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Jointly Robust Prior for Gaussian Stochastic
Process in Emulation, Calibration and Variable

Selection

Mengyang Gu

Abstract. Gaussian stochastic process (GaSP) has been widely used in two fun-
damental problems in uncertainty quantification, namely the emulation and cal-
ibration of mathematical models. Some objective priors, such as the reference
prior, are studied in the context of emulating (approximating) computationally
expensive mathematical models. In this work, we introduce a new class of priors,
called the jointly robust prior, for both the emulation and calibration. This prior
is designed to maintain various advantages from the reference prior. In emulation,
the jointly robust prior has an appropriate tail decay rate as the reference prior,
and is computationally simpler than the reference prior in parameter estimation.
Moreover, the marginal posterior mode estimation with the jointly robust prior
can separate the influential and inert inputs in mathematical models, while the
reference prior does not have this property. We establish the posterior propriety
for a large class of priors in calibration, including the reference prior and jointly
robust prior in general scenarios, but the jointly robust prior is preferred be-
cause the calibrated mathematical model typically predicts the reality well. The
jointly robust prior is used as the default prior in two new R packages, called
“RobustGaSP” and “RobustCalibration”, available on CRAN for emulation and
calibration, respectively.

Keywords: computer model, posterior propriety, reference prior, tail rate.

1 Introduction

A central part of the modern uncertainty quantification (UQ) is to describe the nat-
ural and social phenomena by a system of mathematical models or equations. Some
mathematical models are implemented as computer code in an effort to reproduce the
behavior of complicated processes in science and engineering. These mathematical mod-
els are called computer models or simulators, which map a set of inputs such as initial
conditions and model parameters to a real valued output.

Many computer models are prohibitively slow, and it is thus vital to develop a fast
statistical surrogate to emulate (approximate) the outcomes of the computer models,
based on the runs at a set of pre-specified design inputs. This problem is often referred
as the emulation problem. Another fundamental problem in UQ is called the inverse
problem or calibration, where the field data are used to estimate the unobservable
calibration parameters in the mathematical model. As the mathematical model can
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be imprecise to describe the reality, it is usual to address the misspecification by a
discrepancy function. Emulation and calibration are the main focus in many recent
studies in UQ (Bayarri et al., 2007; Higdon et al., 2008; Bayarri et al., 2009; Liu et al.,
2009; Conti and O’Hagan, 2010).

A Gaussian stochastic process (GaSP) is prevalent for emulating expensive computer
model (Sacks et al., 1989; Bastos and O’Hagan, 2009) for several reasons. First of all,
many computer models are deterministic, or close to being deterministic, and thus
the emulator is often required to be an interpolator, meaning that the predictions by
the emulator are equal to the outputs at the design inputs. The GaSP emulator is
an interpolator, and can easily be adapted to emulate the stochastic computer model
outputs by adding a noise term. Second, the number of runs of the computer model
used to construct a GaSP emulator is often relatively small, which is roughly n ≈ 10px
by the “folklore” notion, where px is the dimension of the inputs. Third, the GaSP
emulator has an internal assessment of the accuracy in prediction, which allows the
uncertainty to propagate through the emulator. The GaSP is also widely used to model
the discrepancy function in calibration (Kennedy and O’Hagan, 2001; Bayarri et al.,
2007), as combining the calibrated computer model and discrepancy function usually
improves the predictive accuracy than the prediction using the computer model alone.

The GaSP model used in emulation and calibration is rather different than the one
in modeling spatially correlated data. The key difference is that the input space of
the computer model usually has multiple dimensions and completely different scales.
The isotropic assumption is thus too restrictive. Instead, for any xa,xb ∈ X with px
dimensions, one often assumes a product correlation (Sacks et al. (1989))

c(xa,xb) =

px∏
l=1

cl(xal, xbl), (1)

where each cl is a one-dimensional isotropic correlation function for the lth coordinate
of the input, each typically having an unknown range parameter γl and fixed roughness
parameter αl, l = 1, . . . , px. This choice of the correlation will be used herein due to its
flexibility in modeling correlation and tractability in computation.

