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Conjugate Priors and Posterior Inference for
the Matrix Langevin Distribution on the Stiefel
Manifold

Subhadip Pal*, Subhajit Senguptal, Riten Mitra*, and Arunava Banerjee’

Abstract. Directional data emerges in a wide array of applications, ranging from
atmospheric sciences to medical imaging. Modeling such data, however, poses
unique challenges by virtue of their being constrained to non-Euclidean spaces
like manifolds. Here, we present a unified Bayesian framework for inference on the
Stiefel manifold using the Matrix Langevin distribution. Specifically, we propose
a novel family of conjugate priors and establish a number of theoretical properties
relevant to statistical inference. Conjugacy enables translation of these properties
to their corresponding posteriors, which we exploit to develop the posterior in-
ference scheme. For the implementation of the posterior computation, including
the posterior sampling, we adopt a novel computational procedure for evaluating
the hypergeometric function of matrix arguments that appears as normalization
constants in the relevant densities.

Keywords: Bayesian inference, conjugate prior, hypergeometric function of

matrix argument, matrix Langevin distribution, Stiefel manifold,
vectorcardiography.

1 Introduction

Analysis of directional data is a major area of investigation in statistics. Directional
data range from unit vectors in the simplest case to sets of ordered orthonormal frames
in the general scenario. Since the associated sample space is non-Euclidean, standard
statistical methods developed for the Euclidean space may not be appropriate to an-
alyze such data. Additionally, it is often desirable to design statistical methods that
take into consideration the underlying geometric structure of the sample space. There
is a need for methodological development for a general sample space such as the Stiefel
manifold (James, 1976; Chikuse, 2012) that goes beyond those techniques designed for
simpler non-Euclidean spaces like the circle or the sphere. Such a novel methodology can
support various emerging applications, increasingly seen in the fields of biology (Downs,
1972; Mardia and Khatri, 1977), computer science (Turaga et al., 2008; Lui and Bev-
eridge, 2008) and astronomy (Mardia and Jupp, 2009; Lin et al., 2017), to mention but
a few.
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One of the most widely used probability distributions on the Stiefel manifold is
the matrix Langevin distribution introduced by Downs (1972), also known as the Von-
Mises Fisher matrix distribution (Mardia and Jupp, 2009; Khatri and Mardia, 1977).
In early work, Mardia and Khatri (1977) and Jupp and Mardia (1980) investigated
properties of the matrix Langevin distribution and developed inference procedures in
the frequentist setup (Chikuse, 2012). The form of the maximum likelihood estimators
and the profile likelihood estimators for the related parameters can be found in Jupp and
Mardia (1979); Mardia and Khatri (1977); Chikuse (1991b,a, 1998). It is not patently
clear from these works whether the form of the associated asymptotic variance can
be obtained directly without using bootstrap procedures. A major obstacle facing the
development of efficient inference techniques for this family of distributions has been the
intractability of the corresponding normalizing constant, a hypergeometric function of a
matrix argument (Mardia and Jupp, 2009; Muirhead, 2009; Gross and Richards, 1989).
Inference procedures have been developed exploiting approximations that are available
when the argument to this function is either small or large.

Almost all the hypothesis testing procedures (Jupp and Mardia, 1979; Mardia and
Khatri, 1977; Chikuse, 1991a,b, 1998) therefore depend not only on large sample asymp-
totic distributions but also on the specific cases when the concentration parameter is
either large or small (Chikuse, 2012; Mardia and Khatri, 1977; Downs, 1972). In par-
ticular, a general one sample or two sample hypothesis testing method for the finite
sample case is yet to be developed.

For any given dataset, the stipulation of large sample is comparatively easier to
verify than checking whether the magnitude of the concentration is large. It may not be
possible to ascertain whether the concentration is large before the parameter estimation
procedure, which is then confounded by the fact that the existing parameter estimation
procedures themselves require the assumption of large concentration to work correctly.
Hence, from a practitioner’s point of view, it is often difficult to identify whether the
above-mentioned procedures are suitable for use on a particular dataset.

Although a couple of Bayesian procedures have been proposed in related fields (see
references in Lin et al. (2017)), a comprehensive Bayesian analysis is yet to be developed
for the matrix Langevin distribution. In a recent paper, Lin et al. (2017) have developed
a Bayesian mixture model of matrix Langevin distributions for clustering on the Stiefel
manifold, where they have used a prior structure that does not have conjugacy. To ac-
complish posterior inference, Lin et al. (2017) have used a nontrivial data augmentation
strategy based on a rejection sampling technique laid out in Rao et al. (2016). It is
worthwhile to note that the specific type of data augmentation has been introduced
to tackle the intractability of the hypergeometric function of a matrix argument. It is
well known that data augmentation procedures often suffer from slow rate of conver-
gence (van Dyk and Meng, 2001; Hobert et al., 2011), particularly when combined with
an inefficient rejection sampler. Elsewhere, Hornik and Griin (2014) have proposed a
class of conjugate priors but have not presented an inference procedure for the resulting
posterior distributions.

In this article, we develop a comprehensive Bayesian framework for the matrix
Langevin distribution, starting with the construction of a flexible class of conjugate
priors, and proceeding all the way to the design of an practicable posterior computation
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procedure. The difficulties arising from the intractability of the normalizing constant do
not, of course, disappear with the mere adoption of a Bayesian approach. We employ
nontrivial strategies to derive a unique posterior inference scheme in order to handle
the intractability of the normalizing constant. A key step in the proposed posterior
computation is the evaluation of the hyper-geometric function of a matrix argument,
that can be computed using the algorithm developed in Koev and Edelman (2006). Al-
though general, this algorithm has certain limitations vis-a-vis measuring the precision
of its output. We therefore construct a reliable and computationally efficient proce-
dure to compute a specific case of the hypergeometric function of matrix argument,
that has theoretical precision guarantees (Section 6.2). The procedure is applicable to
a broad class of datasets including most, if not all, of the applications found in Downs
et al. (1971); Downs (1972); Jupp and Mardia (1979, 1980); Mardia and Khatri (1977);
Mardia et al. (2007); Mardia and Jupp (2009); Chikuse (1991a,b, 1998, 2003); Sei et al.
(2013); Lin et al. (2017). The theoretical framework proposed in this article is applicable
to all matrix arguments regardless of dimensionality. In the following two paragraphs,
we summarize our contributions.

We begin by adopting a suitable representation of the hypergeometric function of
a matrix argument to view it as a function of a vector argument. We explore several
of its properties that are useful for subsequent theoretical development, and also adopt
an alternative parametrization of the matrix Langevin distribution so that the modified
representation of the hypergeometric function can be used. When viewed as an expo-
nential family of distributions, the new parameters of the matrix Langevin distribution
are not the natural parameters (Casella and Berger, 2002). Thus the construction of
the conjugate prior does not directly follow from Diaconis and Ylvisaker (1979) (DY),
an issue that we elaborate on (Section 3.1). We then propose two novel and reason-
ably large classes of conjugate priors, and based on theoretical properties of the matrix
Langevin distribution and the hypergeometric function, we establish their propriety.
We study useful properties of the constructed class of distributions to demonstrate that
the hyperparameters related to the class of distributions have natural interpretations.
Specifically, the class of constructed distributions is characterized by two hyperparam-
eters, one controls the location of the distribution while the other determines the scale.
This interpretation not only helps us understand the nature of the class of distributions
but also aids in the selection of hyperparameter settings. The constructed class of prior
distributions is flexible because one can incorporate prior knowledge via appropriate
hyperparameter selection; and at the same time, in the absence of prior knowledge,
there is a provision to specify the hyperparameters to construct a uniform prior. Since
this uniform prior is improper by nature, we extend our investigation to identify the
conditions under which the resulting posterior is a proper probability distribution.

Following this, we discuss properties of the posterior and inference. We show uni-
modality of the resulting posterior distributions and derive a computationally efficient
expression for the posterior mode. We also demonstrate that the posterior mode is a
consistent estimator of the related parameters. We develop a Gibbs sampling algorithm
to sample from the resulting posterior distribution. One of the conditionals in the Gibbs
sampling algorithm is a novel class of distributions that we have introduced in this ar-
ticle for the first time. We develop and make use of properties such as unimodality
and log-concavity to derive a rejection sampler to sample from this distribution. We
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perform multiple simulations to showcase the generic nature of our framework and to
report estimation efficiency for the different algorithms. We end with an application
demonstrating the strength of our approach.

We should note that a significant portion of the article is devoted to establishing a
number of novel properties of the hypergeometric function of matrix arguments. These
properties play a key role in the rigorous development of the statistical procedures. These
properties, including the exponential type upper and lower bounds for the function, may
also be relevant to a broader range of scientific disciplines.

The remainder of the article is organized as follows. In Section 2, we introduce the
matrix Langevin distribution defined on the Stiefel manifold and explore some of its
important properties. Section 3 begins with a discussion of the inapplicability of DY’s
theorem, following which we present the construction of the conjugate prior for the
parameters of the matrix Langevin distribution. In particular, we establish propriety of
a class of posterior and prior distributions by proving the finiteness of the integral of
specific density kernels. In Sections 4 and 5, we lay out the hyperparameter selection
procedure and derive properties of the posterior. In Section 6 we develop the posterior
inference scheme. In Sections 7 and 8, we validate the robustness of our framework
with experiments using simulated datasets and demonstrate the applicability of the
framework using a real dataset, respectively. Finally, in Section 9, we discuss other
developments and a few possible directions for future research. Proofs of all theorems
and properties of the hypergeometric function of matrix arguments are deferred to the
supplementary material (Pal et al., 2019).

Notational Convention

RP = The p-dimensional Euclidean space.

RY = {(z1,...,2p) ERP: 0 < x; for i =1,...p}.
Sp={(d,....dp) ERE :0<d, <+ <dy <oo}.

R"*P = Space of all n x p real-valued matrices.

I, = p x p identity matrix.

Vnp={X e R™P : XTX =1,}, Stiefel Manifold of p-frames in R™.
Vop={X€Vup: X1, >0Vj=1,2--- p}

Vpp = O(p) = Space of Orthogonal matrices of dimension p x p.
i = Normalized Haar measure on Vp p.

p2 = Normalized Haar measure on V), ,,.

p1 = Lebesgue measure on RE .

f(:;+) = Probability density function.

g(+;-) = Unnormalized version of the probability density function.
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tr(A) = Trace of a square matrix A.

etr(A) = Exponential of tr(A).

E(X) = Expectation of the random variable X.
I(-) = Indicator function.

|-, = Matrix operator norm.

We use d and D interchangeably. D is the diagonal matrix with diagonal d. We
use matrix notation D in the place of d wherever needed, and vector d otherwise.

2 The Matrix Langevin Distribution on the Stiefel
Manifold

The Stiefel manifold, V), ,, is the space of all p ordered orthonormal vectors (also known
as p-frames) in R" (Mardia and Jupp, 2009; Absil et al., 2009; Chikuse, 2012; Edelman
et al., 1998; Downs, 1972) and is defined as

Vop={X eR™P . XTX =1,, p <n},

where R™*? is the space of all n x p, p < n real-valued matrices, and I, is the p x
p identity matrix. V,,, is a compact Riemannian manifold of dimension np — p(p +
1)/2 (Chikuse, 2012). A topology on V, , can be induced from the topology on R™*?
as V,p is a sub-manifold of R"*? (Absil et al., 2009; Edelman et al., 1998). For p = n,
Vp,p becomes identical to O(n), the orthogonal group consisting of all orthogonal n x n
real-valued matrices, with the group operation being matrix multiplication. Being a
compact unimodular group, O(n) has a unique Haar measure that corresponds to a
uniform probability measure on O(n) (Chikuse, 2012). Also, through obvious mappings,
the Haar measure on O(n) induces a normalized Haar measure on the compact manifolds
Vy.p- The normalized Haar measures on O(n) and V, , are invariant under orthogonal
transformations (Chikuse, 2012). Detailed construction of the Haar measure on V), ;, and
its properties are described in Muirhead (2009); Chikuse (2012). Notation wise, we will
use p and o to denote the normalized Haar measures on V, , and V, ,, respectively.

