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Mixed Membership Stochastic Blockmodels for
Heterogeneous Networks

Weihong Huang∗§, Yan Liu†§, and Yuguo Chen‡

Abstract. Heterogeneous networks are useful for modeling complex systems that
consist of different types of objects. However, there are limited statistical mod-
els to deal with heterogeneous networks. In this paper, we propose a statistical
model for community detection in heterogeneous networks. We formulate a hetero-
geneous version of the mixed membership stochastic blockmodel to accommodate
heterogeneity in the data and the content dependent property of the pairwise re-
lationship. We also apply a variational algorithm for posterior inference. The pro-
posed procedure is shown to be consistent for community detection under mixed
membership stochastic blockmodels for heterogeneous networks. We demonstrate
the advantage of the proposed method in modeling overlapping communities and
multiple memberships through simulation studies and applications to a real data
set.

Keywords: clustering, community detection, heterogeneous network, mixed
membership model, stochastic blockmodel, variational algorithm.

1 Introduction

In recent years, network data have drawn a lot of attention from researchers in many
areas, including statistics, computer science, biology, and economics. Network data ap-
pear in diverse applications such as social networks, protein-protein interaction (PPI)
networks, the World Wide Web, and research publication networks. Modeling network
data is an important topic, and Goldenberg et al. (2010) provided a review of statistical
network models.

Many networks show the pattern of communities. That is, objects belonging to the
same community tend to have similar behavior while objects belonging to different
communities behave differently. One of the interesting problems in network analysis is
clustering, or community detection, which is the process of uncovering the underlying
community structure. The detected communities can also be meaningful in real appli-
cations. For example, the detected communities may correspond to functional groups
(or proteins participating in the same cellular processes) associated with cancer and
metastasis (Jonsson et al., 2006).
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Some statistical methods for network clustering have been proposed in the litera-
ture. Hoff et al. (2002) proposed the latent space model, which was later extended by
Handcock et al. (2007) for clustering, assuming that the latent positions come from a
mixture of Gaussians. Nowicki and Snijders (2001) proposed the stochastic blockmodel,
in which each object belongs to a cluster and the relationship between two objects de-
pends on the pair of clusters these two objects belong to. One limitation of this model
is that it assumes each object belongs to a single cluster and cannot handle overlapping
communities. To model the situations that violate the single cluster assumption, Airoldi
et al. (2008) proposed the mixed membership stochastic blockmodel (MMSB). In this
model, the cluster of each object is content dependent, which means objects can show
different functional contexts (or clusters) when interacting with different objects.

The methods mentioned above assume the network is homogeneous, i.e., all nodes
in the network are objects of the same type, such as people in the social network and
proteins in the PPI network. However in real world, objects of different types inter-
act with each other to form a large heterogeneous network. For example, a university
network consists of several types of objects (such as students, professors, courses and
departments) and different types of links among them (such as the teaching relation-
ship between professors and students, the registration relationship between students and
courses, and the association relationship between students/professors and departments).

A heterogeneous network carries more information than its homogeneous sub-net-
work. For example, a heterogeneous bibliographical network consists of authors, papers,
and conferences as different types of nodes, and different types of relationships among
them as edges. The homogeneous co-authorship network can be viewed as a projection
of the heterogeneous network. Analyzing the co-authorship network only will result in
an information loss, since the paper and conference nodes and the author-paper and
author-conference links are ignored. Therefore, it is necessary to develop new methods
to make use of the rich information in heterogeneous networks. Sun and Han (2012)
provided an overview of the methods for mining heterogeneous networks in the computer
science community. Sengupta and Chen (2015) proposed the spectral clustering method
for the heterogeneous version of the stochastic blockmodel. However, similar to the
homogeneous stochastic blockmodel, the heterogeneous version still assumes that each
node belongs to a single cluster.

In this paper, we propose a heterogeneous version of the mixed membership stochas-
tic blockmodel for community detection in heterogeneous networks. Similar to the ho-
mogeneous MMSB, each object is allowed to have multiple clusters and the clusters are
content dependent. We present a variational EM algorithm for posterior inference so
that it can scale up to large networks. The proposed procedure is shown to be consistent
for community detection under mixed membership stochastic blockmodels for hetero-
geneous networks. We also apply our method to analyze a subset of the DBLP dataset
to find out the community structure for authors.

The paper is organized as follows. Section 2 gives a review of the homogeneous
MMSB and introduces the heterogeneous version of the MMSB. Section 3 describes the
variational algorithm for posterior inference. Section 4 shows consistency of community
detection under mixed membership stochastic blockmodels for heterogeneous networks.
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Section 5 presents simulation studies comparing our method with the spectral clustering
method of Sengupta and Chen (2015). Section 6 shows the results of our method applied
to the DBLP dataset. Section 7 concludes with a discussion.

2 The mixed membership stochastic blockmodel

2.1 Homogeneous model

A homogeneous network or relational data can be represented as a graph G(V,E), where
V consists of all nodes (or vertices) and E consists of all links (or edges). Here we only
consider unweighted graphs, but the edges can be directed or undirected. Suppose there
are n nodes in the graph, denoted by x1, . . . , xn. An adjacency matrix Y for this graph
is an n-by-n binary matrix, where Y (p, q) = 1 if node xp and node xq are connected
and Y (p, q) = 0 otherwise. For a homogeneous network, all of the nodes in V are of
the same type, such as people in a friendship network, papers in a citation network, or
proteins in a PPI network.

The original mixed membership stochastic blockmodel (Airoldi et al., 2008) consid-
ers a homogeneous network G(V,E) and its adjacency matrix Y . Assume there are K
groups. The MMSB models the adjacency matrix Y in a Bayesian hierarchical frame-
work. For each pair of nodes (xp, xq), the presence or absence of a link between them is
determined by a Bernoulli distribution with parameter depending on the latent group
memberships of the two nodes. In other words, given the latent group membership zp,q,1,
zp,q,2 and the Bernoulli probability matrix B,

Y (p, q)|zp,q,1, zp,q,2, B ∼ Bernoulli(zT
p,q,1Bzp,q,2).