The performance of a GaSP model in emulation and calibration depends critically
on the parameter estimation of the GaSP model. For the emulation problem, it’s been
recognized in many studies that some routinely used methods, such as the maximum
likelihood estimator (MLE), produce unstable estimates of the correlation parameters
(Oakley, 1999; Lopes, 2011). The instability in parameter estimation results in a great
loss of the predictive accuracy, as the covariance matrix is estimated to be near-singular
or near-diagonal. This problem is partly overcome by the use of the reference prior
(Berger et al., 2001; Paulo, 2005), where the marginal posterior mode estimation under
certain parameterizations eliminates these two unwelcome scenarios (Gu et al. (2018b)).

Other than the reference prior, many proper and improper priors were previously
studied for the GaSP model in emulation and calibration, often with a product form
with various parameterizations, including the inverse range parameter βl = 1/γl, nat-
ural logarithm of the inverse range parameter ξl = log(βl), and correlation parameter
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ρl = 1/ exp(βl), l = 1, . . . , px. For example, π(βl) ∝ 1/βl was utilized in Kennedy and
O’Hagan (2001), and π(βl) ∝ 1/(1 + β2

l ) was assumed in Conti and O’Hagan (2010). An
independent beta prior for ρl is utilized in Higdon et al. (2008), and the spike and slab
prior for the same parameterization is used in Savitsky et al. (2011). Though eliciting
the prior information has been discussed in the literature (Oakley (2002)), it is rather
hard to faithfully transform subjective prior knowledge to the GaSP model with the
product correlation function in (1).

In this work, we propose a new class of priors, called the jointly robust (JR) prior,
for both the emulation problem and calibration problem. This prior maintains most of
the advantages of the reference prior in emulation, and it has a closed-form normal-
izing constant, moments and derivatives. In comparison, although the computational
operations of the reference prior is normally acceptable, the derivative of the reference
prior is more computationally expensive. In practice, the numerical derivatives of the
reference prior are often used for the marginal posterior mode estimation, which makes
the computation slow. Moreover, the prior moments of the reference prior are unknown
and even hard to compute, because of the near-singular correlation matrix when all
range parameters are large.

In the calibration problem, we establish the posterior propriety for the calibration
problem of a wide class of priors, including the reference prior and JR prior in general
scenarios. The identifiability problem of the calibration parameters was found in many
previous studies (Arendt et al. (2012); Tuo and Wu (2015)), partly due to the large
correlation estimated by the data (Gu and Wang (2017)). Though the posteriors of
the reference prior and JR prior are shown to be proper for the calibration problem
in this work, the density of the JR prior has slightly larger slope than the density of
the reference prior when the range parameters in the covariance function get large,
preventing the correlation from being estimated to be too large. Numerical results of
the advantages of using the JR prior against the reference prior in calibration will
be discussed. Two R packages, called “RobustGaSP” and “RobustCalibration”, are
developed for the emulation and calibration problems, and the jointly robust prior is
used as the default choice in both packages (Gu et al. (2018a); Gu (2018)).

Furthermore, another advantage of the JR prior is that it can identify the inert
inputs efficiently through the marginal posterior mode of a full model, whereas the
mode with the reference prior does not have this feature. The inert inputs are the ones
that barely affect the outputs of the computer model. Having inert inputs is a fairly
common scenario with computer models. E.g. in the TITAN2D computer model used
for simulating volcanic eruption (Bayarri et al., 2009), the internal friction angle has a
negligible effect on the output. In emulation, having an inert input can sometimes result
in worse predictions than simply omitting them and in calibration, one may hope to
spend more efforts in calibrating the influential inputs than the inert inputs. The full
Bayesian variable selection of the inputs in a computer model is often prohibitively slow,
as each evaluation of the likelihood is computationally expensive, whereas the marginal
posterior mode by the JR prior is much faster for identifying the inert inputs.

Compared to other frequently used priors other than the reference prior, the new
class of priors studied in this work is not a product of marginal priors of the range
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parameter or its transformation. The advantage is that the marginal posterior mode
estimation with the new prior is both robust and useful in identifying the inert in-
puts in the computer model. The marginal posterior mode estimation of a product of
marginal priors of the parameters in the covariance function, however, may not have
both properties at the same time, explained in detail in Section 4.1.

The paper is organized as follows. In Section 2, we review the GaSP model in em-
ulation and calibration, exploring the benefit of the reference prior in emulation that
were not noticed before. A general theorem about the posterior propriety is also de-
rived in the calibration setting. In Section 3, we introduce the JR prior, and compare
with the reference prior in calibration and emulation. The variable selection problem
is introduced in Section 4. The numerical studies of using the JR prior for emulation,
variable selection and calibration will be discussed in Section 5. We conclude the paper
in Section 6.