The matrix Langevin distribution (M/L-distribution) is a widely used probability
distribution on V,, , (Mardia and Jupp, 2009; Chikuse, 2012; Lin et al., 2017). This
distribution is also known as Von Mises-Fisher matrix distribution (Khatri and Mar-
dia, 1977). As defined in Chikuse (2012), the probability density function of the ma-
trix Langevin distribution (with respect to the normalized Haar measure p on V, ;)
parametrized by F' € R™"*P s

etr(FTX)
oF (5. 755

where etr(-) = exp(trace(-)) and the normalizing constant, oF;(n/2, FTF/4), is the
hypergeometric function of order n/2 with the matrix argument F7F/4 (Herz, 1955;

frme(X5 F) = (2.1)



876 Conjugate Priors and Posterior Inference

James, 1964; Muirhead, 1975; Gupta and Richards, 1985; Gross and Richards, 1987,
1989; Butler and Wood, 2003; Koev and Edelman, 2006; Chikuse, 2012). In this article,
we consider a different parametrization of the parameter matrix F in terms of its singular
value decomposition (SVD). In particular, we subscribe to the specific form of unique
SVD defined in Chikuse (2012) ((1.5.8) in Chikuse (2012)),

F=MDVT,

where M € 17n,p, V € Vpp, and D is the diagonal matrix with diagonal entries d =
(dl,dg,"' ,dp) € Sp. Here anp = {X € anp : lej 2 0 VJ = 1,2,"' ,p} and
Sy ={(d1,...,dp) ERY :0<d, <--- <dy <oo}. Henceforth, we shall use the phrase
“unique SVD” to refer to this specific form of SVD. Khatri and Mardia (1977) (page
96) shows that the function oF;(n/2, FTF/4) depends only on the eigenvalues of the

matrix FTF, i.e.,
n FTF n D?
of (57) =oh (577) :

As a result, we reparametrize the ML density as

etr(VDMTX)

oF1(%, %2)

frme (X5 (M, d, V) = (M €Vnp,d €S,V EVyy)

This parametrization ensures identifiability of all the parameters M,d and V. With
regard to interpretation, the mode of the distribution is MV7T and d represents the
concentration parameter (Chikuse, 2003). For notational convenience we omit the indi-
cator function and write the ML density as

etr(VDMTX)

OFI(%7 DTQ)

fME(X; (Ma d, V)) = ) (22)

where it is understood that M € V, ,,d € S,,V € V,,. The parametrization with
M, d and V enables us to represent the intractable hypergeometric function of a matrix
argument as a function of vector d, the diagonal entries of D, paving a path for an
efficient posterior inference procedure.

We note in passing that an alternative parametrization through polar decomposition
with F' = M K (Mardia and Jupp, 2009) may pose computational challenges since the el-
liptical part K lies on a positive semi-definite cone and inference on positive semi-definite
cone is not straightforward (Hill and Waters, 1987; Bhatia, 2009; Schwartzman, 2006).

3 Conjugate Prior for the M L-Distribution

In the context of the exponential family of distributions, Diaconis and Ylvisaker (1979)
(DY) provides a standard procedure to obtain a class of conjugate priors when the
distribution is represented through its natural parametrization (Casella and Berger,
2002). Unfortunately, for the ML distribution, the DY theorem can not be applied
directly, as demonstrated next. We therefore develop, in Section 3.2, two novel classes
of priors and present a detailed investigation of their properties.
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3.1 Inapplicability of DY Theorem for Construction of Priors for
the M L-Distribution

In order to present the arguments in this section, we introduce notations Py, = ,, u, and
14, that are directly drawn from Diaconis and Ylvisaker (1979). In brief, Py denotes
the probability measure that is absolutely continuous with respect to an appropriate
o-finite measure p on a convex subset of the Euclidean space, R%. In the case of the
ML distribution, p is the Haar measure defined on the Stiefel manifold. The symbol
X denotes the interior of the support of the measure p. As shown in Hornik and Griin
(2013) & = {X : || X, < 1} for the case of the ML distribution. According to the
assumptions of DY fX dPy(X) =1 (see paragraph after (2.1), page 271 in Diaconis and
Ylvisaker (1979)). In the current context, Py is the probability measure associated with
the ML distribution. Therefore,

/ dPy(X) = / fane (X) u(dX) =0,
X X

which violates the required assumption mentioned above. Secondly, in the proof of The-
orem 1 in Diaconis and Ylvisaker (1979) DY construct a probability measure restricted
to a measurable set A as follows.

(AN B)

Considering the notation z, = [Z pa(dZ) for any measurable set A, the proof of
Theorem 1 in Diaconis and Ylvisaker (1979) relies on the existence of a sequence of
measurable sets {Aj}j21 and corresponding points {z Aj}_j21 that are required to be

, where p(A) > 0.

dense in supp(u), the support of the measure u (see line after (2.4) on page 272 in Di-
aconis and Ylvisaker (1979)). It can be shown that a similar construction in the case
of the ML distribution would lead to a x, where z, does not belong to supp(u), the
Stiefel manifold. Therefore, the mentioned set of points {z Aj}j>1 that are dense in

supp(p) does not exist for the case of the ML distribution.

Together, the two observations make it evident that Theorem 1 in Diaconis and
Ylvisaker (1979) is not applicable for constructing conjugate priors for the ML distri-
bution. We would like to point out that the construction of the class of priors in Hornik
and Griin (2013) is based on a direct application of DY, which is not entirely applicable
for the M L-distribution. On the other hand, the idea of constructing a conjugate prior
on the natural parameter F' followed by a transformation, involves calculations of a
complicated Jacobian term (Hornik and Griin, 2013). Hence the class of priors obtained
via this transformation lacks interpretation of the corresponding hyperparameters.

3.2 Two Novel Classes of Conjugate Priors

Let 1 denote the normalized Haar measure on V, ,, p2 denote the normalized Haar
measure on V, ,, and py denote the Lebesgue measure on RY . For the parameters of
the M L-distribution, we define the prior density with respect to the product measure
pX 1 X pg on the space Vy, , x RE XV, .
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Definition 1. The probability density function of the joint conjugate prior on the pa-
rameters M,d and V for the ML distribution is proportional to

etr (V VDMT\IJ)
[0F1(%, DTZ)]V 7

g(M,d,V; v, W) = (3.1)

as long as g(M,d,V ; v, V) is integrable. Here v > 0 and ¥ € R"*P,

Henceforth, we refer to the joint distribution corresponding to the probability density
function in Definition 1 as the joint conjugate prior distribution (JCPD). We use the
terminology, joint conjugate prior class (JCPC') when we use

(M,d,V) ~ JCPD (- ;v, ), (3.2)

as a prior distribution for the parameters of the M L-distribution. Although, the JCPC
has some desirable properties (see Theorem 5 and Section 5.2), it may not be adequately
flexible to incorporate prior knowledge about the parameters if the strength of prior
belief is not uniform across the different parameters. For example, if a practitioner has
strong prior belief for the values of M but is not very certain about parameters d and
V', then JCPC may not be the optimal choice. Also, the class of joint prior defined in
Definition 1 corresponds to a dependent prior structure for the parameters M, d and V.
However, it is customary to use independent prior structure for parameters of curved
exponential families (Casella and Berger, 2002; Gelman et al., 2014; Khare et al., 2017).
Consequently, we also develop a class of conditional conjugate prior where we assume
independent priors on the parameters M, d and V. This class of priors are flexible
enough to incorporate prior knowledge about the parameters even when the strength
of prior belief differs across different parameters.

It is easy to see that the conditional conjugate priors for both M and V are ML-
distributions whereas the following definition is used to construct the conditional con-
jugate prior for d.

Definition 2. The probability density function of the conditional conjugate prior for d
with respect to the Lebesgue measure on Rﬁ is proportional to

d;v,mn :M, 3.3
A L (3. 7) >

as long as g(d; v,m,n) is integrable. Here v > 0, n € R? and n > p.

Note that g(d; v,m) is a function of n as well. However we do not vary n anywhere
in our construction, and thus we omit reference to n in the notation for g(d; v, n).

Henceforth we use the terminology, conditional conjugate prior distribution for d
(CCPD) to refer to the probability distribution corresponding to the probability density
function in Definition 2. We use the phrase conditional conjugate prior class (CCPC),
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to refer to the following structure of prior distributions
M ~ ML(;EMEP€Y),
d ~ CCPD(7 Van)a
V ~ ML (a ’YMa ’YDv VV) ) (34)
where M, d,V are assumed to be independent apriori. As per Definitions 1 and 2, the
integrability of the kernels mentioned in (3) and (5) are critical to prove the propriety

of the proposed class of priors. In light of this, Theorem 1 and Theorem 2 provide con-
ditions on v, ¥ and n for g(M,d,V ; v, ¥) and g(d; v,mn) to be integrable, respectively.
Theorem 1. Let M €V, ,, V €V, , and d € R Let ¥ € R"*? with n > p, then for
any v > 0,

(a) If | ¥, < 1, then
[ ][ e0ndvinw dud) duav) duon < .
Vap IV JRE
(b) If |¥||y, > 1, then
/ / / g(M,d,V; v,¥) dui(d) du (V') du(M) = oo,
Vo J Ve JRE

where g(M,d,V;v, ) is defined in Definition 1.

The conditions mentioned in this theorem do not span all cases; we have not ad-
dressed the case where ||[¥|, = 1. As far as statistical inference for practical appli-
cations is concerned, we may not have to deal with the case where |[¥|, = 1 as the
hyper-parameter selection procedure (see Section 4) and posterior inference (even in
the case of uniform improper prior, see Section 5.3) only involve cases with [|¥||, < 1.
We therefore postpone further investigation into this case as a future research topic of
theoretical interest.

Theorem 2. Letd € R, n = (11,...,m,) € R and n be any integer with n > p. Then
for any v >0,

/RP g(dﬂ/ﬂlan) dﬂl(d) < 00,

+

if and only if max 1 < 1, where g(d;v,m,n) is as defined in Definition 2.
<i<p

We can alternatively parametrize the CCPD class of densities by the following spec-
ification of the probability density function,

exp (Z?:1 Ujdj)

d;v, ICLAR,
it "o [oF1(%, 5]




880 Conjugate Priors and Posterior Inference

where max;<;<,n; < v. In this parametrization, if we consider the parameter choices,
v = 0 and B := —n, then the resulting probability distribution corresponds to the
Ezponential distribution with rate parameter 3.

Properties of the CCPD and JCPD Class of Distributions It is important to explore
the properties for the CCPD and JCPD class of distributions in order to use them in
an effective manner. Intuitive interpretations of the parameters v, ), ¥ are desirable, for
example, for hyper-parameter selection. Due to conjugacy, Bayesian analysis will lead
to posterior distributions involving JCPD and CCPD, and therefore, it is necessary
to identify features that are required to develop practicable computation schemes for
posterior inference. The following four theorems establish some crucial properties of the
CCPD and JCPD class of distributions.

Theorem 3. Let d ~ CCPD(-;v,m) for v > 0 and maxi<j<pn; < 1 where n =
(My-..,mp). Then

(a) The distribution of d is log-concave.