The Bernoulli probability matrix B is K-by-K, where B(g, h) represents the probability
of having a link between a node in group g and a node in group h. Here zp,q,1 and zp,q,2
are K-dimensional membership indicator vectors, of which only one element equals
to one and others equal to zero. The index of the non-zero element corresponds to
the membership of the node. For undirected graphs, zp,q,1 denotes the latent group
membership of node xp when interacting with node xq, and zp,q,2 denotes the latent
group membership of node xq when interacting with node xp. For directed graphs,
zp,q,1 and zp,q,2 denote the group membership of the initiator and receiver of the edge
between xp and xq respectively. Note that the group membership of each node depends
on the nodes it is interacting. That is, each node can have different membership when
interacting or being interacted with different nodes. For example, a researcher may
work as a biologist on a project about mass spectrometry analysis for proteins with
other biologists. He/She may also work as a statistician on a project about network
analysis with his/her students.

For the rest of the paper, we will focus on the undirected graph. For each node xp,
the latent group membership zp,·,1 := {zp,q,1 : xq ∈ V } and z·,p,2 := {zq,p,2 : xq ∈ V }
have prior distribution with parameter πp,

zp,·,1|πp ∼ MultinomialK(πp),
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z·,p,2|πp ∼ MultinomialK(πp),

and πp has prior distribution

πp ∼ DirichletK(α),

where πp and α are K-dimensional vectors.

Let Z1 := {zp,q,1 : xp, xq ∈ V }, Z2 := {zp,q,2 : xp, xq ∈ V } and π := {πp : xp ∈ V }.
Then the joint distribution of data Y and the parameters {Z1, Z2,π} is

p(Y, Z1, Z2,π|α, B)

=
∏
p,q

p1(Y (p, q)|zp,q,1, zp,q,2, B)p2(zp,q,1|πp)p2(zp,q,2|πq)
∏
p

p3(πp|α),

where p1, p2, p3 are the probability distributions of Bernoulli, multinomial and Dirichlet
distributions, respectively.

2.2 Heterogeneous model

Different from the homogeneous network, the nodes in a heterogeneous network are
of different types. Therefore the links in the heterogeneous network are also of differ-
ent types. For example, in the Facebook network, other than people, we have object
types such as posts, photos, movies, and events. Also, besides the friendship relation
between people, there are relationships of other types, such as the person-photo tagging
relationship, person-movie liking relationship, and person-post publishing relationship.
To accommodate different types of nodes and links, we propose a mixed membership
stochastic blockmodel for heterogeneous networks.

Given a heterogeneous network G(V , E), where V contains all types of nodes and E
contains all types of links. The graph is unweighted but can be directed or undirected. In
this paper we focus on the undirected graph. Suppose there are N nodes of m different
types, denoted by X1 = {x11, . . . , x1n1}, . . ., Xm = {xm1, . . . , xmnm}. Then V =

⋃m
i=1 Xi

and N = n1 + · · ·+ nm. Let Gij be the subgraph between object types Xi and Xj , and
Yij be the adjacency matrix of Gij , 1 ≤ i, j ≤ m. Let Y be the following N -by-N matrix

Y =

⎡
⎢⎢⎢⎣
Y11 Y12 . . . Y1m

Y21 Y22 . . . Y2m

...
...

. . .
...

Ym1 Ym2 . . . Ymm

⎤
⎥⎥⎥⎦ .

Suppose there are K groups. For any node xip from Xi and any node xjq from Xj ,
the probability that there is a link between the pair of nodes (xip, xjq) is determined by
a Bernoulli distribution with parameter depending on the group memberships of nodes
xip and xjq. Similar to the homogeneous MMSB, the group membership for each node
depends on the nodes they interact with. The latent group membership of node xip when
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interacting or being interacted with others is determined by a multinomial distribution
with a node-specific parameter πip. A Dirichlet prior is put on πip, governed by a
type-specific hyperparameter αi. Therefore we have the following Bayesian hierarchical
model:

Yij(p, q)|zip,jq,1, zip,jq,2, B ∼Bernoulli(zT
ip,jq,1Bijzip,jq,2),

zip,jq,1|πip ∼MultinomialK(πip),

zip,jq,2|πjq ∼MultinomialK(πjq),

πip ∼DirichletK(αi),

where zip,jq,1 and zip,jq,2 are K-dimensional membership indicator vectors. Here zip,jq,1
denotes the latent group membership of node xip (or the initiator for directed graph)
when interacting with node xjq, and zip,jq,2 denotes the latent group membership of
node xjq (or the receiver for directed graph) when interacting with node xip. The
Bernoulli probability matrix B is mK-by-mK with the following structure:

B =

⎡
⎢⎢⎢⎣
B11 B12 . . . B1m

B21 B22 . . . B2m

...
...

. . .
...

Bm1 Bm2 . . . Bmm

⎤
⎥⎥⎥⎦ ,

where Bst is a K-by-K matrix whose (g, h) entry denotes the probability of having a
link between a node of object type Xs from group g and a node of object type Xt from
group h. The link probability depends on not only the group memberships (g and h),
but also the types of node (s and t).

Let Z1 := {zip,jq,1 : xip, xjq ∈ V}, Z2 := {zip,jq,2 : xip, xjq ∈ V}, π := {πip : xip ∈
V}, and α := {αi : i = 1, 2, . . . ,m}. Then the joint distribution of data Y and the
parameters {Z1, Z2,π} is

p(Y, Z1, Z2,π|α, B)

=
∏
i,j

∏
p,q

p1(Yij(p, q)|zip,jq,1, zip,jq,2, B)p2(zip,jq,1|πip)p2(zip,jq,2|πjq)
∏
i,p

p3(πip|αi),

where p1, p2, p3 are the probability distributions of Bernoulli, multinomial and Dirichlet
distributions, respectively.