2 Gaussian stochastic process model

In this section, we first shortly introduce the GaSP model in Section 2.1. The model will
be extended for emulation and calibration in Section 2.2 and Section 2.3, respectively.
The posterior propriety will also be studied in the calibration problem in Section 2.3.

2.1 Background

To begin with, consider a stationary Gaussian stochastic process y(·) ∈ R on a px-
dimensional input space X ,

y(·) ∼ GaSP(μ(·), σ2c(·, ·)), (2)

where μ(·) and σ2c(·, ·) are the mean and covariance functions, respectively. Any marginal
distribution (y(x1), . . . , y(xn))

T follows a multivariate distribution,

(y(x1), . . . , y(xn))
T ∼ MN(μ, σ2R),

where μ = (μ(x1), . . . , μ(xn))
T is an n-dimensional vector of the mean, and σ2R is an

n×n covariance matrix with the (i, j) entry being σ2c(·, ·), where c(·, ·) is a correlation
function.

The mean function for any input x ∈ X is typically modeled via the regression

μ(x) = h(x)θm =

q∑
t=1

ht(x)θmt, (3)

where h(x) = (h1(x), . . . , hq(x)) is a row vector of the mean basis functions and θmt is
the unknown regression parameter of the basis function ht(·), for t = 1, . . . , q, with q
being the number of the mean basis functions specified in the model.

The product correlation function in (1) is assumed and thus the correlation matrix
is R = R1 ◦R2 ◦ . . . ◦Rpx , where ◦ is the Hadamard product. The (i, j) entry of Rl is
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parameterized by cl(·, ·), a one dimensional correlation function for the lth coordinate
of the input, l = 1, . . . , px. We focus on two classes of widely used correlation functions:
the power exponential correlation and Matérn correlation. Define dl = |xal − xbl| for
any xa,xb ∈ X . The power exponential correlation has the form

cl(dl) = exp

{
−
(
dl
γl

)αl
}
, (4)

where γl is an unknown nonnegative range parameter to be estimated and αl ∈ (0, 2] is
a fixed roughness parameter, often chosen to be a value close to 2 to avoid the numerical
problem when αl = 2 (Bayarri et al., 2009; Gu and Berger, 2016).

The Matérn correlation has the following form

cl(dl) =
1

2αl−1Γ(αl)

(
dl
γl

)αl

Kαl

(
dl
γl

)
, (5)

where Γ(·) is the gamma function, Kαl
(·) is the modified Bessel function of the second

kind with the range parameter and roughness parameter being γl and αl, respectively.
The Matérn correlation has a closed-form expression when αl = 2kl+1

2 with kl ∈ N,
and becomes the exponential correlation and Gaussian correlation, when kl = 0 and
kl → ∞, respectively. Though we focus on these two classes of correlation functions,
the results are applicable to other correlation functions discussed in Gu et al. (2018b).

2.2 GaSP emulator and the reference prior

The goal of emulation is to predict and assess the uncertainty on the real-valued output
of a computationally expensive computer model, denoted as fM (·), based on a finite
number of chosen inputs, often selected to fill the input domain X , e.g. the Latin
Hypercube Design (Sacks et al., 1989; Santner et al., 2003). Let us model the unknown
function fM (·) via a GaSP defined in (2). Denote the outputs of the computer model
fM = (fM (x1), . . . f

M (xn))
T at n chosen inputs {x1, . . . ,xn}. Conditional on fM , the

GaSP emulator is to predict and quantify the uncertainty of the output at x∗ by the
predictive distribution of fM (x∗).

The GaSP emulator typically consists of mean parameters, a variance parameter and
range parameters, denoted as (θm, σ2,γ). The reference prior for the GaSP model with
the product correlation was developed in Paulo (2005) and has the following expression

πR(θm, σ2,γ) ∝ πR(γ)

σ2
, (6)

with πR(γ) ∝ |I∗(γ)|1/2, where I∗(·) is the expected Fisher information matrix as below

I∗(γ) =

⎛
⎜⎜⎜⎜⎜⎝

n− q tr(W1) tr(W2) . . . tr(Wpx)
tr(W2

1) tr(W1W2) . . . tr(W1Wpx)
tr(W2

2) . . . tr(W2Wpx)
. . .