(b) The distribution of d has a unique mode if n; >0 for all j =1,2,--- ,p. The mode
of the distribution is given by m, = h~'(n), where the function h(d) is defined as
follows, h(d) := (hy(d), hao(d),- - - , hy(d))" with

o= (o (3 2)) o (52)

Notably, the mode of the distribution is characterized by the parameter n and does
not depend on the parameter v. The proof of the theorem relies on a few nontrivial

2
:, 2
that we have established in the supplementary material Section 1. It is easy to see
that the function h™! is well defined as the function h is strictly increasing in all its
coordinates. Even though subsequent theoretical developments are based on the formal
definition and theoretical properties of h™' and h functions, numerical computation of
the functions are tricky. The evaluation of the functions depend on reliable computation

properties of oFj ( ), i.e., the hyper-geometric function of a matrix argument,

2574
theoretically sound computation scheme for these functions.

of oI (" D 2) and all its partial derivatives. In Section 6.2, we provide a reliable and

On a related note, it is well known that log-concave densities correspond to uni-
modal distributions if the sample space is the entire Euclidean space (Ibragimov, 1956;
Dharmadhikari and Joag-Dev, 1988; Doss and Wellner, 2016). However, the mode of the
distribution may not necessarily be at a single point. part (b) of Theorem 3 asserts that
the CCPD has a single point mode. Moreover, the sample space of CCPD is d € RY,
which merely encompasses the positive quadrant and not the whole of the p dimensional
Euclidean space. Hence general theories developed for R? (or R) do not apply. In fact,
when 7; < 0, the density defined in Definition 2 is decreasing as a function of d; on the
set R4 and the mode does not exist as Ry does not contain the point 0. In all, part (b)
of Theorem 3 does not immediately follow from part (a) and requires additional effort
to demonstrate.
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In order to introduce the notion of “concentration” for the CCPD class of distri-
butions we require the concept of a level set. Let the unnormalized probability density
function for the CCPD class of distributions, g(x;v,n) (see Definition 5), achieve its
maximum value at m,, (part(b) of Theorem 3 ensures that m,, is a unique point) and
let

S ={x eR: : g(m:1,m)/g(my;1,m) > 1} (3.5)

be the level set of level [ containing the mode m,, where 0 <[ < 1. To define the level
set we could have used g(x;vg,n) for any fixed value of vy > 0 instead of g(x;1,n).
However, without loss of generality, we choose vy = 1.

Let P,(:;m) denote the probability distribution function corresponding to the
CCPD(-;v,n) distribution. According to Theorem 3, for a fixed 7 € R?, all distributions
in the class {P,(-;n) : ¥ > 0} have the mode located at the point m,,.

Theorem 4. Let d, ~ CCPD(:;v,m) for a fized n € RP with m,, being the mode of
the distribution. If P,(-;m) denotes the probability distribution function corresponding
to d,, then

(a) P,(Si;m) is an increasing function of v for any level set S; with I € (0,1),
(b) For any open set S C RY. containing m,,, P,(d € S;n) goes to 1 as v — oco.

The major impediment to proving Theorem 4 arises from the intractability of the
normalizing constant of the CCPD(-;v,n) distribution. Although involved, the proof
essentially uses the log convexity of o F} (%, %2> to get around this intractability.

From Theorem 4, it is clear that the parameter v relates to the concentration of
the probability around the mode of the distribution. Larger values of v imply larger
concentration of probability near the mode of the distribution.

Definition 3. In the context of the probability distribution CCPD (- ; n,v), the param-
eters n and v are labeled as the “modal parameter” and the “concentration parameter”,
respectively.

In Figure 1, we display three contour plots of the CCPD(- ;v,n) distribution with
n = (0.85,0.88). Note that the corresponding mode of the distribution is h=!(0.85,
0.88) = (7, 5) for all three plots. We can observe the implication of part (b) of Theorem 3
as the “center” of the distributions are the same. Contrastingly, it can be observed that
the “spread” of the distributions decrease as the value of the parameter v increases, as
implied by Theorem 4.

Theorem 5. Let (M,d,V) ~ JOPD(:;v, V) for some v > 0 and [|¥|, < 1. If ¥ =
MyDyV{ is the unique SVD of U with dy being the diagonal elements of Dy, then
the unique mode of the distribution is given by (Mg, h™1(dy), Vi) where the function
d — h(d) is as defined in Theorem 3.

Note that the mode of the distribution is characterized by the parameter ¥ and does
not depend on the parameter v. The proof of the theorem depends crucially on a strong
result, a type of rearrangement inequality proved in Kristof (1969).
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Figure 1: Density plots of CCPD(-; v,n) for different values of v where = (0.89,0.85).
Mode of the distributions are located at the point (7,5).

For the concentration characterization of JCPD, we define the level sets in the
context of the JCPD distribution. Let the unnormalized probability density function
for the JCPD class of distributions, g(M, d, V; v, ¥), achieve its maximum value at the
point (M, d, V) (see Theorem 5) and

A = {(M, d.V) € Vop x BRY X Vpp : g(M,d, Vi 1,0)/g(M,d, V;1,0) > l}

be the level set of level I from some [ € (0,1). The following theorem characterizes the
concentration property of the JCPD distribution.

Theorem 6. Let (M,d,V) ~ JCPD(-;v,¥), where |¥|, < 1. If P,(- ; ¥) denotes the
probability distribution function corresponding to the distribution JCPD(-;v, V), then

(a) P,(A;; W) is a strictly increasing function of v for any level set A; with 1 € (0,1).

b) For any open set A C V,,, x RE x V, , containing the mode of the distribution,
P + PP
P,(A; ®) tends to 1 as v — oo.

(¢) The conditional distribution of M given (d,V') and V' given (M, d) are ML distribu-
tions whereas the conditional distribution of d given (M, V') is a CCPD distribution.

Parts (a) and (b) of the above theorem characterize the concentration whereas part
(c) relates CCPD to the JOPD class of distributions. Part(c) also motivates the de-
velopment of a sampling procedure for the JCPD distribution. The proof of part (a)
Theorem 6 is similar to that of the proof of Theorem 4. The proof for part (b) of
Theorem 6 is more involved and depends on several key results, including the rear-

rangement inequality by Kristof (1969), the log convexity of o F} (%, %2), and the fact
that g(h='(n) ; v,n), the value of the unnormalized CCPD density at the mode, is a
strictly increasing function of the parameter 7.
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Note that unlike in the case of the CCPD distribution, we do not attempt to establish
the log concavity of JCPD, the reason being that the underlying probability space V,, p, x
R% %V, is non-convex. Nevertheless, it is evident that beyond a certain distance (based
on a suitable metric on V,, , xR x V), ) the value of the density drops monotonically as
one moves farther away from the center. Based on the characteristics of the parameters
v and ¥ of the JCPD class of distributions, we have the following definitions.

Definition 4. The parameters U and v in the distribution JCPD are labeled the
“modal” parameter and the “concentration” parameter, respectively.

Interestingly, both distributions CCPD and JCPD are parameterized by two param-
eters, one controlling the center and the other characterizing the probability concentra-
tion around that center. One may therefore visualize the distributions in a fashion simi-
lar to that of the multivariate Normal distribution controlled by the mean and variance
parameters. This intuitive understanding can help practitioners select hyper-parameter
values when conducting a Bayesian analysis with the CCPD and JCPD distributions.

Thus far we have established properties of CCPD and JCPD that relate to basic
features of these distributions. Additional properties, which are required for a Markov
chain monte carlo (MCMC) sampling scheme, are developed in Section 5.1.

4 Hyperparameter Selection Procedure

4.1 Informative Prior

We now present procedures for the selection of hyperparameter values aimed at incor-
porating prior beliefs about the parameters (M, d, V). Consider the scenario where a
practitioner has the prior belief that the values for the parameters M, d,V are close
t0 Myeticfs Qvetict, Vaelicf, respectively. A standard approach to incorporating this prior
knowledge is to select the hyper-parameter values in such a manner that the mode of the
corresponding prior distribution becomes Mpeiie s, petief s Voetiep- In order to achieve this
in the current context, we first compute = h(dpeiics) where h(-) is defined in (2.8)
in the supplementary material. Note that we always get a feasible 1 for every real
dbelief S Sp~

In the case of the CCPC class of priors, we choose n = 7, M = Myeiies, ¥ =
Vietiefs &V o= Ip,fyv = I, in (3.4). Theorem 3 guarantees that the above hyper-
parameter specifications yields a prior distribution that has mode at (Mperier, beiicfs
Vpeties)- From Theorem 3, we also see that larger values of the hyper-parameter v lead
to larger concentration of the prior probability around the mode. The hyper-parameters
¢P and 4P play a similar role for the ML distribution. Hence the hyper parameters
v, 6P and 4P are chosen to have larger values in case the practitioner has a higher
confidence in the prior belief.

In the case of the JCPC class of priors, we apply Theorem 5 to construct JCPD (see
(3.2)) with mode at Myepic £, Aoelic f Voelie f- In particular, we set U = Myeiic f Dy (Vietier)
where Dy is the diagonal matrix with diagonal elements ) = h(dpesics). Using the
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concentration characterization described in Theorem 5, the practitioner may choose the
value of the hyper-parameter v appropriately, where a larger value for the parameter v
implies greater confidence in the prior belief.

It is noteworthy that for both the JCPC' and CCPC class of priors, there is an inti-
mate connection between the sample size and the interpretation of the hyper-parameter
v. As a heuristic one may envisage v as incorporating “information” equivalent to v
many historic observations of the model.

4.2 Uniform Improper Prior

In the case where the practitioner does not have a prior belief about the parameter
values, an automatic procedure for hyper-parameter selection can be helpful. In this
and the next subsection, we discuss two automatic procedures to select the values of
the hyper-parameters. In the absence of prior information, usage of uniform prior is
common in the literature. In the context of the current model, for the JCPC and
CCPC class of distributions, the prior for the parameters (M, d, V'), is called a uniform
prior if
g(M,d,V;v,¥) x 1 and

Frac(M ;€M €P6V)g(dsv,m) frac (V5 A AP 4Y) o 1

Both classes of priors JCPC and CCPC are flexible enough to accommodate a uniform
prior. For JCPC, this can be achieved by setting ¥ = 0 in (3.2). Correspondingly, for
the CCPC class, the uniform prior can be constructed by choosing v = 0, £€P = 0
and v” = 0 in (3.4). Note that the resulting uniform prior is improper in nature as
the above choices of hyper parameters do not lead to a proper probability distribution.
Hence, it is necessary to check the propriety of the resulting posterior (see Section 5.3
for more details).

4.3 Empirical Prior

Another widely used automatic method is to use empirical information contained in
the data to select appropriate values of the hyper-parameters. Let W1, W5, ... Wy be
independent and identically distributed samples drawn from ML(- ; M, d, V). Consider
the sample mean, W = (Zivzl W;)/N. Let the unique SVD of the sample mean be
W = MyyDy7 V4. Construct candidate values Mieiiey = My, Vielief = Vi and i as
the diagonal elements of Dy7. One can set ¥ = W as the hyper-parameter in the case
of the JCPC prior. In the case of the CCPC class of priors, one can choose n = 7, and
for the hyper-parameters related to M and V', apply the same procedure as discussed
previously in this section. For both classes of priors, a value for v that is less than or
equal to 10 percent of the sample size N, is recommended.

Example 1. Let the practitioner have the following prior belief for the values of the
parameters M, d,V,

Myelier =

O O =
o~ O

7 1 0
s dyelief = [5} s Veeliep = [0 1] .
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As described previously in this section, we can compute 7 = h(7,5) = (0.89,0.85).
Hence, for the JCPC' class of priors, we choose the hyper-parameter values

089 0 } [1 o]T 089 0

0 085,
0 0850 1 o 0

10
=10 1 {
0 0
to ensure that JCPD(- ;\i/, v) has mode at Myciicf, Aveticf, Vieties for all values of v > 0.
The value of the hyper-parameter v should be chosen according to the strength of the
prior belief. In Figure 1, we display the resulting conditional distribution for d given
M, V. Figure 1 shows that the “center” of the distribution is located at (7,5). Figure 1
also displays the “spread” of the distribution around the mode when using v = 10, v = 20
and v = 35.

