 0.2785 [0.1003, 0.7583]
β1 58.1969 [55.2476, 61.1049]
β2 4.7621 [4.4628, 5.0609]

Table 1: Posterior summaries under the priors πR2, πIJ and πVW for the real data in
Section 5.1.

Next, we analyze the data by using the model (2.1) with unknown degrees of freedom.
Table 1 displays posterior summaries based on the reference priors πR2 and πIJ as well
as the prior πVW . It can be seen that the priors πR2 and πIJ lead to similar results for
the four parameters, and the posterior medians of ν, 0.7940 and 0.8254, are close to 1
assumed in Yang and Yuan (2017). In addition, the Bayesian estimators of σ2 under πR2

and πIJ are 0.2049 and 0.2124, respectively. As can be expected, the estimators of σ2 are
smaller than that under the case where the degrees of freedom are specified as 1. While
for the discrete prior πVW , the Bayesian estimator of ν is 1, and the corresponding
95% credible interval is only a single point 1. The estimator of σ2 under πVW is 0.2785,
which is the biggest among the three priors.

5.2 Application to the Brazilian IBOVESPA

To further compare the performance of the objective priors on real data when the
“true” degrees of freedom may be slightly larger, in this subsection, we consider the
daily closing prices of the IBOVESPA in Brazilian stock market. Specifically, the data
set contains 100 observations from April 20 to September 13, 2001, which is part of a
wider sample used in Abanto-Vallea et al. (2012). Throughout, we work with the daily
returns as a percentage, yd = 100× (log(Pd)− log(Pd−1)), where Pd is the closing price
on day d. For the transformed data, a direct calculation yields that the kurtosis is much
larger than 3. Thus, we use the following t-regression model to fit the data:

yd = μ+ εd, d = 1, . . . , 100,

where εd’s are independent and identically distributed according to the t distribution
with location zero, scale parameter σ and degrees of freedom ν.

The results based on the priors πR2 and πIJ , as well as the prior πVW , are listed
in Table 2. It can be seen from Table 2 that the Bayesian estimators of the parameters
μ, ν and σ2 are close to each other for the priors πR2 and πIJ , which are somewhat
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different from that based on the prior πVW . Further, the credible intervals based on πR2

are relatively shorter compared with the other priors, especially for πV W .

Prior Parameters Median 95% Credible Interval
πR2 ν 4.1861 [2.1445, 12.2255]

σ2 1.8362 [1.1501, 2.8657]
μ −0.1638 [−0.4797, 0.1509]

πIJ ν 4.2678 [2.1185, 13.4195]
σ2 1.8368 [1.1180, 2.9335]
μ −0.1648 [−0.4937, 0.1538]

πVW ν 7 [3, 36]
σ2 2.1149 [1.3336, 3.2636]
μ −0.1922 [−0.5229, 0.1286]

Table 2: Posterior summaries under the priors πR2, πIJ and πVW for the real data in
Section 5.2.

6 Concluding remarks

Following the seminal work of Fonseca et al. (2008), in this paper, we have derived all
the reference priors for the Student-t linear regression model with unknown degrees of
freedom. And the posterior propriety under a larger class of priors is then validated. The
frequentist property of Bayesian estimators based on the reference priors is investigated
by simulation study. The findings of this paper indicate that it is feasible to use the
reference analysis for estimating the unknown degrees of freedom ν from both theoretical
and practical viewpoints.

To conclude, it should be pointed out that the posterior propriety in this paper is
based on the condition that n ≥ p + 1. Nowadays, there is a necessity to be able to
deal with large amount of data (in terms of covariates). For the high-dimensional cases,
there is some work along this topic in the literature. For example, Clarke and Ghosal
(2010) considered the posterior properties based on reference priors for exponential fam-
ilies with increasing dimension. The problem for high-dimensional Student-t regression
deserves a deeper study, which will be left for our future endeavor.
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