...
tr(W2

px
)

⎞
⎟⎟⎟⎟⎟⎠, (7)
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where Wl = ṘlQ, for 1 ≤ l ≤ px, and Ṙl is the partial derivative of the
correlation matrix R with respect to the lth range parameter, and Q =
R−1 −R−1H(HTR−1H)−1HTR−1, with H = (hT (x1), . . . ,h

T (xn))
T .

After marginalizing out (θm, σ2) by the prior in (6), we obtain the marginal likeli-
hood, denoted as L(γ | y). As each evaluation of the likelihood requires the inversion
of the covariance matrix, which is generally at the order of O(n3), the full Bayesian
computation through the Markov Chain Monte Carlo (MCMC) is typically prohibitive.
It is common to simply estimate γ by the marginal posterior mode in emulation

(γ̂1, . . . γ̂px) = argmax
γ1,...,γpx

{
L(γ1, . . . , γpx | y)πR(γ1, . . . , γpx)

}
. (8)

Some routinely used estimators, such as the maximum likelihood estimator (MLE)
and maximum marginal likelihood estimator (MMLE) with regard to L(γ | y) have
been found to be unstable in estimating the range parameters in various studies (see
e.g. Figure 2 in Li and Sudjianto (2005), Figure 2.2 in Lopes (2011) and Figure 1 in Gu
et al. (2018b)). The problem is often caused by the estimation of the range parameters,
such that the estimated correlation matrix is near-diagonal (R̂ ≈ In, where In is the
identity matrix of size n) or near-singular (R̂ ≈ 1n1

T
n ). More specifically, as shown

in Lemma 3.3 in Gu et al. (2018b), the profile likelihood function may not decrease
when any γl → 0, l = 1, . . . , px, sometimes resulting in the near-diagonal correlation
matrix, whereas the marginal likelihood may not decrease when any γl → 0 or all
γl → 0, l = 1, . . . , px, leading to the near-diagonal correlation matrix or near-singular
correlation matrix, respectively. Thus, the robust estimation of the parameters is defined
as avoiding these two possible problems, as follows.

Definition 1. (Robust Estimation.) Estimation of the parameters in the GaSP is called

robust, if neither R̂ = 1n1
T
n nor R̂ = In, where R̂ is the estimated correlation matrix.

It is shown in Gu et al. (2018b) that the marginal posterior mode estimation with
the reference prior is robust under γ or ξ = log(1/γ) parameterization, while some
other alternatives, such as the MLE and MMLE, do not have this property. Note that
the near-diagonal estimation (R̂ ≈ In) can easily happen for px > 1 when a product
correlation structure is used because, if any of the matrices in the product correlation
matrix is near-diagonal, the correlation matrix will be near-diagonal. Thus, using the
maximum marginal posterior mode estimation with the reference prior is particularly
helpful, when the dimension of the input is larger than 1.

The reference prior has many other advantages in emulation that were not noticed
before. First, when the dimension of the inputs increases, the prior mass moves from the
smaller values of γl to the large values of γl, for each l = 1, . . . , px. This is an important
property since, as any of γ̂l ≈ 0, R̂ is near-diagonal, a degenerate case that should be
avoided. When px increases, the chance that at least one γl is estimated to be small
increases, if the prior mass does not change along with px and, consequently, the chance
that R̂ ≈ In also increases. The reference prior adapts to the increase of the dimension
by concentrating more prior mass at larger γl, avoiding R̂ ≈ In, when px increases.

Second, when a denser design is used in a fixed domain of the input space, the prior
mass of the reference prior parameterized by γl moves to the domain with smaller values.
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Figure 1: Density of the reference prior of the log inverse range parameter (up to the
normalizing constants). The power exponential correlation function in (4) is assumed
where αl = 1.9, 1 ≤ l ≤ px, with px = 1 (upper panels) and px = 2 (lower panels). From
left to right, the number of design points are n = 20, n = 40 and n = 80, respectively, all
generated from a maximin Latin Hypercube (LHD) on [0, 1]px (Santner et al. (2003)).
For all the panels, we assume H = 1n.

This is helpful for the inversion of the covariance matrix in practice, because as points
fill with a fixed domain of the input space, the covariance matrix becomes singular if γ̂l
does not change.