3 Posterior inference and parameter estimation

We are interested in finding the posterior distribution of the latent variables, including
the per-node mixed membership π and the membership indicators for per-pair interac-
tion Z1, Z2, given the observed network. We also want to learn the Bernoulli probability
matrix B. The hyperparameter α is pre-specified. In this section, we present the varia-
tional method for posterior inference and parameter estimation.
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3.1 Variational posterior inference

Let X be the collection of the latent variables X = {π, Z1, Z2}, then the posterior
distribution of X given data Y and hyperparameters Θ = {α, B} can be written as

p(X|Y,Θ) =
p(Y,X|Θ)

p(Y |Θ)
.

One way to make inference on the posterior distribution is to use Markov chain Monte
Carlo (MCMC) sampling. However, MCMC can be slow when the network size is large,
so it is difficult to handle large networks. In addition, estimating the Bernoulli proba-
bility matrix B requires evaluating the normalizing constant

p(Y |Θ) =

∫
π

∑
Z1,Z2

( ∏
i,j,p,q

p1(Yij(p, q)|zip,jq,1, zip,jq,2, B)

·p2(zip,jq,1|πip)p2(zip,jq,2|πjq)
∏
i,p

p3(πip|αi)

)
dπ,

which requires integration over the latent variables and is not easy to compute.

Similar to the original algorithm for homogeneous MMSB, we use the variational
method (Wainwright and Jordan, 2008) for posterior inference and parameter estima-
tion. The main idea of variational method is to approximate the true posterior distri-
bution by a variational distribution with free parameters (also called variational pa-
rameters). Then the free parameters are fitted to minimize the Kullback-Leibler (KL)
divergence between the variational distribution and the true posterior distribution.

We introduce a fully factorized distribution qΔ as variational distribution to approx-
imate the true posterior distribution p(X|Y,Θ). The variational distribution is defined
as

qΔ = q(X|γ,Φ1,Φ2) =
∏
i,p

q1(πip|γip)
∏
i,j

∏
p,q

[q2(zip,jq,1|φip,jq,1)q2(zip,jq,2|φip,jq,2)] ,

where q1 is the Dirichlet distribution, q2 is the multinomial distribution, γ = {γip : xip ∈
V}, Φ1 = {φip,jq,1 : xip, xjq ∈ V} and Φ2 = {φip,jq,2 : xip, xjq ∈ V}. Let Δ = (γ,Φ1,Φ2)
be the variational parameters in qΔ.

By Jensen’s inequality, we have that minimizing the KL divergence between the vari-
ational distribution qΔ and the true posterior distribution is equivalent to maximizing
the lower bound

L(qΔ,Θ) = EqΔ [log p(Y,X|Θ)− log qΔ(X)].

The details are given in the supplementary material (Huang et al., 2019).

3.2 Variational EM algorithm

To find the variational approximation of the posterior distribution of the latent vari-
ables and obtain the estimate of Bernoulli probability matrix B, we maximize L(qΔ,Θ)
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iteratively with respect to the variational parameters Δ = (γ,Φ1,Φ2) and the hyperpa-
rameter B. The details of the derivation are in the supplementary material (Huang et
al., 2019). By using the coordinate ascent algorithm, we can get the updating equation
for variational multinomial parameters:

φ̂ip,jq,1,g ∝ exp{
∑
h

[φip,jq,2,hf(Yij(p, q), Bij(g, h))] + ψ(γip,g)− ψ(
∑
g

γip,g)} (3.1)

= exp{ψ(γip,g)− ψ(
∑
g

γip,g)}

×
∏
h

[
Bij(g, h)

Yij(p,q)(1−Bij(g, h))
1−Yij(p,q)

]φip,jq,2,h

,

φ̂ip,jq,2,h ∝ exp{
∑
g

[φip,jq,1,gf(Yij(p, q), Bij(g, h))] + ψ(γjq,h)− ψ(
∑
h

γjq,h)} (3.2)

= exp{ψ(γjq,h)− ψ(
∑
h

γjq,h)}

×
∏
g

[
Bij(g, h)

Yij(p,q)(1−Bij(g, h))
1−Yij(p,q)

]φip,jq,1,g

.

Since φip,jq,1 and φip,jq,2 are probability vectors, they need to be normalized to make

sure that
∑

g φ̂ip,jq,1,g =
∑

h φ̂ip,jq,2,h = 1. The updating equation for variational Dirich-
let parameter γ̂ip,g is

γ̂ip,g = αi,g +
∑
j,q

φip,jq,1,g +
∑
j,q

φjq,ip,2,g. (3.3)

To get the estimate for the Bernoulli probability matrix B, we fix the variational
parameters Δ to obtain the estimate of B that maximizes the lower bound L(qΔ,Θ).
Therefore we get the update for B̂:

B̂ij(g, h) =

∑
p,q φip,jq,1,gφip,jq,2,hYij(p, q)∑

p,q φip,jq,1,gφip,jq,2,h
, (3.4)

where i, j = 1, . . . ,m and g, h = 1, . . . ,K.

In the proposed variational EM algorithm, we iteratively update the variational
parameters Δ = (γ,Φ1,Φ2) in E step, and the Bernoulli probability matrix B in M
step until convergence. We use the value of the lower bound L(qΔ,Θ) to determine the
convergence, i.e., the convergence is achieved when L(qΔ(t+1) ,Θ(t+1))−L(qΔ(t) ,Θ(t)) < ε,
where ε > 0 is the tolerance. The overall algorithm is summarized in Algorithm 1.

3.3 Initialization

As stated in Algorithm 1, the initial values of Φ1 and Φ2 need to be given first. Although
the variational EM algorithm is fast and feasible to handle large networks, similar to
the EM algorithm, it typically converges to a local maximum, not necessary the global
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Algorithm 1 Variational EM Algorithm for MMSB for Heterogeneous Networks.