5 Properties of Posterior

The derivation of the posterior distributions for the JCPC and CCPC' class of priors
is straightforward since they were built with conjugacy in mind, which then entails
that the posterior distributions lie in the corresponding classes. However, inference for
the resulting posterior distributions is challenging because not only are the normalizing
constants intractable for both the JCPD and CCPD distributions, but also, the un-

normalized version of the corresponding density functions involve ¢ F} (%, %2). We first
focus our attention on developing properties of the posterior distribution when involving
JCPC and CCPC priors. In particular, we derive explicit forms of the posterior con-
ditionals under different prior settings, the linearity of the posterior mode parameters

and the strong consistency of the posterior mode.

5.1 Posterior Conditionals

Let W1, Ws,... Wy be independent and identically distributed samples drawn from
ML(-;M,d, V). Let W = Zf\;l W;/N. The likelihood of the data is

N

tr(VDMTW,
H% (5.1)
o of(3, )

First, let us assume a JCPD prior with parameters v and W. Theorem 5 not only
implies that the posterior has a unique mode, but also provides an expression for the
mode. Furthermore, we see that the corresponding posterior distribution is JCPD with

concentration (v + N) and posterior modal parameter Wy = (WFLN\I/ + yi\' NW). Let

flw, be the diagonal elements of the diagonal matrix .Dq;N, where \TIN = Mqu,NVN is
the unique SVD for ¥y . From Theorem 6, it follows that the full posterior conditionals
for the parameters M, d,V are ML, CCPD and ML distributions, respectively.

In Section 6 we shall use these results to construct a Gibbs algorithm. A part of the
Gibbs scheme would require sampling from the relevant CCPD distribution, which we
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propose to implement by simulating from the full conditional distribution of each of the
components of d given the rest, when d ~ CCPD(- ;v,n). To refer to this conditional
distribution in subsequent text, we have the following definition.

Definition 5. Letv > 0, w € ]R]_fl andn € RY with maxi<;<,n; < 1. A random vari-
able is defined to be distributed as CCPD; (-;w,v,m), if the corresponding probability
density function (with respect to the Lebesque measure on R) is proportional to

exp(v1;)

gj(x; w,y,n): v
or (2. 27)]

where A(x) is a diagonal matriz with diagonal elements (x,wo) € RY.

Let d = (di,...,d,) be a random vector with d ~ CCPD (-;v,n) for some
maxi<j<p”; < 1,v > 0. Let d(=7) be the vector containing all but the j-th component of
the vector d. Then the conditional distribution of d; given d=9) is CCPD;‘-(~ -d=9) vy, n),
i.e.,

dj | A9 ~ CCPD}(-;d™7), v, m).

Now, since the conditional posterior of d was shown to be CCPD, the conditional
posterior distribution of d; | d=9), M, V, {W;} ¥, follows a C’CPD;‘- distribution.

In the case of a Bayesian analysis with a CCPC prior, (3.4) and (5.1) determine the
corresponding posterior distribution to be proportional to
etr (VDMT) NW+G° M+ HV)

oF1(3; D2 /4)" N exp’d) (5.2)
2

where G0 = ¢V ¢P (fM)T and H? = 4V ~P (WM)T. The conditional probability density
for the posterior distribution of d given M, V| {Wl}i\;l is proportional to

T
exp ((V +N) (VINT/ + U%N??W) d)

n v+N
oF (5. 5)]

3 (5.3)

where 157 = (Y11, -+, Ypp) with Y = MTWV. It follows that the conditional posterior
distribution of d given M,V,{W;}Y | is CCPD(- ; in,fn) where iy = v + N and

N = (H_LNnJr HLNT/W> The conditional posterior distributions M | d, V,{Wi}fil
and V | d, M, {W;} Y, are ML distributions.

5.2 Linearity of Posterior Modal Parameter

We observe that the posterior modal parameter is a convex combination of the prior
modal parameter and the sample mean when applying the JCPC' class of priors. In
particular, from Section 5.1 we get

o v N
Uy = v .
N <1/+N JrV—l—NVV)
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In a similar fashion, we observe from (5.3) that the modal parameter for the con-
ditional posterior distribution of d given M, V,{W;}X, is a convex combination of the
prior modal parameter and an appropriate statistic of the sample mean. We should
point out here that the posterior linearity of the natural parameter of an exponential
family distribution directly follows from Diaconis and Ylvisaker (1979). However, in our
parametrization, the ML density is a curved exponential family of its parameters and
posterior linearity appears to hold for the “modal parameter”.

5.3 Posterior Propriety When Using Uniform Improper Prior

In the case where a uniform improper prior is used, the corresponding posterior is
proportional to

etr (N VDMTW)

R (2, 2"

(5.4)

where W = & Zf\;1 W; (see (5.1)). It follows from Theorem 1 that the function in (5.4)
leads to a proper distribution, JOPD(- ; N, W), if ||W||2 < 1. The following theorem
outlines the conditions under which HWH2 <1

Theorem 7. Let Wy,..., Wy be independent and identically distributed samples from
an ML-distribution on the space Vy, p. If

(a) N>2,p<n,
(b)) N>3,p=n>3,

then HWH2 < 1 with probability 1, where W = %; Zfil W;.

5.4 Strong Consistency of the Posterior Mode

In the case where we use a JCPD(-; v, ¥) prior for Bayesian analysis of the data {W,}}¥ |
the corresponding posterior distribution is a JCPD with concentration v + N and poste-

rior modal parameter \/I}N = (VJFLN\I/ + %W) (see Section 5.1). Let (I\lN = MyDy V&

be the unique SVD of 7 ~ with dg being the diagonal elerr{entsAof p\y Then from
Theorem 5, the unique mode of the distribution is given by (My,dy, Vy) where

MN = M\p,d]\/ e hil(d\p) and VN = V.

The form of the function h(d) is provided in Theorem 3. The nontrivial aspect of finding
the posterior mode is the computation of the function h=!(dy). In our applications, we

use a Newton-Raphson procedure to obtain h=!(dy ) numerically. We use large and small

argument approximations for o F} (%, DTz) (see Jupp and Mardia (1979)) to initialize the

Newton-Raphson algorithm for faster convergence. Note that the success of the Newton-
2

Raphson procedure here depends on the efficient computation of ¢F} (%, DT) and its
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partial derivatives. In Section 6.2, we provide a method to compute these functions
reliably.

The following theorem demonstrates that the mode of the posterior distribution is
a strongly consistent estimator for the parameters M, d, V.

Theorem 8. Let Wy, ..., Wy be independent and identically distributed samples from
ML(-; M,d, V). Let My,dy and Vy be the posterior mode when a JCPC prior is
used. The statistic ]\me bN and VN are consistent estimators for the parameters M, D
and V. Moreover

(My,dy,Vy) L5 (M,d,V) as N — oo,

where a.s. stands for almost sure convergence.

6 MCMC Sampling from the Posterior

Apart from finding the posterior mode, a wide range of statistical inference procedures
including point estimation, interval estimation (see Section 8) and statistical decision
making (see Section 8) can be performed with the help of samples from the posterior dis-
tribution. For the JCPD and CCPD classes of distributions, neither is it possible to find
the posterior mean estimate via integration, nor can we directly generate i.i.d. samples
from the distributions. We therefore develop procedures to generate MCMC samples
using a Gibbs sampling procedure, which requires the results on posterior conditionals
stated in Section 5.1.

It follows from Theorem 6 and Section 5.1 that under JCPD prior the conditional
distribution of M given d,V and the conditional distribution of V' given M, d are ML
distributions, while the conditional distribution of d given M,V is CCPD. Consequently,
the conditional distribution of d; | d=) M, V,{W;}N., follows a CCPD; distribu-
tion (see Definition 5). Also, let us assume that the unique SVD for oy (UxV D) =
Mé”D%[(VéW)T and for oy (V5 MD) = M\%DE(V{)T. Also, let us denote the vector
containing the diagonal element of the matrix MZTW¥ NV to be 715, Based on the above
discussion, we can now describe the algorithm as follows.

Algorithm 1 Gibbs sampling algorithm to sample from posterior when using JCPC
prior.

1: Sample M | d,V,{W;}Y, ~ ML ( ; é”vd%f’vé\l)v
2 Sample d; | d" M,V AW}, ~ CCPD; (- 3d"7) o, mg ) for j=1...p,
s Sample V[ d VAW, ~ M (-3 MYV VY.

If instead we use a CCPC prior, (see (3.4)) for Bayesian analysis of the data, then
the full conditional distribution of M,d,V are ML, CCPD and ML distributions,
respectively. The steps involved in the Gibbs sampling Markov chain are then as fol-
lows.
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Algorithm 2 Gibbs sampling algorithm to sample from posterior when using CCPC
prior.

1: Sample M | d,V,{W;}}¥; ~ ML (-; S¥,5E,S%),

2: Sample d; | d=), M,V {W;}}X, ~ CCPD} (- ;d=9), iy, iy, ) for j=1,...p,

3: Sample V | M, d, {W;}, ~ ML (-; SM,SH,5}),

where Dy, )y are defined in (5.3) and (S, SE,S%), (S¥,SE, S};) are the unique SVD
of the matrices (DVT NW o+ G°) and (DVT NW o+ HO), respectively.

To implement the above algorithms we need to sample from the ML and CCPD
distributions. For the former, we use the procedure developed in Hoff (2009) to sample
from the ML distributions. Sampling from CCPD; is much more involved and is ex-
plained in detail in the next subsection. The following result provides some theoretical
guarantees that shall be useful for this specific sampler.

Theorem 9. Let d ~ CCPD(;;v,m) for some v > 0 and m = (n,...,m,) where
maxi<j<p”; < 1. Let g1(-; d=Y v, n) denote the unnormalized density corresponding
to CCPD3(- ;d=Y v,m), the conditional distribution of dy given (da, ..., d,).

a) The probability density function corresponding to CCPD7(- ;d( 1),1/,7] is log-
1
concave on the support R, .

(b) If 0 < my < 1, the distribution CCPDY(- ;d=Y,v,m) is unimodal and the mode
of the distribution is given by m where hi(m) = n1. If 1 < 0 then the probability
density is strictly decreasing on R.

Dy
(c) If B > m is such that %M < € for some ¢ > 0, then P(dy > B |
dg,...,dp)<€.

(d) Let M..;z be any positive number, then for all di > Mepit,

gi(dr; d"V,vm) < Kl &I eap( —v(1 — ) dy),

n,p,Mecrit

(6.1)

where
n/2—1 v

o (/95"
mps Merit P(n/Q) { V Mcric eiM”it In/Q—I(Mcrit)}

Even though parts (a) and (b) of the above theorem follow immediately from The-
orem 3, they are included here for completeness; all the properties play a crucial role
in the construction of the sampling technique for CCPD}. The proof of part (c) is
essentially an implication of the fact that the right tail of the distribution decays at
an exponential rate. To show part (d) we have developed a nontrivial lower bound for

2
of1 (%,DT)-
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Remark 1. The constant sz,p,Mcm in part (d) of Theorem 9 converges to a finite con-
stant as M.z approaches infinity. It follows from the properties of the Bessel function
that

. M. 1
M h?;oo V Merice Mcr”Ia—l(Mcm't) = \/—2_7'('
or all a > 2. Hence for larger values of M., the value o _approaches
la> 3 H l I Moz, the val Ko h
n/2—17V ‘
[%} , a nonzero finite constant depending on n,p,v.