Here we provide a numerical justification of first two properties of the reference
prior in Figure 1, where the reference prior density of the log inverse range parameter
ξl = log(1/γl) is shown, when the power exponential correlation function is assumed.
Comparing the figures with different sample sizes, the mode of the prior moves to the
region with larger values of log inverse range parameters (or equivalently the smaller
range parameters), when the sample size increases. Comparing the first row and the
second row of the panels in Figure 1, the prior mass moves to the region with smaller
values of the log inverse range parameters (or equivalently the larger range parameters),
when the dimension of the input increases.

The third property of interest is that the reference prior is invariant to the location-
scale transformation of the inputs, if the mean basis functions contain only the in-
tercept and the linear terms of x. When we apply a location-scale transformation of
each coordinate of the input x̃l = xl−c0l

c1l
, for l = 1, . . . , px, the new reference prior

is π̃R(γ1, . . . , γpx) = πR(γ1/c11, . . . , γp/c1px). This makes the prior scale naturally to
the range of the inputs; as a consequence, we do not need to normalize the inputs.
Note when the mean basis functions contain only the intercept and the linear terms
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of x, the projection matrix is invariant to the local-scale transformation. Thus, only the
scale transformation in the covariance function affects the reference prior and that is
equivalent to scaling the range parameter by the same factor.

In addition, the reference prior has an appropriate tail decay rate at the limits when
R = In and R = 1n1

T
n (Gu et al. (2018b)). When γl → 0 for any l = 1, . . . , px, the

density of the reference prior decreases at an exponential rate approximately; when
γl → ∞ for all l = 1, . . . , px, the density of the reference prior deceases at a polynomial
rate. The first part of the tail rates induces an exponential penalty to the likelihood when
the correlation matrix is near-diagonal, prohibiting the undesired situation in emulation.
The posterior with the reference prior has slow polynomial decay rates when γl is large
for all l = 1, . . . , px (or equivalently R ≈ 1n1

T
n ), allowing the marginal likelihood to

come into play at this limit. The larger range parameter was found to make prediction
more precise (Zhang (2004)), and thus a small polynomial penalty from the reference
prior both reduces the singular estimation of the covariance matrix and maintains high
accuracy in prediction.

Despite various benefits in using the reference prior for emulation, the computational
challenges still persist with the use of the reference prior, even if the posterior mode
estimation is used in lieu of the posterior sampling. The computational order of the ref-
erence prior is O(pxn

3), which is mainly from computingWl in (7), for l = 1, . . . , px, and
the inversion of the covariance matrix. However, the closed-form derivatives of the ref-
erence prior are very computationally intensive, as it requires to compute ∂2R/∂γi∂γj ,
for 1 ≤ i, j ≤ px. The total computational orders of px directional derivatives of the ref-
erence prior is O(p3xn

3), because the computational order of each directional derivative
is O(p2xn

3) for the matrix multiplication. Because of these reasons, the author does not
find any literature that provides the closed-form derivatives of the reference prior in this
scenario, though some frequently used mode search algorithms, such as the low-storage
quasi-Newton optimization method (Nocedal (1980)), typically rely on the information
of the derivatives. Instead, one typically computes the numerical derivatives, which re-
quires more evaluations of the likelihood, each with O(n3) in computing the inversion
of the covariance matrix, and thus it is also very time consuming. In addition, the refer-
ence prior could also induce some extra local modes, making the optimization algorithm
harder to converge to the global mode (see e.g. the change of the slope of the reference
prior density in the upper middle panel in Figure 1 and another example is given in
Figure 3.3 in Gu (2016)).

Some inputs of the computer model may have very small effects on the outputs of the
computer model. These inputs are called inert inputs and are often omitted in emulation.
When the inert inputs are omitted, a noise term is often added to the GaSP emulator, as
the emulator should no longer be an exact interpolator at the design points. The GaSP
emulator can be extended to include a noise term or nugget, f̃M (·) = fM (·) + ε, where
fM (·) still follows a GaSP model and ε ∼ N(0, σ2

0) is an independent Gaussian noise.
Define the nugget variance ratio parameter η = σ2

0/σ
2. The reference prior πR(γ, η) has

been derived for the GaSP model with a noise term (Ren et al. (2012); Kazianka and
Pilz (2012); Gu and Berger (2016)). The advantages of using the reference prior with a
nugget are similar to our previous discussion and are thus omitted here.
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2.3 GaSP for computer model calibration