1: Initialize φ̂0
ip,jq,1,g and φ̂0

ip,jq,2,h for all pairs of nodes (xip, xjq) and all pairs of groups
g, h.

2: Initialize γ̂0
ip,g for all nodes xip and all groups g by Equation (3.3).

3: Initialize B0,α.
4: t = 0
5: repeat
6: for i = 1 to m do
7: for p = 1 to ni do
8: for j = 1 to m do
9: for q = 1 to nj do

10: for g = 1 to K do
11: update φ̂t+1

ip,jq,1,g by Equation (3.1)
12: end for
13: normalize {φ̂t+1

ip,jq,1,g}Kg=1 to sum to 1
14: for h = 1 to K do
15: update φ̂t+1

ip,jq,2,h by Equation (3.2)
16: end for
17: normalize {φ̂t+1

ip,jq,2,h}Kh=1 to sum to 1
18: end for
19: end for
20: end for
21: end for
22: for i = 1 to m do
23: for p = 1 to ni do
24: update γ̂t+1

ip,g by Equation (3.3)
25: end for
26: end for
27: for i = 1 to m do
28: for j = 1 to m do
29: update Bt+1

ij (g, h) by Equation (3.4)
30: end for
31: end for
32: t = t+ 1
33: until convergence

maximum. Therefore, the results of the variational EM are sensitive to the initial values.
It is helpful to use multiple initial values, and take the one with maximal value of
L(qΔ,Θ) as the final output. However it is hard to determine the number of initial values
needed and there is no guarantee that the global maximum can be found. In practice,
using multiple initial values does not show much improvement and takes longer time to
run the algorithm.

Another way to deal with this problem is to use the results from some pre-analysis as
the initialization. Sengupta and Chen (2015) proposed a heterogeneous spectral cluster-
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ing algorithm (Het-SC) for community detection in heterogeneous networks. Although
the Het-SC algorithm assigns unique membership to each node, its results can still serve
as a good guidance of the initial values. Since the result of Het-SC itself can be a local
maximum or very close to a local maximum, the algorithm may get stuck in the local
mode when starting from the results of Het-SC. A remedy is to use initial values close
to the results of Het-SC to help the algorithm escape from the local mode.

4 Theoretical properties

In this section, we study the consistency of community detection under mixed member-
ship stochastic blockmodels for heterogeneous networks. Although the consistency of
community detection has been studies extensively in the literature, most of the existing
work assumes that each node has a unique membership and the network is homoge-
neous. In the following, we first give a definition of community detection consistency in
our setting.

Consider a heterogeneous network G(V , E) (V =
⋃m

i=1 Xi) with community labels

Z := {zip,jq,1, zip,jq,2 ∈ {1, . . . ,K} : xip, xjq ∈ V}.

Here zip,jq,1 denotes the community that node xip belongs to when it interacts with
node xjq, and zip,jq,2 denotes the community that node xjq belongs to when it interacts
with node xip.

A community detection criterion is generally a function of community labels Z and
the observed network G. We define a community detection criterion F (Z, G) to be
consistent if

Ẑ := argmax
Z

F (Z, G)

satisfies ∀ε > 0,

P

[
1

n2

∑
k �=u

or l �=v

(∑
i �=j

∑
p,q

I(ẑip,jq,1 = u, ẑip,jq,2 = v)I(zip,jq,1 = k, zip,jq,2 = l)

+
∑
i

∑
p,q

I(ẑip,iq,1 = u, ẑip,iq,2 = v)I(zip,iq,1 = k, zip,iq,2 = l)

)
> ε

]
→ 0

(4.1)

as n → ∞. This consistency definition is a generalization of the one proposed in Zhang
and Chen (2019) for heterogeneous networks with unique membership for each node. In
the unique membership case, consistency requires that the proportion of misclassified
nodes goes to zero. For the mixed membership case, since each node is allowed to have
different memberships when interacting with different nodes, we consider the proportion
of misclassified pairs of nodes in the definition (4.1).

In order to study the consistency property, we first define the following key quan-
tities. We use z to denote the ground truth of the community labels, and use e as a
generic notation of a set of label assignment.



720 MMSBs for Heterogeneous Networks

For any set of label assignment e, define K-by-K matrices O[i](e), i = 1, . . . ,m, and
O[ij](e), 1 ≤ i 	= j ≤ m, as

O
[i]
kl (e) :=

∑
p,q

Yii(p, q)I(eip,iq,1 = k, eip,iq,2 = l),

O
[ij]
kl (e) :=

∑
p,q

Yij(p, q)I(eip,jq,1 = k, eip,jq,2 = l),

where I(·) is the indicator function. Here O
[i]
kl is the total number of edges between

nodes in Xi with community label k and nodes in Xi with community label l, and O
[ij]
kl

is the total number of edges between nodes in Xi with community label k and nodes in
Xj with community label l. Let

O(e) =
∑
i �=j

O[ij](e) +

m∑
i=1

O[i](e).

Also, define K-by-K matrices n[i](e), i = 1, . . . ,m, and n[ij](e), 1 ≤ i 	= j ≤ m, as

n
[i]
kl(e) :=

∑
p,q

I(eip,iq,1 = k, eip,iq,2 = l),

n
[ij]
kl (e) :=

∑
p,q

I(eip,jq,1 = k, eip,jq,2 = l).

Define K-by-K matrices f [i](e), i = 1, . . . ,m, f [ij](e), 1 ≤ i 	= j ≤ m, and f(e) as

f
[i]
kl (e) :=

n
[i]
kl(e)

n2
, f

[ij]
kl (e) :=

n
[ij]
kl (e)

n2
,

fkl(e) :=
nkl(e)

n2
:=

1

n2

⎛
⎝∑

i �=j

n
[ij]
kl (e) +

m∑
i=1

n
[i]
kl(e)

⎞
⎠ .