Note that the ratio g, (B; d=Y,v,1)/g1(m; d=Y,v,n), mentioned in part (c), is
free of the intractable normalizing constants of the distribution. Therefore, the numer-
ical computation of the ratio is possible as long as we can compute the corresponding

oF1 (%, %). Using Theorem 9, we develop an accept-reject sampling algorithm that
can generate samples from CCPD; with high acceptance probability. The detailed con-
struction of the sampler is provided next. We conclude this section with a description

of an efficient procedure for computing the oF; (%, %2) constant.

6.1 A Rejection Sampler for the CCPD; Distribution

We now describe a rejection sampling procedure from the conditional distribution of
(dv | (d2,---,dp)) when d ~ CCPC(:;v,n) for some v > 0 and max 7; < 1. Here

1<5<p
n=(M,...,np). Let m be the mode of the conditional distribution, g:(-) := g(-; v,n |
(da,...,dp)), of the variable dy given (da,...,dp) when 71 > 0. In case 1, < 0, we set
m to be 0. Using the properties of the conditional distribution described in Theorem 9,
we compute a critical point M, such that P(di > Meriz | (da, -+, dp), {X; }jvzl) <e.
Here we have chosen € = 0.0001.

To construct a proposal density g, (x), we employ two different strategies, one for the
bounded interval (0, M.;+] and the other using Theorem 9 to tackle the tail, (M, 00),
of the support of the conditional posterior distribution of d;.

The procedure is as follows. Let § = M it/ Npin where Ny, is the total number of
partitions of the interval (0, M.,;;]. Consider k = ([m/d] + 1) where [m/§] denotes the
greatest integer less than or equal to m/§. Now define the function

k—1
Gi(@) = > 9103 0) LiG—vsion (@) + g1(m)((—1)s.s)) (x)
j=1
Npin
+ ) 1((G = 1)6) Ig-1ysj6) (@)
j=k+1

K T Peap( —u(1— ) d) g, 0o (), (6.2)

where K;p’Mcm is as defined in part (d) of Theorem 9.
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From Theorem 9 it follows that g, (x) > g¢1(x) for all z > 0 as ¢1(-) is a unimodal
log-concave function with maxima at m. We consider,

4 91(J0) if 1<j<[3]+1,
6 g1(m) ifj=[5]+1,
% =9 607 —1)9) if [5]+1<j < Ny,
t (A3 A (1—m))

P, Merit [p(1—np)]r(n—D/2+1

where T’ (M,Mcﬁw(l — 171)) denotes the upper incomplete gamma function.

For the case where M,,.;; tends to oo (see Remark 1) the constant K :L’p’ Morir approaches

a finite constant, whereas I' ((V("_#,Mm»tu(l — 771)> monotonically decreases to

zero. Therefore, the positive constant ¢, ., can be made arbitrary close to zero by
choosing a suitably large value for M,,;; when the value of n, p, v, 1 are fixed. Note that
the quantities {g; };V:blﬂ may not add up to 1, therefore we construct the corresponding

set of probabilities, {pj}é-\f:“l”'Irl where p; = Qj/zé\[ﬁ”“ gj forj=1,2,---, Ny +1. The

following algorithm lists the steps involved in generating a sample from the distribution
corresponding to the kernel g;(-).

Algorithm 3 Steps for the rejection sampler for CCPD}.

1. Sample Z from the discrete distribution with the support {1,2,..., (Ny,+1)} and

corresponding probabilities {p;} ;y:bil"H,
2: if Z < Np;,, then

Sample y ~ Uniform ((Z — 1) §, Z9),

else Sample y ~ TruncatedGamma(shape =
(Mcrit7 OO))
end if
Sample U ~ Uniform (0, 1),

if U< 91 then
91 (y)

Accept y as a legitimate sample from g¢; (-)
else Go to Step 1
10: end if

w, rate = v(1 — 1), support =

Figure 2 shows a typical example of the function g;(x) and the corresponding g, ().
The blue curve represents the unnormalized density g;. The black curve and the red
curve after M,,;; constitutes the function g; (defined in (6.2)). Note that the red curve
after the point M,.;; represents the last term (involving K:Lm’ Mcrqit) in the summa-
tion formula in (6.2). In Figure 2(a), the values of § and M,.;; are set such that
the key components of g; and g;(x) are easy to discern. On the other hand, Fig-
ure 2(b) displays the plot of g;(x) when recommended specification of M..;; and §
are used.

The choice of Ny, plays a crucial role in the algorithm and is required to be de-
termined before constructing the proposal density for the accept-reject algorithm. Note
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Figure 2: The blue curves represent g;, the unnormalized density of CCPD7 distribu-
tions. The black curve and the red curve after M.,;; constitutes the function g, the
proposal density for the accept reject algorithm. The panel(a) displays the key aspects
of the densities while panel(b) shows the proposal density when recommended specifi-
cations of M,.;; and ¢ are used.

that Ny, and 0 are interconnected. If one is specified, the value of the other can be
determined. We decide to choose the parameter § and compute the corresponding Ny, .
In the case where the concentration parameter is high, a finer partition of the proposal
histogram (smaller value of §) is required to keep the acceptance rate of the algorithm
high. Based on our empirical results, we recommend selecting § to be of the order of
%. The acceptance probability remains stable across different choices of v when the

value ¢ is set accordingly (see Figure 3). The estimated acceptance probabilities, used
in Figure 3, were calculated based on 10000 Monte Carlo samples for each value of
v varied from 1 to 100. The relationship between Np;, and ¢ and v is presented in
Table 1.

Finally, successful implementation of the sampling algorithm developed in this sub-
section requires the computation of o Fy (%, DTQ) , a key step for the computation of g; (-).

In Section 6.2 we discuss the procedure that we have adopted to compute o F} (%, %2).

6.2 Computation of (F} <” D—2>

27 4

We first describe an efficient and reliable computational procedure to compute the
function o F} (%, DTQ) when the argument matrix D is of dimension 2 x 2. The procedure
is relevant to many applications considered in the field (Downs et al., 1971; Downs, 1972;
Jupp and Mardia, 1979, 1980; Mardia and Khatri, 1977; Mardia et al., 2007; Mardia

and Jupp, 2009; Chikuse, 1991a,b, 1998, 2003; Sei et al., 2013; Lin et al., 2017). We
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Figure 3: Estimated acceptance probability of the sampling algorithm when the value
of the concentration parameter varies from 1 to 100. The parameter § is chosen to be
reciprocal of \/v.

emphasize that the computational procedure described below is applicable for analyzing
data on V, 5 for all n > 2.

Consider the representation developed in Muirhead (1975) for the Hypergeometric
function of a matrix argument

0 dkdk
oFi(e,D) = > m oF1 (c+ 2k, dy + da), (6.3)
k=0 2/k 2k ™

where D is a 2 x 2 diagonal matrix with diagonal elements d; > 0,ds > 0. From Butler
and Wood (2003) (see page 361), it can be seen that,

I' (c+2k)
(Vi ) !

where I.yo,—1(+) is the modified Bessel function of the first kind with order (¢4 2k —1).
Hence from (6.3) and (6.4), we get that

oF (c+2k,dy + do) =

)Ic+2k71 (2 dy + d2) , (6.4)

ReD) = 3 gl T+ Luno VL E)
041 \C, = ! /
k=0 (C_ %)k (€)gr k! (\/m)( +2k—1)
- (6.5)
k=0

—.5 c k
where A, = 11:((Cc+l;_)g(),€)! v -s(-i;(;iz“’“’” Teiop 1 (2\/d1 + dg). Note that

Apor Tletk— 5k Tegor (Vi +da)  dids
Ay, Dle+k+.5)(k+ 1! Ieyop—1 (2v/dy + d2) (di + d2)
4dyds

(2¢+2k —1)(2k +2)(2k + ¢)(2k + 2c + 1)’
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vi|ad Estimated Acceptance probability | Ny,
111 0.95813 42
1105 0.977517 85
1 1 0.333333 | 0.984155 127
1102 0.988924 212
11]0.1 0.996314 425
1] 0.05 0.998104 851
3105 0.952835 27
3 | 0.333333 | 0.963206 40
3102 0.977326 67
3101 0.988924 135
3| 0.05 0.995124 271
511 0.885818 3

51 0.5 0.941886 7

5 | 0.333333 | 0.960246 10
51 0.2 0.973994 17
51 0.1 0.989218 35
51 0.05 0.993246 71

Table 1: Values of the Ny;,, 6 and acceptance probability for algorithm to generate
values from CCPD,(n,v) for v =1,3,5.

where the last inequality follows from I, (x)/I,(z) < 3o for x>0, > —1 (see
page 221 in Ifantis and Siafarikas (1990)). For fixed values of dy,ds we can find M such
that Ay < eand M* > (dy d)/(4€;) for some €; < 3 and a predetermined error bound
€. For such a choice of M, if k is any integer such that k > M, then

Akt < 4dids
A 7 (2c+2E-1)2k+2)(2k+¢)(2k + 2¢+ 1)
4dyds

(2 + 2M — 1)(2M + 2)(2M + ¢)(2M + 2c + 1)

= (ZldQ){ 2c+2M1)(2M+126)(M2i\4+c)(2M+2c+1)}
: (Zd){ M+ 262_1)(M+f‘f(M+;)(M+20;1)}
< (6.7)

where the last inequality follows due to the fact that M* < (M + 2¢2)(M + 1)(M +
£)(M + 2¢tL) as ¢ > 1. Hence from (6.5) we get that

o0

|0F1 C, D ZAk Z Ak § AM Z Ellc_Ju < i < €. (68)
k=M+1 k=M+1
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Consequently, for a given value of the matrix D and an error level €, we can select M
accordingly, so that ¢ Fj (¢, D) is approximated as

M

dk dk U (c+2k) Iepon—1 (2v/dy +da)
of1(c,D) =~ Z —T 2 ol (c+2k—1)
k=0 (C 2)k (C)Qk ' (\/ d1 + dz)

where the error in the approximation is at most e.

, (6.9)

In the case when the matrix D is of dimension p X p with p > 2, we rely on the
computational technique developed in Koev and Edelman (2006). Development of ef-
ficient computational schemes for the hyper geometric function of a matrix argument
in general dimension is an active area of research (Gutiérrez et al., 2000; Koev and
Edelman, 2006; Nagar et al., 2015; Pearson et al., 2017). In principle, the theoretical
framework developed in this article integrated with the general computation scheme
specified in Koev and Edelman (2006) can handle data on V, , for arbitrary integers
n > p > 2, but the results from the combined procedure may lack precision as it inherits
the limitations of the algorithm in Koev and Edelman (2006) (see page 835 in Koev
and Edelman (2006)). In the following remark we specify the assumptions under which
the combined procedure can be applied effectively.

Remark 2. The algorithm developed in Koev and Edelman (2006) is a general pro-
cedure for computing ,Fy(-) for arbitrary integers p,q > 0. Naturally, the algorithm
applies to o F1 which is the object of focus in the current context. Due to its generality,
the computational scheme has certain limitations. In particular, it requires appropri-
ate specification of a “tuning parameter” that can not be determined in an automated
manner. However, from an empirical exploration of the procedure, we observed that the
corresponding outputs can be quite robust. Particularly, the output was found to sta-
bilize after a certain point (we will call this the “stabilization point”) when the value
of the tuning parameter was gradually increased. For the case of p = 2, if the tuning
parameter is specified to be larger than the stabilization point, the output from Koev and
Edelman (2006) is very close to the true value, as determined by our arbitrary precision
algorithm. Extrapolating to p > 3, we presume that the true value of the corresponding
hyper geometric function will be close to the output of Koev and Edelman (2006) if
the tuning parameter is set larger than the “stabilization point”. As the “stabilization
point” is observed to be larger for larger values of D, we can set the value of the tuning
parameter to a single prespecified number for an entire analysis only if we assume that
the diagonal elements of the matriz D are bounded above by a prespecified finite number.
Under this assumption, we can rely on Koev and Edelman (2006) for the analysis of
data on Vy, ,, n > p > 3. In that case, the combination of our theoretical framework
and the algorithm for the computation of the hypergeometric function from Koev and
Edelman (2006) would work effectively for practical applications (see Simulation Section
7.2).

n D?
204
targeted towards a specific case, has a theoretical guarantee for a desired level of preci-
sion of its output. Since many statistical applications, as mentioned earlier, are about
analyzing data on V,, 2, the computation procedure we have designed specifically for V,, o
has its own merit.