Some parameters in the computer model are unknown and unobservable in experiments.
We denote the mathematical model output by fM (x,θ), where x is a px-dimensional
vector of observable inputs in experiment and θ is a pθ-dimensional vector of unob-
servable parameters. The calibration problem is to estimate θ by a set of field data
yF := (yF (x1), . . . , y

F (xn))
T . In practice, a perfect mathematical model to the reality

is rarely the case. It is common to address the model misspecification by a discrepancy
function, such that the reality can be represented as yR(x) = fM (x,θ) + δ(x), where
yR(·) and δ(·) denote the reality and discrepancy function, respectively. It leads to the
following statistical model for calibration

yF (x) = fM (x,θ) + δ(x) + ε, (9)

where ε ∼ N(0, σ2
0) is an independent zero-mean Gaussian noise. For simplicity, we

assume fM (·, ·) is computationally cheap to evaluate for now.

As we often know very little about the discrepancy function, the GaSP is sug-
gested in Kennedy and O’Hagan (2001) to model the discrepancy function, i.e. δ(·) ∼
GaSP(μ(·), σ2c(·, ·)), where the mean and correlation functions are defined in (3) and
(1), respectively. It is usual to define η = σ2

0/σ
2, the nugget-variance ratio parameter

for the computational reason, as now σ2 is a scale parameter which has a conjugate
prior.

The parameters in (9) consist of calibration parameters, mean parameters, range
parameters, a variance parameter and a nugget parameter in the covariance function,
denoted as (θ,θm,γ, σ2, η). Consider the following prior for the calibration problem

π(θ,θm, σ2,γ, η) ∝ π(γ, η)π(θ)

σ2
. (10)

As the calibration parameters normally have scientific meanings, π(θ) is typically cho-
sen by expert knowledge and thus we do not give a specific form herein. To the author’s
knowledge, the posterior propriety has not been shown for the above prior in the cali-
bration problem, except for the case that fM (x,θ) is linear with regard to θ. We have
the following theorem to guarantee the posterior propriety in this scenario. The proof
for Theorem 1 generalizes the proof in Berger et al. (1998), which is a special case with
a mean parameter, a variance parameter and two independent observations.

Theorem 1. Assume the prior follows (10) for the calibration model in (9) with π(γ, η)
and π(θ) being proper priors. Let Hy = (H,yF ) be an n × (q + 1) matrix. If Hy has
full rank and n ≥ q + 1, the posterior is proper.

Proof of Theorem 1. Since Hy has full rank and n ≥ q+1, one can select q+1 linearly
independent rows of Hy, denoted as Hy0, such that Hy0 is invertible. W.l.o.g., we
assume the first q + 1 rows of Hy are linearly independent.

We first marginalize out the last n − q − 1 field data and the resulting density is
denoted as p(yF

1:(q+1) | θm, σ2,θ,γ, η). As π(θ) and π(γ, η) are both proper, we then
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marginalize out (θ,γ, η) and obtain the proper marginal density p(yF
1:(q+1) | θm, σ2).

Since (θm, σ2) are the location-scale parameters for the marginal density, one has∫
. . .

∫
p(yF

1:(q+1) | θm, σ2)π(θm, σ2)dθmdσ2

=

∫
. . .

∫
1

(σ2)(q+1)/2+1
p

(
y(x1)− h(x1)θm

σ
, . . . ,

y(xq+1)− h(xq+1)θm
σ

)
dθmdσ2

=

∫
. . .

∫
1

(σ2)(q+1)/2+1
|J−1|p (ỹ1, . . . , ỹq+1) dỹ1 . . . dỹq+1,

where the first equation follows from the definition of the location-scale family and

the second equation follows from parameter transformation, ỹi = y(xi)−h(xi)θm

σ , for
i = 1, . . . , q + 1, with the Jacobian determinant being

J−1 =

∣∣∣∣∣∣∣∣
−h1(x1)

σ · · · −hq(x1)
σ −yF (x1)−h(x1)θm

σ3

...
. . .

...
...

−h1(xq+1)
σ · · · −hq(xq+1)

σ −yF (xq+1)−h(xq+1)θm

σ3

∣∣∣∣∣∣∣∣

−1

= (−1)q+1σq+3

∣∣∣∣∣∣∣
h1(x1) · · · hq(x1) yF (x1)

...
. . .