For k, l = 1, . . . ,K, nkl(e) is the number of node pairs that belong to community k and
community l respectively when they interact with each other. Henceforth, we will refer
to such node pairs as [kl]-node pairs. Then fkl is the proportion of [kl]-node pairs in
the observed network.

Furthermore, we define the following quantities that characterize the discrepancy
between two community assignments e and z for the interactions between type i nodes
and type j nodes (1 ≤ i 	= j ≤ m):

R
[ij]
kluv(e, z) :=

1

n2

∑
p,q

I(eip,jq,1 = k, eip,jq,2 = l)I(zip,jq,1 = u, zip,jq,2 = v),

and the quantities that characterize the discrepancy between e and z for the interactions
within type i nodes (1 ≤ i ≤ m):

R
[i]
kluv(e, z) :=

1

n2

∑
p,q

I(eip,iq,1 = k, eip,iq,2 = l)I(zip,iq,1 = u, zip,iq,2 = v).
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As discussed in (Zhao et al., 2012), a large class of community detection criteria can
be expressed as

Q(e) = F

(
O(e)

μn
, f(e)

)
,

where μn = n2ρn, and ρn =
∑

i,j

∑
k,l πkπlBij(k, l) is the probability of there being

an edge between two nodes. The community membership estimator based on maximum
likelihood (which will be discussed in the proof of Corollary 4.1) can be written in this
form. For this type of community detection criteria, a natural condition for consistency
result is that the “population version” of Q should be maximized by the correct com-
munity assignment (Zhao et al., 2012). In order to define the population version of
Q, we define the population version of O(e) and f(e) as functions of the discrepancy
characterization R.

Let S
[ij]
uv := 1

ρn
P (Yij(1, 2)|zi1,j2,1 = u, zi1,j2,2 = v). For 1 ≤ i 	= j ≤ m and k, l =

1, . . . ,K, the population version of O
[ij]
kl (e) is defined as its conditional expectation

given the true label assignment z:

T̂
[ij]
kl :=

1

μn
E[O

[ij]
kl (e)|z]

=
1

μn
E

[∑
p,q

Yij(p, q)I(eip,jq,1 = k, eip,jq,2 = l)|z
]

=
1

μn
E

[∑
p,q

∑
u,v

Yij(p, q)I(eip,jq,1 = k, eip,jq,2 = l)I(zip,jq,1 = u, zip,jq,2 = v)|z
]

=
1

μn

∑
u,v

E

[∑
p,q

Yij(p, q)I(eip,jq,1 = k, zip,jq,2 = u)I(eip,jq,1 = l, zip,jq,2 = v)|z
]

=
∑
u,v

S[ij]
uv R

[ij]
kluv := Hkl(R

[ij]),

and the population version of f
[ij]
kl (e) is defined by

∑
u,v R

[ij]
kluv(e, z) := hkl(R

[ij]).

Similarly, for 1 ≤ i ≤ m, the population version of O
[i]
kl (e) is defined by

T̂
[i]
kl :=

1

μn
E[O

[i]
kl (e)|z] =

∑
u,v

S[i]
uvR

[i]
kluv := Hkl(R

[i]),

and the population version of f
[i]
kl (e) is defined by

∑
u,v R

[i]
kluv(e, z) := hkl(R

[i]).

Now we state the assumptions we need for the consistency result.

Assumption 4.1. Among the n nodes, only 
√n� of them have multiple memberships.
Other nodes have unique membership.

Assumption 4.2. For each i = 1, . . . ,m, the multinomial parameter πip is the same
for each p = 1, . . . , ni. (However, the multinomial parameter is allowed to take different
values for nodes of different types.)
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Assumption 4.3. The proportion of each type of nodes is stable. In other words, there
exists ζi ∈ (0, 1), i = 1, . . . ,m, such that

∑m
i=1 ζi = 1 and for each i = 1, . . . ,m,

ni

n
→ ζi, as n → ∞.

Assumption 4.4. As n → ∞, the edge density ρn is either fixed, or goes to 0 at a rate

such that n−1/4 = o(ρn), i.e.,
n−1/4

ρn
→ 0 as n → ∞.

Assumption 4.5. The function F is Lipschitz continuous in its arguments.

Assumption 4.6. The population version of the community detection criterion Q is
uniquely maximized over the set⎧⎨

⎩R ∈ R
K×K×K×K : Rkluv ≥ 0,

∑
k,l

R
[ij]
kluv = Π̂[ij]

uv ,
∑
k,l

R
[i]
kluv = Π̂[i]

uv

⎫⎬
⎭

by R = D, where Dkluv =

{
Π̂uv, (k = u, l = v)

0, o.w.
, and Π̂uv is defined as

Π̂uv : =
∑
i �=j

∑
k,l

R
[ij]
kluv(e, z) +

m∑
i=1

∑
k,l

R
[i]
kluv(e, z)

=
1

n2

∑
i �=j

∑
p,q

I(zip,jq,1 = u, zip,jq,2 = v) +
1

n2

n∑
i=1

∑
p,q

I(zip,iq,1 = u, zip,iq,2 = v).

Assumption 4.7. The function F can be expressed by the following summation

F

(
O(e)

μn
, f(e)

)
=

∑
i �=j

F

(
O[ij](e)

μn
, f [ij](e)

)
+

m∑
i=1

F

(
O[i](e)

μn
, f [i](e)

)
.

Assumption 4.8. The Bernoulli probability matrix B does not have identical elements.

Assumption 4.9. For any 1 ≤ u, v ≤ K, the K-by-K matrix R··uv has at least one
nonzero element.

Now we are ready to state the consistency results of community detection under the
proposed mixed membership stochastic blockmodel for heterogeneous networks.

Theorem 4.1. Suppose Assumptions 4.1–4.7 hold. Then for any community detection
criterion of the following form

Q(e) = F

(
O(e)

μn
, f(e)

)
,

Q(e) is consistent under mixed membership stochastic blockmodels for heterogeneous
networks.
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The following corollary gives the community detection consistency result for the
maximum likelihood estimator.