In contrast, the procedure to compute oF ( ) that we have developed, though
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7 Simulation

To evaluate the performance of the procedure presented in the previous sections, we

performed simulation experiments. We considered two different setups. In the first,

we analyzed simulated datasets in V, , where we varied n to assess its effect on the

posterior estimation efficiency. Here, the value of p was fixed at 2 and the computation
2074

data on V, , to demonstrate the generic applicability of our framework by setting p = 3,

n = 5. Here, we used the procedure in Koev and Edelman (2006) to calculate the value

o (5.5).

of o F} (” D 2) developed in Section 6.2 was utilized. In the second setup, we analyzed

7.1 Simulation Setup (p = 2)

We present results from experiments with simulated data where we varied the dimension
of the Stiefel manifold, n, across a range of values. The objective of this simulation
study was to see how the error rates varied with the dimension n. Specifically, we
generated 3000 observations using ML distribution on Vs 2, Vs 2, V19,2, and Vi35 2. These
correspond to the Stiefel Manifolds with dimension [n = 3,p = 2], [n = 5,p = 2],
[n = 10,p = 2], and [n = 15,p = 2], respectively. We generated 50 datasets for each
simulation setting using the algorithm mentioned in Hoff (2009). In order to generate
data for each dataset we fixed the parameters M and V to the canonical orthogonal
vectors of appropriate dimension and generated two entries of the parameter D from
two independent gamma distributions.

We ran posterior inference for each of these datasets using 3000 MCMC samples
with an initial 1000 samples as burn-in. We used the posterior mean of the parameter ¥’
as the point estimate F. Finally we assessed our performance by computing the relative

error for the estimate of Fyue = Mipye Dirue Vit We define the relative error as:

||ﬁ B Ftrue”
HFtrueH ’

where || - || denotes the matrix Frobenious norm. Figure 4 shows the average relative
error with the corresponding standard deviation of estimation for Vs 2, V5 2, V10,2, and
V15,2 for N = 2000 (panel (a)) and for N = 3000 (panel (b)). The average relative errors
do not seem to exceed 11% and 9% for N = 2000 and 3000, respectively even with the
dimension as high as 15. The error rate tends to increase with higher dimension, i.e.,
value of n. Also, we investigated the relationship with the total sample size and found
these error rates to decrease with larger sample sizes. For example, the reduction in
average relative error rate for n =5 and N = 2000 is around 2%. Overall, these results
demonstrate the robustness of our inference procedure.

7.2 Simulation Setup (p > 2)

Having demonstrated the efficiency of our method for a range of values of n with p = 2,
we now present an example of a generalized simulation scenario for p > 2. Here we
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(a) with 2000 data points (b) with 3000 data points

Figure 4: Relative error of F for matrices with different dimensions.

use the procedure in Koev and Edelman (2006) to numerically approximate the value
of oF} (%, DT2> where D is a p x p dimensional matrix with p > 2 (see Remark 2).
Through the entire simulation we fixed the tuning parameter required in the compu-
tation of ¢F} (g, %2) to a large prespecified value. Here we give a specific example
with n = 5 and p = 3. We generated 50 datasets of 500 observations each using the
ML distribution with different parameters, on Vs 3. We then ran posterior inference for
each of these datasets using 1100 MCMC samples with an initial 100 sample burn-in.
We used the posterior mean of the parameter F' as before as the estimate of the true
parameter F'. Using the same metric we computed the average relative error of the es-
timation (Figure 5). We observed that our sampling algorithm for d; (i = 1,2,3) runs
with a very low rejection rate. As can be seen in Figure 5, the average relative errors

do not exceed 3%, demonstrating the general applicability of our framework beyond
p=2.

Codes for the algorithms are available at https://github.com/ssral9/Stiefel_
Bayes.git.

8 Application

Finally, to showcase the methodology developed in this paper, we analyzed the vec-
torcardiogram (VCG) dataset discussed in Downs et al. (1971). The dataset contains
vectorcardiograms of 56 boys and 42 girls aged between 2 and 19 years. Individuals
in the dataset are partitioned into four groups: groups 1 and 2 consist of boys aged
between 2-10 and 11-19 years, while groups 3 and 4 consist of girls aged between 2-10
and 11-19 years. Each sample contains vectorcardiograms acquired using two different


https://github.com/ssra19/Stiefel_Bayes.git
https://github.com/ssra19/Stiefel_Bayes.git
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For matrices with dim (5x3)

o
9
N

||IF_tr=F_est||*2 / ||F_tr|[*2

0.01-

0 10 20 30 40 50
dataset

Figure 5: Average relative error for datasets on Vs 3.

measurement systems, the Frank lead system (Frank, 1956; Downs et al., 1971) and the
McFee lead system (Downs et al., 1971). Here, we restrict ourselves to groups 1 and 3
and measurements acquired using the McFee lead system. For each individual sample,
we considered the pair of orthogonal vectors that provides the orientation of the “QRS
loop” (Downs et al., 1971) in R3. Each orientation in the sample is defined by a 3 x 2
matrix with orthonormal columns, i.e., an element in V5 9. Additional details regarding
the measurements, data structures, and data processing can be found in Downs et al.

(1971).

8.1 MCMC Convergence Diagnostics

We ran several MCMC convergence diagnostic tests for the MCMC samples from the
posterior of F' = M DV, which is the natural parameter of the Matrix Langevin distri-
bution. The parameter F' uniquely identifies and is uniquely identified by the parameters
M, D,V. Moreover the elements of the matrix M and V are interrelated whereas the
components of F' are not thus constrained. We therefore focused the diagnostics on
F and studied its estimation accuracy. As notation, F; ; denotes the [i, j]-th element
of F. We first ran convergence diagnostics based on potential scale reduction factor
(PSRF) (Gelman et al., 1992). We ran the MCMC procedure three times with different
random seeds for 10,000 MCMC iterations with a 1000 sample burn-in. The PSRF is a
weighted sum of within-chain and between-chain variances. The calculated PSRF was
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Figure 6: PSRF for all six components of posterior samples of F'.

1.00 with an upper confidence bound 1.01, indicating no evidence of lack of convergence.
We show how the PSRF changed with the iterations in Figure 6 for all components of
F. We also calculated a multivariate potential scale reduction factor (MPSRF) that was
proposed by Gelman and Brooks (Brooks and Gelman, 1998). The calculated MPSRF
was 1.01, also confirming that there was no lack of convergence. The log-likelihood is
yet another measure representative of the multi-dimensional parameters. In this case
too, the calculated PSRF for log-likelihood was 1.0 with an upper confidence bound 1.0,
indicating no evidence of lack of convergence. Finally, we calculated the Heidelberg and
Welch (HW) diagnostic (Heidelberger and Welch, 1981, 1983) which is a test statistic
based on the Cramer-von Mises test statistic to accept or reject the null hypothesis that
the MC is from a stationary distribution. This diagnostic has two parts and the MC
chain for F' passed both the Stationarity and Halfwidth Mean tests. This test too, then,
showed no evidence for lack of convergence.

Figures 7(a), 7(b) and 8 show the traceplots, autocorrelations and densities of differ-
ent components of the posterior samples of F' from the three runs, respectively. Notably,
the densities of all the components of F' are unimodal, confirming convergence.
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Figure 7: Traceplots and autocorrelations of all six components of posterior samples of
F' from three runs.

8.2 Parameter Estimation

We modeled the VCG dataset using ML distributions on Vs 2. There were 28 and 17
observations in groups 1 and 3, respectively. We assumed that each i.i.d. observation
in group 1 follows a ML distribution with parameters My, oup1; Agroupt and Vgroupt,
and likewise, i.i.d. observations in group 3 follow a ML distribution with parameters
M group3, Qgroups and Viroups. We used the uniform improper prior for estimation of the
parameters related to both groups (see Section 4). From (5.4), we note that the pos-
terior distributions of (Mgroupts @groupt, Varoupt) and (Mgroup3s @groups, Vgroups) given
the data are

JCPD (-3 28, Wgroupt) and JOPD (-5 17, W groups) where

o 0.687  0.576 B 0.682  0.585
W groupt = |0.551  —0.737| and W y,oups = |0.557 —0.735
0.122  0.142 0.125  0.055

are the sample means of the observations in groups 1 and 3, respectively. We verified the
spectral norm condition in Theorem 1 for the posterior distributions to be well defined;
we found ||I/[/"qmw,1||2 = 0.946 and ||Wg,~0up3||2 = 0.941.

Using Theorem 3, we can infer that the above-mentioned posterior distributions have
unique modes. Also from Theorem 3 we can compute the posterior mode and they were

- ~0.650 0.733] 16.329] ~ 0059  0.998
Mgroupl = 0.743 0.668 7dgroup1 = 5.953 7Vg7"0u1?1 = —0.998 —0.059] -
—0.157 0.127 ' ‘ '
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Figure 8: Densities of all six components of posterior samples of F' from three runs.

Similarly, we can compute the posterior mode for the parameters of group 3 (not
reported here). To estimate the posterior mean for the parametric functions

Fgroupl = Mgroupngroupl ‘/‘-qTroupl and Fgroup3 = Mgroup3-Dgroup3VYg,€'gup37
we ran the MCMC based posterior inference procedure described in Section 6 to generate
MCMC samples from each of the posterior distribution.

For group 1, the posterior mean for the parametric function Fi,oup1
Mgraupngrouplngz;oupl was
~ 5.183  9.086 ~ 1.527 2.354
Foroupt = [3.583  —10.996 | , SD(Fgroup1) = |1.475 2.665| ,
0.919 2.221 0.596 0.898
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Figure 9: Estimated posterior density for the parameter F'. The estimated density for
Group 1 and Group 3 are marked with Red and Blue lines respectively.

where the entries of the matrix SD(ﬁ group1) DProvides the standard deviation for the
corresponding entries of F group1- From the MCMC samples, we also estimated the
posterior density of each entry of Fy,oup1 and Fyroup3. Figure 9 shows the corresponding
density plots. The estimates related to group 3 were

_ 3.249  8.547 _ 1.263 2.123
Foroups = |3.798  —10.658| and SD(F groups) = |1.359  2.624
1.605  0.796 0.603 0.83

8.3 Hypothesis Testing

Finally, we conducted a two sample hypothesis test for comparing different data groups
on the Stiefel manifold. We have chosen hypothesis testing as one of our demonstra-
tions because a general two sample test that does not rely on asymptotics or on the
concentration being very large or very small, has not been reported in the literature for
data lying on the Stiefel manifold (Khatri and Mardia, 1977; Chikuse, 2012). The pro-
cedure described here is valid for finite sample sizes and does not require any additional
assumptions on the magnitude of the parameters.

We considered the VCG dataset and carried out a test to compare the data group
1 against the data group 3, i.e.