...
...

h1(xq+1) · · · hq(xq+1) yF (xq+1)

∣∣∣∣∣∣∣
−1

= (−1)q+1σq+3J−1
0 ,

where J0 = |Hy0|. Hence one has∫
. . .

∫
p(yF

1:(q+1) | θm, σ2)π(θm, σ2)dθmdσ2dyF
1:(q+1) = |J−1

0 | < ∞.

Note that the reference prior in (6) is proper for many widely used correlation
functions, as long as the intercept is contained in the mean basis matrix, i.e. 1n ∈ C(H),
where C(H) denotes the column space of the mean basis matrix (Gu et al. (2018b)).
Theorem 1 states that using the reference prior is legitimate in the calibration problem
when the mean basis contains an intercept. Empirically, the reference prior changes very
little with an intercept added to the column space of the mean basis matrix.

We have assumed the mathematical model is computationally cheap so far. When
the computer model is expensive to run, one can combine the GaSP emulator in the
calibration model through a full Bayesian approach. In practice, however, since the
field data typically contain larger noises and may not provide much information for the
emulation purpose, a modular approach is often used, meaning that the GaSP emulator
only depends on the outputs of the computer model (Liu et al. (2009)). We refer to
Bayarri et al. (2007) for an overview of combining the GaSP emulator in a calibration
model. The modular approach is implemented in Gu (2018), where the parameters in
the GaSP emulator are estimated based on the outputs of the computer model (Gu et al.
(2018a)). In the calibration, we draw a sample from the posterior predictive distribution
of the GaSP emulator when we need to evaluate the computer model.
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3 Jointly robust prior

We introduce a new class of priors for calibration and emulation of mathematical models
in this section. In Section 3.1 and Section 3.2, we show that the new prior has all the
nice features of the reference prior discussed in Section 2.2. The benefits of the new prior
in calibration and identifying the inert inputs in mathematical models will be discussed
in Section 3.1 and Section 4, respectively.

3.1 Calibration

We first introduce the new prior in the calibration setting, where the model in given
in (9) with the discrepancy function δ(·) modeled as a GaSP. Define the inverse range
parameter βl = 1/γl, for l = 1, . . . , px, and the nugget-variance parameter η = σ2

0/σ
2

in the covariance function. The overall prior follows

π(θ,θm, σ2,β, η) ∝ πJR(β, η)π(θ)

σ2
. (11)

The key part is the prior for the range parameters and nugget-variance parameter, where
we call it the jointly robust (JR) prior and the form is given by

πJR(β1, . . . , βpx , η) = C

(
px∑
l=1

Clβl + η

)a

exp

{
−b

(
px∑
l=1

Clβl + η

)}
, (12)

where C is a normalizing constant; a > −(px+1), b > 0 and Cl > 0 are prior parameters.
The name “jointly robust” is used to reflect the fact that the prior can’t be written as a
product of the marginal priors of the range parameter for each coordinate of the input,
and it is robust in marginal posterior mode estimation (see Section 3.2 for details). The
form

∑px

l=1 Clβl+η is inspired by the tail rate of the reference prior at R = 1n1
T
n shown

in Lemma 4.1 in Gu et al. (2018b). Besides, the JR prior is a proper prior. The posterior
propriety of using (12) is thus guaranteed by Theorem 1, when π(θ) is proper.

We first show some properties of the JR prior and then discuss the default choice
of the prior parameters. First of all, the normalizing constant of the prior is given as
follows.

Lemma 1. (Normalizing constant.) The jointly robust prior is proper and has the

normalizing constant C =
px!b

a+px+1 ∏px
l=1 Cl

Γ(a+px+1) , where Γ(·) is the gamma function.

Proof of Lemma 1.

1

C
=

∫
. . .

∫
(

px∑
l=1

Clβl + η)a exp(−b(

px∑
l=1

Clβl + η))dηdβ1 . . . dβpx

=

∫
. . .

∫
(
∑px

l=1 β̃l + η)a exp(−b(
∑px

l=1 β̃l + η))∏px

l=1 Cl
dηdβ̃1 . . . dβ̃px , let β̃l = Clβl
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=

∫
za exp(−bz)∏px

l=1 Cl

∫
. . .