Corollary 4.1. Suppose that Assumptions 4.1–4.4, and 4.8–4.9 hold. Then the max-
imum likelihood estimator of the community assignment is consistent under the mixed
membership stochastic blockmodel for heterogeneous networks.

In this paper, we adopt a Bayesian approach and estimate the community labels by
the posterior mode. The following corollary gives the community detection consistency
result of this estimator.

Corollary 4.2. Suppose that Assumptions 4.1–4.4, and 4.8–4.9 hold. Then the Bayesian
estimator of the community assignment given by the posterior mode is consistent under
the mixed membership stochastic blockmodel for heterogeneous networks.

The proofs of Theorem 4.1, Corollary 4.1 and Corollary 4.2 are given in the supple-
mentary material (Huang et al., 2019).

5 Simulation results

We conducted three simulation studies to compare the performance between our al-
gorithm and the spectral clustering algorithms for heterogeneous networks (Sengupta
and Chen, 2015). In all of the simulation studies, we consider bi-type heterogeneous
networks simulated from the mixed membership stochastic blockmodel. The networks
are simulated as follows:

• For each node xip from type i, i = 1, 2, p = 1, . . . , ni:

– sample πip ∼ DirichletK(αi).

• For each pair of nodes (xip, xjq), i, j = 1, 2, p = 1, . . . , ni, q = 1, . . . , nj :

– sample the membership of xip: zip,jq,1 ∼ MultinomialK(πip).

– sample the membership of xjq: zip,jq,2 ∼ MultinomialK(πjq).

– sample Yij(p, q) ∼ Bernoulli(zip,jq,1Bijzip,jq,2).

In all simulations, we studied networks with a total of N = 200 nodes, of which
100 were of type I and 100 of type II. The number of groups is fixed to be K = 4. We
set α1 = α2 = α1K , where 1K is a K-vector of 1’s. We tried three different values
of α (α = 0.05, 0.1 and 0.25) to simulate different settings of the membership. When
α = 0.05, each node has almost unique membership, and we assigned the group with
the highest probability to each node so that all nodes take unique membership in this
case. As α increases, the nodes will have more diffused membership. When α = 0.1,
each node belongs to about 1.5 groups on average. When α = 0.25, each node belongs
to about 2 groups on average.
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The Bernoulli probability matrix B is given by

B =

[
B11 B12

B21 B22

]
,

where

B11 = p11K1′
K + (r1 − p1)IK ,

B12 = B21 = p21K1′
K + (r2 − p2)IK ,

B22 = p31K1′
K + (r3 − p3)IK .

Here IK is a K-by-K identity matrix. Under this setting, the parameters r1 and r3
represent the intra-group link probability of the type I-type I and type II-type II homo-
geneous networks, respectively, and r2 denotes the intra-group inter-type link probability
of the type I-type II network. The strength of inter-group homophily for the type I-type
I (type II-type II) homogeneous network is represented by p1 (p3), and p2 denotes the
strength of inter-group inter-type homophily for the type I-type II network.

We tried to compare our algorithm with the Het-SC algorithm proposed by Sengupta
and Chen (2015). However, the spectral clustering algorithm is designed for the situation
that each node belongs to one unique group. In order to better compare the performance
of Het-SC and our algorithm under the mixed membership setting, we adopted a revised
version of the spectral clustering which has been used before in Airoldi et al. (2005).
Based on the cluster prediction of Het-SC, we calculated the relative distance between
each node to the centroids of clusters. Then we normalized the inverse distance to obtain
the mixed membership probability vector for each node. The closer the node is to the
cluster centroid, the higher probability it is assigned to that cluster.

5.1 Performance evaluation

For unique membership case (α = 0.05), we evaluated the performance of the algorithm
by the error rate, which is the proportion of nodes that are assigned to the wrong
group/cluster. Since for both Het-SC and our algorithm, there is an identifiability issue
with the cluster labels, we searched through all permutations to find the one that
maximizes the accuracy (or minimizes the error rate).

To measure the performance in the mixed membership case (α = 0.1 or 0.25), we
used another way to define the error rate. For each node, its error rate is computed by

1− TP+ TN

K
,

where K is the number of clusters, TP is the number of true positives and TN is the
number of true negatives. True positives are the clusters containing the node and are
correctly detected by the algorithm. True negatives are the clusters that the node does
not belong to and are not classified by the algorithm. Then the error rate for the whole
data set is the average of the error rate for all of the nodes. Similar to the unique



W. Huang, Y. Liu, and Y. Chen 725

membership case, all possible permutations of the clusters are considered and the one
with minimum error rate is taken as the final error rate.

To better measure the quality of the overlapping community detection under the
mixed membership setting, we introduce the extended version of the normalized mutual
information (NMI), which was proposed by Lancichinetti et al. (2009) and reviewed by
Xie et al. (2013) as one of the most widely used measures for overlapping communities.
Suppose the number of clusters is K and the number of nodes is N . For each node, its
membership can be expressed as a binary vector of length K. Then we have an N ×K
assignment matrix for all the nodes. We use X and Y to denote the assignment matrices
obtained by the algorithm and the truth, respectively. The kth entry of each row in X
can be treated as a random variable Xk, with probability distribution defined as

P (Xk = 1) = Nk/N, P (Xk = 0) = 1− P (Xk = 1),

where Nk is the number of nodes belonging to cluster k. Similarly, we can obtain the
probability distribution of Yl (the lth column of Y ) and the joint probability distribution
of (Xk, Yl). Define the entropies H(Xk), H(Yl) and H(Xk, Yl) by

−
∑
i

pi log pi,

where pi’s are a discrete set of probabilities for the random variable (vector). Then we
have

H(Xk|Yl) = H(Xk, Yl)−H(Yl),

H(Xk|Y ) = min
l

H(Xk|Yl),

H(X|Y ) =
1

K

K∑
k=1

H(Xk|Y )

H(Xk)
.