HO : Fgroupl = FgroupS Vs HA : Fgroupl 7& Fgroup3~
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To test the hypotheses in a Bayesian model selection framework, we considered two
models Modely and Model;. In Modely, we assumed Mgroupt = Mgroups, Qgroupt =
dgroup3, Vgroupt = Vgroups while in Model;, we did not impose any structural depen-
dencies between the parameters. We assumed the prior odds between the models to be
1 and computed the Bayes factor

B, P(Data | Modely)
O™ P(Data | Modely)’

where Data denotes the combined data from both groups. Since an analytic form for the
Bayes factor is not available in this case, we used an MCMC based sampling technique
to estimate the Bayes factor. We used the empirical prior (see Section 4) with the choice
of prior concentration set at 1 percentage of the corresponding sample size. We followed
the procedure described in Section 6 to generate MCMC samples from each of the
required posterior distribution. We used the harmonic mean estimator (HME) (Newton
and Raftery, 1994) to estimate the marginal likelihoods required for computing the
Bayes factor. It is well known that the HME may not perform well when using improper
priors. Consequently, unlike in Section 8.2 where we focus on the parameter estimation,
we use an informative prior for this part of the analysis. We observed that the HME
estimator is stable for the current context. The estimate of log(Bo1) was 51.994. Hence,
we conclude that there is not enough evidence to favor Model, over Modely.

9 Discussion and Future Directions

In this article, we have formulated a comprehensive Bayesian framework for analyzing
data drawn from a ML distribution. We constructed two flexible classes of distributions,
CCPD and JCPD, which can be used for constructing conjugate priors for the ML
distribution. We investigated the priors in considerable detail to build insights into
their nature, and to identify interpretations for their hyper-parameter settings. Finally,
we explored the features of the resulting posterior distributions and developed efficient
computational procedures for posterior inference. An immediate extension would be to
expand the framework to mixtures of ML distributions, with applications to clustering
of data on the Stiefel manifold.

On a related note, we observed that the tractability of the set of procedures pro-
posed in this article depends crucially on one’s capacity to compute the hypergeometric
function oFy (n/2, FTF/4) as a function the matrix F. We were naturally led to a
modified representation of oFy (n/2, D?/4) (see Section 2) as a function of a vector
argument d. We explored several properties of the function ¢F} (n/ 2, D? /4), that are
applicable to research areas far beyond the particular problem of interest in this article.
As a special note, we should highlight that we designed a tractable procedure to com-
pute the hypergeometric function of a n x 2 dimensional matrix argument. There are
many applications in the literature (Mardia and Khatri, 1977; Jupp and Mardia, 1979;
Chikuse, 1998, 2003; Lin et al., 2017) where the mentioned computational procedure

of oFy (%, %2) can make a significant impact. As such, the manner in which we have

approached this computation is entirely novel in this area of research and the procedure
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is scalable to “high-dimensional” data, such as in diffusion tensor imaging. In the near
future, we plan to further explore useful analytical properties of the hypergeometric
function, and extend our procedure to build reliable computational techniques for the
hyper-geometric function where the dimension of the matrix argument is n x p with
p>3.

Finally, there is scope for extending the newly proposed family of prior distributions
to a larger class of Bayesian models involving more general densities on manifolds.
The properties of the prior and posterior discovered can also be seamlessly generalized.
The coming together of state-of-the-art Bayesian methods incorporating topological
properties of the underlying space promises to be a rich area of research interest.

Supplementary Material

Supplementary material: Conjugate Priors and Posterior Inference for the Matrix Lange-
vin Distribution on the Stiefel Manifold (DOI: 10.1214/19-BA1176SUPP; .pdf).

References

Absil, P.-A., Mahony, R., and Sepulchre, R. (2009). Optimization algorithms on matriz
manifolds. Princeton University Press. MR2364186. doi: https://doi.org/10.1515/
9781400830244. 875

Bhatia, R. (2009). Positive definite matrices, volume 24. Princeton university press.
MR2284176. 876

Brooks, S. P. and Gelman, A. (1998). “General methods for monitoring convergence
of iterative simulations.” Journal of Computational and Graphical Statistics, 7(4):
434-455. MR1665662. doi: https://doi.org/10.2307/1390675. 899

Butler, R. W. and Wood, A. T. (2003). “Laplace approximation for Bessel functions
of matrix argument.” Journal of Computational and Applied Mathematics, 155(2):
359-382. MR1984295. 875, 893

Casella, G. and Berger, R. L. (2002). Statistical Inference, volume 2. Duxbury Pacific
Grove, CA. MR1051420. 873, 876, 878

Chikuse, Y. (1991a). “Asymptotic expansions for distributions of the large sample
matrix resultant and related statistics on the Stiefel manifold.” Journal of Mul-
tivariate Analysis, 39(2): 270-283. MR1147122. doi: https://doi.org/10.1016/
0047-259X(91)90101-7. 872, 873, 892

Chikuse, Y. (1991b). “High dimensional limit theorems and matrix decompositions on
the Stiefel manifold.” Journal of Multivariate Analysis, 36(2): 145-162. 872, 873,
892

Chikuse, Y. (1998). “Density estimation on the Stiefel manifold.” Journal of Multivari-
ate Analysis, 66(2): 188-206. MR1642465. doi: https://doi.org/10.1006/jmva.
1998.1747. 872, 873, 892, 903


https://doi.org/10.1214/19-BA1176SUPP
http://www.ams.org/mathscinet-getitem?mr=2364186
https://doi.org/10.1515/9781400830244
https://doi.org/10.1515/9781400830244
http://www.ams.org/mathscinet-getitem?mr=2284176
http://www.ams.org/mathscinet-getitem?mr=1665662
https://doi.org/10.2307/1390675
http://www.ams.org/mathscinet-getitem?mr=1984295
http://www.ams.org/mathscinet-getitem?mr=1051420
http://www.ams.org/mathscinet-getitem?mr=1147122
https://doi.org/10.1016/0047-259X(91)90101-7
https://doi.org/10.1016/0047-259X(91)90101-7
http://www.ams.org/mathscinet-getitem?mr=1642465
https://doi.org/10.1006/jmva.1998.1747
https://doi.org/10.1006/jmva.1998.1747

S. Pal, S. Sengupta, R. Mitra, and A. Banerjee 905

Chikuse, Y. (2003). “Concentrated matrix Langevin distributions.” Journal of Mul-
tivariate Analysis, 85(2): 375-394. MR1983803. doi: https://doi.org/10.1016/
S0047-259% (02)00065-9. 873, 876, 892, 903

Chikuse, Y. (2012). Statistics on Special Manifolds, volume 174. Springer Science &
Business Media. 871, 872, 875, 876, 902

Dharmadhikari, S. and Joag-Dev, K. (1988). Unimodality, convezity, and applications.
Elsevier. MR0954608. 880

Diaconis, P. and Ylvisaker, D. (1979). “Conjugate priors for exponential families.” The
Annals of Statistics, 7(2): 269-281. MR0520238. 873, 876, 877, 887

Doss, C. R. and Wellner, J. A. (2016). “Mode-constrained estimation of a log-concave
density.” arXiv preprint arXiv:1611.10335. MR3290441. doi: https://doi.org/10.
1214/14-88107. 880

Downs, T., Liebman, J., and Mackay, W. (1971). “Statistical methods for vectorcardio-
gram orientations.” Vectorcardiography, 2: 216-222. 873, 892, 897, 898

Downs, T. D. (1972). “Orientation statistics.” Biometrika, 665-676. MR0345334.
doi: https://doi.org/10.1093/biomet/59.3.665. 871, 872, 873, 875, 892

Edelman, A., Arias, T. A., and Smith, S. T. (1998). “The geometry of algorithms
with orthogonality constraints.” SIAM Journal on Matriz Analysis and Applications,
20(2): 303-353. MR1646856. doi: https://doi.org/10.1137/30895479895290954.
875

Frank, E. (1956). “An accurate, clinically practical system for spatial vectorcardiogra-
phy.” Circulation, 13(5): 737-749. 898

Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., and Rubin, D. B.
(2014). Bayesian Data Analysis, volume 2. CRC press Boca Raton, FL. MR3235677.
878

Gelman, A., Rubin, D. B., et al. (1992). “Inference from iterative simulation using
multiple sequences.” Statistical Science, 7(4): 457-472. 898

Gross, K. I. and Richards, D. S. P. (1987). “Special functions of matrix argument. I.
Algebraic induction, zonal polynomials, and hypergeometric functions.” Transactions
of the American Mathematical Society, 301(2): 781-811. MR0882715. doi: https://
doi.org/10.2307/2000670. 875

Gross, K. I. and Richards, D. S. P. (1989). “Total positivity, spherical se-
ries, and hypergeometric functions of matrix argument.” Journal of Approz-
imation Theory, 59(2): 224-246. MR1022118. doi: https://doi.org/10.1016/
0021-9045(89)90153-6. 872, 875

Gupta, R. D. and Richards, D. S. P. (1985). “Hypergeometric functions of scalar ma-
trix argument are expressible in terms of classical hypergeometric functions.” STAM
Journal on Mathematical Analysis, 16(4): 852-858. MR0793927. doi: https://doi.
org/10.1137/0516064. 875


http://www.ams.org/mathscinet-getitem?mr=1983803
https://doi.org/10.1016/S0047-259X(02)00065-9
https://doi.org/10.1016/S0047-259X(02)00065-9
http://www.ams.org/mathscinet-getitem?mr=0954608
http://www.ams.org/mathscinet-getitem?mr=0520238
http://arxiv.org/abs/1611.10335
http://www.ams.org/mathscinet-getitem?mr=3290441
https://doi.org/10.1214/14-SS107
https://doi.org/10.1214/14-SS107
http://www.ams.org/mathscinet-getitem?mr=0345334
https://doi.org/10.1093/biomet/59.3.665
http://www.ams.org/mathscinet-getitem?mr=1646856
https://doi.org/10.1137/S0895479895290954
http://www.ams.org/mathscinet-getitem?mr=3235677
http://www.ams.org/mathscinet-getitem?mr=0882715
https://doi.org/10.2307/2000670
https://doi.org/10.2307/2000670
http://www.ams.org/mathscinet-getitem?mr=1022118
https://doi.org/10.1016/0021-9045(89)90153-6
https://doi.org/10.1016/0021-9045(89)90153-6
http://www.ams.org/mathscinet-getitem?mr=0793927
https://doi.org/10.1137/0516064
https://doi.org/10.1137/0516064

906 Conjugate Priors and Posterior Inference

Gutiérrez, R., Rodriguez, J., and Sdez, A. (2000). “Approximation of hypergeometric
functions with matricial argument through their development in series of zonal poly-
nomials.” Flectronic Transactions on Numerical Analysis, 11: 121-130. MR1799027.
895

Heidelberger, P. and Welch, P. D. (1981). “A spectral method for confidence interval
generation and run length control in simulations.” Communications of the ACM,
24(4): 233-245. MR0611745. doi: https://doi.org/10.1145/358598.358630. 899

Heidelberger, P. and Welch, P. D. (1983). “Simulation run length control in the presence
of an initial transient.” Operations Research, 31(6): 1109-1144. 899

Herz, C. S. (1955). “Bessel functions of matrix argument.” The Annals of Mathematics,
474-523. MR0069960. doi: https://doi.org/10.2307/1969810. 875

Hill, R. D. and Waters, S. R. (1987). “On the cone of positive semidefinite matrices.”
Linear Algebra and its Applications, 90: 81-88. MR0884112. doi: https://doi.org/
10.1016/0024-3795(87)90307-7. 876

Hobert, J. P., Roy, V., and Robert, C. P. (2011). “Improving the Convergence Proper-
ties of the Data Augmentation Algorithm with an Application to Bayesian Mixture
Modeling.” Statistical Science, 26(3): 332-351. MR2918006. doi: https://doi.org/
10.1214/11-8TS365. 872