The extended NMI is defined by

NMI = 1− [H(X|Y ) +H(Y |X)]/2.

The extended NMI should be between 0 and 1, with 1 implying a perfect match between
the true and assigned clusters, and 0 indicating random cluster assignment with respect
to the true cluster labels. A larger extended NMI indicates a better match with the
truth.

5.2 Simulation 1

In this simulation we consider the heterogeneous network with the following setting:
r1 = 0.3, r3 = 0.7, p1 = p2 = p3 = 0.1. Type II nodes within the same group have
a larger link probability than type I nodes. We also let r2 increase from 0.3 to 0.7 in
increments of 0.1 to simulate networks with different strength of intra-group inter-type
link probability. Three choices of α, 0.05, 0.1 and 0.25, were considered. We applied three
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methods to the simulated networks: the Het-SC algorithm (SC), the revised version of
Het-SC (R-SC) (for α = 0.1 and 0.25 only) and our proposed algorithm (MMSB). The
results of the three algorithms are shown in Figures 1 and 2. Panel (a) of Figure 1 shows
the average error rate for Het-SC and MMSB under the unique membership setting
(α = 0.05). Other panels in Figures 1 and 2 show the error rate and also the extended
NMI for Het-SC, revised Het-SC and MMSB algorithms under the mixed membership
setting. The membership gets more diffused with α = 0.25 than with α = 0.1. All of
the results shown in the figures are the average of 10 simulations.

Based on the results in Figures 1 and 2, we can see the performance on type II nodes
is always better than type I nodes due to the higher intra-group link probability. We
can also see that as the intra-group inter-type link probability r2 increases, the error
rates usually decrease (and the NMIs increase) for almost all methods and all values
of α. For the mixed membership case (α = 0.1 or 0.25), the performance gets worse
for all three methods when the membership becomes more diffused. When comparing
MMSB with the other methods, in the unique membership case, although MMSB and
the Het-SC algorithm have similar error rate for type II nodes, MMSB improves the
accuracy of type I nodes a lot over the Het-SC for different r2 values. When α = 0.1 or
0.25, although we used the revised Het-SC to address the mixed membership case, it did
not improve the performance of Het-SC and sometimes the performance is even worse.
The revised Het-SC only outperforms Het-SC in terms of error rate when α = 0.25 for
type II nodes. On the other hand, MMSB has better performance (smaller error rate
and larger NMI) than both Het-SC and the revised Het-SC for all values of r2 and α.

We also compared the performance of variational method with MCMC for MMSB
based on the setting in this simulation. To make the computation feasible for MCMC, we
reduced the number of nodes to n1 = n2 = 25, and reduced the number of communities
to K = 3. The hyperparameter α is set to be 0.1. All the results shown in Table 1
are the average of 10 simulations. For each simulation, variational method took about
30 seconds while MCMC took around 3.5 hours. The results in Table 1 show that
variational method has better performance (smaller error rate and larger NMI) than
MCMC for r2 ranging from 0.3 to 0.7.

As the number of nodes increases, the number of latent variables grows at the rate
of O(n2). We expect the computation time needed for MCMC will grow even faster
than O(n2). The performance in this simulation indicates that MCMC will be too slow
for large networks, such as the DBLP data in Section 6. The computational issue of
MCMC is also discussed in Airoldi et al. (2008).

5.3 Simulation 2

In this section, we consider the scenario that there is no homophilic community structure
among type II-type II nodes. We set r1 = 0.3, r3 = 0.1 and p1 = p2 = p3 = 0.1. We let
r2 increase from 0.3 to 0.7 in increments of 0.1. Under this setting, for type II nodes, the
nodes within the same group do not have higher link probability than nodes in different
groups. The results of the Het-SC algorithm, the revised Het-SC algorithm and the
MMSB under different values of α are displayed in Figures 3 and 4. All of the results
are the average of 10 simulations.
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Figure 1: Error rates of Het-SC (SC), revised Het-SC (R-SC) and MMSB algorithms
for Simulation 1.
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Figure 2: The extended NMI of Het-SC (SC), revised Het-SC (R-SC) and MMSB algo-
rithms for Simulation 1.

r2

Error Rate NMI
Type I nodes Type II nodes Type I nodes Type II nodes

MCMC VB MCMC VB MCMC VB MCMC VB
0.3 0.3400 0.1413 0.4040 0.1213 0.2847 0.4934 0.1914 0.5229
0.4 0.3333 0.1427 0.3907 0.1107 0.2903 0.4880 0.1991 0.5539
0.5 0.3240 0.1613 0.3760 0.1373 0.2653 0.4414 0.2260 0.5305
0.6 0.3627 0.1640 0.4053 0.1200 0.2478 0.4467 0.2006 0.5437
0.7 0.3427 0.1747 0.3960 0.1053 0.2587 0.4133 0.1937 0.6036

Table 1: Comparison between MCMC and variational method for MMSB.
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Figure 3: Error rates of Het-SC (SC), revised Het-SC (R-SC) and MMSB algorithms
for Simulation 2.
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Figure 4: The extended NMI of Het-SC (SC), revised Het-SC (R-SC) and MMSB algo-
rithms for Simulation 2.

Figures 3 and 4 show that the performance on type II nodes is always worse than

type I nodes for all methods under different values of α and r2. The lack of community

structure in type II-type II network makes the clustering of type II nodes more difficult,

since only the information in the type I-type II links can be used to assign groups. The

revised Het-SC algorithm seems to have better performance than Het-SC in terms of

error rate when the membership becomes more diffused. The revised Het-SC has smaller

error rate than Het-SC when α = 0.25, but its NMI is not better than Het-SC. Also, the

revised Het-SC has worse performance than Het-SC when α = 0.1. As for our method,

MMSB improves the accuracy (in terms of both error rate and NMI) over both Het-SC

and the revised Het-SC for both type of nodes and all values of α and almost all values

of r2.
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5.4 Simulation 3

We consider the scenario that there are no type II-type II links in this section. We set
r1 = 0.3, r3 = 0, p1 = p2 = 0.1 and p3 = 0. Again r2 increases from 0.3 to 0.7 in
increments of 0.1. The results of the three algorithms under different values of α are
displayed in Figures 5 and 6. All of the results are the average of 10 simulations.

Similar to simulation 2, the performance on type II nodes is always worse than type
I nodes for all methods under different values of α and r2, since type II-type II links
are missing. The revised Het-SC algorithm still has better performance than Het-SC
in terms of error rate when the membership is more diffused (α = 0.25). Our MMSB
method has the best performance (in terms of both error rate and NMI) in almost all
cases compared with Het-SC and the revised Het-SC.

6 Analysis of the DBLP data

DBLP (Digital Bibliography & Library Project) is a computer science bibliography
website, which contains over 3.3 million publications published by more than 1.7 million
authors. Gao et al. (2009) and Ji et al. (2010) extracted a sub-network from the DBLP
data set, which contains 14376 papers, 20 conferences, 14475 authors and 8920 terms.
The sub-network focuses on four areas of computer science: database, data mining,
artificial intelligence (AI) and information retrieval, which form four groups in the sub-
network. Gao et al. (2009) and Ji et al. (2010) manually labeled the area of 4057 authors,
100 papers and all 20 conferences. In our study, we focus on the sub-network which
contains the labeled 4057 authors and all 20 conferences. We consider only one type of
links: the author-conference links (author attended conference or have papers presented
at the conference). Therefore, we have a heterogeneous network with two types of nodes:
4057 authors and 20 conferences, and the author-conference links. The goal of this
application is to identify the research areas (communities) of the authors.

Gao et al. (2009) and Ji et al. (2010) only assigned a single group (research area) to
each author when they manually labeled the data set. However in practice, it is possible
that people have more than one research area. Since the author-conference links are very
informative for clustering (Sengupta and Chen, 2015), here we create our own label for
authors based on the areas of the conferences they attended. That is, we assigned the
labels of all conferences the author attended to the author. After the assignment, there
are more than 27% of the authors having more than one research area and the average
number of areas for each author is 1.36.

We applied MMSB to the data with pre-specified number of groups K = 4, corre-
sponding to the four research areas in computer science. Table 2 shows the percentage
of authors in each research area. Overall about 20% of authors are active in more than
one research area.

We also compared the performance of MMSB with the Het-SC and the revised Het-
SC algorithms. Both the error rate and the extended NMI are used to evaluate the
performance of each method. The results are shown in Table 3. The results in bold
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Figure 5: Error rates of Het-SC (SC), revised Het-SC (R-SC) and MMSB algorithms
for Simulation 3.
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Figure 6: The extended NMI of Het-SC (SC), revised Het-SC (R-SC) and MMSB algo-
rithms for Simulation 3.

Community Database Data Mining AI Information Retrieval
% of authors 38% 26% 31% 27%

Table 2: The percentage of authors in each community.

denote the best performance under a certain criterion. The results suggest that MMSB
outperforms Het-SC and the revised Het-SC in terms of both error rate and NMI. The
revised version of Het-SC does improve the performance of Het-SC in terms of error
rate and also the NMI.

To further assess the performance of the proposed method, we examined one specific
case. In the original dataset, the author with id=78624 is manually labeled to the data
mining area, while the proposed algorithm uncovers two research areas of this author:



734 MMSBs for Heterogeneous Networks

Error rate NMI
SC R-SC MMSB SC R-SC MMSB

0.0968 0.0792 0.0458 0.5850 0.6035 0.7681

Table 3: Performance of Het-SC (SC), revised Het-SC (R-SC) and MMSB for the DBLP
dataset.

data mining and database. These two areas match with labels we assigned based on the
conferences the author attended. To determine the true research areas of this author,
we manually checked the author’s publications on the DBLP webpage. We checked the
journal/conference the paper is published in, the title, key words or abstract of the
paper to determine whether a paper is database related. For the 60 publications shown
on the DBLP webpage, 24 of them are related to database. It seems natural to consider
database to be a research area of this author. The additional research area uncovered
by the proposed method shows the advantage of MMSB.

7 Discussion

This article proposes a statistical framework for community detection in heterogeneous
networks, which extends the original MMSB for homogeneous networks to heterogeneous
networks. The proposed method relaxes the unique cluster limitation of the classical
stochastic blockmodel and allows each node of different types to have multiple member-
ships. The use of the variational algorithm makes the method scalable to large networks.
The proposed procedure is shown to be consistent for community detection under the
MMSB for heterogeneous networks. Simulation studies show that the proposed method
gave more accurate clustering results than the spectral clustering algorithm for hetero-
geneous version of the stochastic blockmodel, especially in diffused membership case.
The analysis on the DBLP data also demonstrates the advantage of our method.

In the simulation studies, we tried different values of the hyperparameter α to sim-
ulate different settings of the membership. As α increases, the nodes will have more
diffused membership. In the real data example, the results were not sensitive to the
choice of α. In practice 0.05-0.25 seems to be a reasonable range for α. It is also possible
to update α in the variational M step that maximizes the lower bound.

There is some connection between the MMSB and the latent space model (Hoff et al.,
2002), as discussed in Goldenberg et al. (2010) and Airoldi et al. (2008). Both models try
to study the latent structure of the network to explain the connectivity of the observed
network. It is of interest to develop latent space models for heterogeneous networks.

Supplementary Material

Supplementary Material for “Mixed Membership Stochastic Blockmodels for Heteroge-
neous Networks” (DOI: 10.1214/19-BA1163SUPP; .pdf). The supplementary material
contains the details of the variational posterior inference, variational EM algorithm, and
the proofs of theoretical results in Section 4.

https://doi.org/10.1214/19-BA1163SUPP
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