Hoff, P. D. (2009). “Simulation of the matrix Bingham-von Mises—Fisher distribution,
with applications to multivariate and relational data.” Journal of Computational and
Graphical Statistics, 18(2): 438-456. MR2749840. doi: https://doi.org/10.1198/
jcgs.2009.07177. 889, 896

Hornik, K. and Griin, B. (2013). “On conjugate families and Jeffreys priors for von
Mises-Fisher distributions.” Journal of Statistical Planning and Inference, 143(5):
992-999. MR3011309. doi: https://doi.org/10.1016/j.jspi.2012.11.003. 877

Hornik, K. and Griin, B. (2014). “movMF: An R package for fitting mixtures of von
Mises-Fisher distributions.” Journal of Statistical Software, 58(10): 1-31. 872

Ibragimov, I. A. (1956). “On the composition of unimodal distributions.” Theory of
Probability & Its Applications, 1(2): 255-260. MR0087249. 880

Ifantis, E. and Siafarikas, P. (1990). “Inequalities involving Bessel and modified Bessel
functions.” Journal of Mathematical Analysis and Applications, 147(1): 214-227.
MR1044696. doi: https://doi.org/10.1016/0022-247X(90)90394-U. 894

James, A. T. (1964). “Distributions of matrix variates and latent roots derived from
normal samples.” The Annals of Mathematical Statistics, 475-501. MRO0181057.
doi: https://doi.org/10.1214/aoms/1177703550. 875

James, I. M. (1976). The Topology of Stiefel Manifolds, volume 24. Cambridge University
Press. MR0431239. 871

Jupp, P. and Mardia, K. (1980). “A general correlation coefficient for directional data
and related regression problems.” Biometrika, 163-173. MR0570518. doi: https://
doi.org/10.1093/biomet/67.1.163. 872, 873, 892


http://www.ams.org/mathscinet-getitem?mr=1799027
http://www.ams.org/mathscinet-getitem?mr=0611745
https://doi.org/10.1145/358598.358630
http://www.ams.org/mathscinet-getitem?mr=0069960
https://doi.org/10.2307/1969810
http://www.ams.org/mathscinet-getitem?mr=0884112
https://doi.org/10.1016/0024-3795(87)90307-7
https://doi.org/10.1016/0024-3795(87)90307-7
http://www.ams.org/mathscinet-getitem?mr=2918006
https://doi.org/10.1214/11-STS365
https://doi.org/10.1214/11-STS365
http://www.ams.org/mathscinet-getitem?mr=2749840
https://doi.org/10.1198/jcgs.2009.07177
https://doi.org/10.1198/jcgs.2009.07177
http://www.ams.org/mathscinet-getitem?mr=3011309
https://doi.org/10.1016/j.jspi.2012.11.003
http://www.ams.org/mathscinet-getitem?mr=0087249
http://www.ams.org/mathscinet-getitem?mr=1044696
https://doi.org/10.1016/0022-247X(90)90394-U
http://www.ams.org/mathscinet-getitem?mr=0181057
https://doi.org/10.1214/aoms/1177703550
http://www.ams.org/mathscinet-getitem?mr=0431239
http://www.ams.org/mathscinet-getitem?mr=0570518
https://doi.org/10.1093/biomet/67.1.163
https://doi.org/10.1093/biomet/67.1.163

S. Pal, S. Sengupta, R. Mitra, and A. Banerjee 907

Jupp, P. E. and Mardia, K. V. (1979). “Maximum likelihood estimators for the matrix
von Mises-Fisher and Bingham distributions.” The Annals of Statistics, 599-606.
MRO0527495. 872, 873, 887, 892, 903

Khare, K., Pal, S., Su, Z., et al. (2017). “A Bayesian approach for envelope models.” The
Annals of Statistics, 45(1): 196-222. MR3611490. doi: https://doi.org/10.1214/
16-A0S1449. 878

Khatri, C. and Mardia, K. (1977). “The von Mises-Fisher matrix distribution in orien-
tation statistics.” Journal of the Royal Statistical Society. Series B (Methodological),
95-106. MR0494687. 872, 875, 876, 902

Koev, P. and Edelman, A. (2006). “The efficient evaluation of the hypergeometric
function of a matrix argument.” Mathematics of Computation, 75(254): 833-846.
MR2196994. doi: https://doi.org/10.1090/S0025-5718-06-01824-2. 873, 875,
895, 896, 897

Kristof, W. (1969). “A theorem on the trace of certain matrix products and some
applications.” ETS Research Report Series, 1969(1). MR0271125. doi: https://doi.
org/10.1016/0022-2496 (70)90037-4. 881, 882

Lin, L., Rao, V., and Dunson, D. (2017). “Bayesian nonparametric inference on the
Stiefel manifold.” Statistica Sinica, 27: 535-553. MR3674685. 871, 872, 873, 875,
892, 903

Lui, Y. and Beveridge, J. (2008). “Grassmann registration manifolds for face recogni-
tion.” Computer Vision-ECCYV 2008, 44-57. 871

Mardia, K. and Khatri, C. (1977). “Uniform distribution on a Stiefel manifold.” Jour-
nal of Multivariate Analysis, 7(3): 468-473. MR0445720. doi: https://doi.org/10.
1016/0047-259X(77)90087-2. 871, 872, 873, 892, 903

Mardia, K. V. and Jupp, P. E. (2009). Directional Statistics, volume 494. John Wiley
& Sons. MR1828667. 871, 872, 873, 875, 876, 892

Mardia, K. V., Taylor, C. C., and Subramaniam, G. K. (2007). “Protein bioinformatics
and mixtures of bivariate von Mises distributions for angular data.” Biometrics, 63(2):
505-512. MR2370809. doi: https://doi.org/10.1111/j.1541-0420.2006.00682.
x. 873, 892

Muirhead, R. J. (1975). “Expressions for some hypergeometric functions of ma-
trix argument with applications.” Journal of Multivariate Analysis, 5(3): 283—-293.
MRO0381137. doi: https://doi.org/10.1016/0047-259X(75)90046-9. 875, 893

Muirhead, R. J. (2009). Aspects of multivariate statistical theory, volume 197. John
Wiley & Sons. 872, 875

Nagar, D. K., Mordn-Vasquez, R. A., and Gupta, A. K. (2015). “Extended matrix vari-
ate hypergeometric functions and matrix variate distributions.” International Journal
of Mathematics and Mathematical Sciences, 2015. MR3305177. doi: https://doi.
org/10.1155/2015/190723. 895


http://www.ams.org/mathscinet-getitem?mr=0527495
http://www.ams.org/mathscinet-getitem?mr=3611490
https://doi.org/10.1214/16-AOS1449
https://doi.org/10.1214/16-AOS1449
http://www.ams.org/mathscinet-getitem?mr=0494687
http://www.ams.org/mathscinet-getitem?mr=2196994
https://doi.org/10.1090/S0025-5718-06-01824-2
http://www.ams.org/mathscinet-getitem?mr=0271125
https://doi.org/10.1016/0022-2496(70)90037-4
https://doi.org/10.1016/0022-2496(70)90037-4
http://www.ams.org/mathscinet-getitem?mr=3674685
http://www.ams.org/mathscinet-getitem?mr=0445720
https://doi.org/10.1016/0047-259X(77)90087-2
https://doi.org/10.1016/0047-259X(77)90087-2
http://www.ams.org/mathscinet-getitem?mr=1828667
http://www.ams.org/mathscinet-getitem?mr=2370809
https://doi.org/10.1111/j.1541-0420.2006.00682.x
https://doi.org/10.1111/j.1541-0420.2006.00682.x
http://www.ams.org/mathscinet-getitem?mr=0381137
https://doi.org/10.1016/0047-259X(75)90046-9
http://www.ams.org/mathscinet-getitem?mr=3305177
https://doi.org/10.1155/2015/190723
https://doi.org/10.1155/2015/190723

908 Conjugate Priors and Posterior Inference

Newton, M. A. and Raftery, A. E. (1994). “Approximate Bayesian Inference with the
Weighted Likelihood Bootstrap.” Journal of the Royal Statistical Society. Series B
(Methodological), 56(1): 3-48. MR1257793. 903

Pal, S. Sengupta, S., Mitra, R., and Banerjee, A. (2019). “Supplementary mate-
rial: Conjugate Priors and Posterior Inference for the Matrix Langevin Distribu-
tion on the Stiefel Manifold.” Bayesian Analysis. doi: https://doi.org/10.1214/
19-BA1176SUPP. 874

Pearson, J. W., Olver, S., and Porter, M. A. (2017). “Numerical methods for the compu-
tation of the confluent and Gauss hypergeometric functions.” Numerical Algorithms,
74(3): 821-866. MR3611557. doi: https://doi.org/10.1007/s11075-016-0173-0.
895

Rao, V., Lin, L., and Dunson, D. B. (2016). “Data augmentation for models based on
rejection sampling.” Biometrika, 103(2): 319-335. MR3509889. doi: https://doi.
org/10.1093/biomet/asw005. 872

Schwartzman, A. (2006). “Random ellipsoids and false discovery rates: Statistics for
diffusion tensor imaging data.” Ph.D. thesis, Stanford University. MR2708811. 876

Sei, T., Shibata, H., Takemura, A., Ohara, K., and Takayama, N. (2013). “Properties
and applications of Fisher distribution on the rotation group.” Journal of Multivari-
ate Analysis, 116(Supplement C): 440-455. MR3049915. doi: https://doi.org/10.
1016/j.jmva.2013.01.010. 873, 892

Turaga, P., Veeraraghavan, A., and Chellappa, R. (2008). “Statistical analysis on Stiefel
and Grassmann manifolds with applications in computer vision.” In Computer Vision
and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, 1-8. IEEE. 871

van Dyk, D. A. and Meng, X.-L. (2001). “The Art of Data Augmentation.” Journal
of Computational and Graphical Statistics, 10(1): 1-50. MR1936358. doi: https://
doi.org/10.1198/10618600152418584. 872


http://www.ams.org/mathscinet-getitem?mr=1257793
https://doi.org/10.1214/19-BA1176SUPP
https://doi.org/10.1214/19-BA1176SUPP
http://www.ams.org/mathscinet-getitem?mr=3611557
https://doi.org/10.1007/s11075-016-0173-0
http://www.ams.org/mathscinet-getitem?mr=3509889
https://doi.org/10.1093/biomet/asw005
https://doi.org/10.1093/biomet/asw005
http://www.ams.org/mathscinet-getitem?mr=2708811
http://www.ams.org/mathscinet-getitem?mr=3049915
https://doi.org/10.1016/j.jmva.2013.01.010
https://doi.org/10.1016/j.jmva.2013.01.010
http://www.ams.org/mathscinet-getitem?mr=1936358
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584

	Introduction
	The Matrix Langevin Distribution on the Stiefel Manifold
	Conjugate Prior for the ML-Distribution
	Inapplicability of DY Theorem for Construction of Priors for the ML-Distribution
	Two Novel Classes of Conjugate Priors

	Hyperparameter Selection Procedure
	Informative Prior
	Uniform Improper Prior
	Empirical Prior

	Properties of Posterior
	Posterior Conditionals
	Linearity of Posterior Modal Parameter
	Posterior Propriety When Using Uniform Improper Prior
	Strong Consistency of the Posterior Mode

	MCMC Sampling from the Posterior
	A Rejection Sampler for the CCPDj Distribution
	Computation of 0F1(n2,D24)

	Simulation
	Simulation Setup (p=2)
	Simulation Setup (p>2)

	Application
	MCMC Convergence Diagnostics
	Parameter Estimation
	Hypothesis Testing

	Discussion and Future Directions
	Supplementary Material
	References