∫
β̃1+...+β̃px<z

dβ̃1 . . . dβ̃pxdz, let z =

px∑
l=1

β̃l + η

=

∫
za exp(−bz)zpx∏px

l=1 Clpx!
dz

=
Γ(a+ px + 1)

px!ba+px+1
∏px

l=1 Cl
.

The marginal prior mean and variance are given in the following lemma.

Lemma 2. (Prior mean and variance.) For i = 1, . . . , px, the prior mean and prior
variance are given below.

(i.) EπJR [βi] =
a+px+1

(px+1)Cib
and EπJR [η] = a+px+1

(px+1)b .

(ii.) VarπJR [βi] =
(a+px+1){(px+1)2+px+apx+1}

(px+1)2(px+2)C2
i b

2 and

VarπJR [η] = (a+px+1){(px+1)2+px+apx+1}
(px+1)2(px+2)b2 .

Proof of Lemma 2. We only show the prior mean for βi, as the proof of the prior mean
for η is similar. For any 1 ≤ i ≤ px

E[βi] =

∫
. . .

∫
βi(

px∑
l=1

Clβl + η)a exp

(
−b(

px∑
l=1

Clβl + η)

)
dηdβ1 . . . dβpx

=

∫
cza exp(−bz)

Ci

∏px

l=1 Cl

∫
. . .

∫
β̃1+...+β̃px<z

β̃idβ̃1 . . . dβ̃pxdz,

let β̃l = Clβl, z =

px∑
l=1

β̃l + η

=

∫
cza exp(−bz)

Ci

∏px

l=1 Cl

∫ z

0

(z − β̃i)
px−1β̃i

(px − 1)!
dβ̃idz

=
a+ px + 1

(px + 1)Cib
.

Using the similar method for the prior mean, for any 1 ≤ i ≤ px, we have

EπJR [β2
i ] =

2(a+ px + 2)(a+ px + 1)

(px + 1)(px + 2)C2
i b

2
.

Part (ii) follows from VarπJR [βi] = EπJR [β2
i ]− (EπJR [βi])

2 for i = 1, . . . , px.

The prior parameters of the jointly robust prior in Equation (12) consist of the overall
scale parameter a, the rate parameter b and input scale parameters Cl, l = 1, . . . , px.
First, we let Cl = n−1/px |xmax

l − xmin
l |, where xmax

l and xmin
l are the maximum and

minimum values of the input at the lth coordinate, which makes the reference prior
invariant to the location-scale transformation of the input. The factor n−1/px is the
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average distance between the inputs after scaling the inputs by the range, as the average
sample size of each coordinate of the input is n1/px when we have n inputs from a Lattice
design at a p dimensional input space. This choice allows the JR prior to match the
behavior of the reference prior to the change of dimensions and number of observations.
Second, we let b = 1 to have a large exponential penalty to avoid the estimation of R
being near-diagonal.

The choice of a is an open problem and may depend on specific scientific goals.
In the calibration setting, when a is close to −1 − px, the prior density is almost flat
when log(β) → 0 and log(η) → 0, resulting in the large estimated correlation in some
scenarios, which makes the calibrated computer model without the discrepancy function
fit the reality poorly (Gu and Wang (2017)). On the contrary, when a is large, the
method is biased to small correlation, which makes the prediction less accurate. In the
RobustCalibration package (Gu (2018)), a = 1/2 − px is the default setting for the
calibration problem, which balances between prediction and calibration. a = 1/2− px,
b = 1 and Cl = n−1/px |xmax

l − xmin
l |, l = 1, . . . , px, will be used for all numerical

comparisons in calibration.

In Figure 2, the densities of the JR prior and reference prior with px = 1 are graphed
in the upper panels. The JR prior matches the reference prior reasonably well. When the
number of observations increases, the mass of the JR prior moves to the domain with
the larger values of ξ, preventing overwhelmingly large correlation. The densities of the
JR prior are graphed in the lower panels with px = 2. When the dimension of inputs
increases, the mass of the JR prior moves to the domain with the smaller values of ξ,
preventing the covariance matrix from being estimated to be diagonal. Both features
are important for avoiding the degenerate cases discussed in Section 2.2.

Furthermore, with a = 1/2−px, the tail of the JR prior decreases slightly faster than
the reference prior when ξ → −∞ shown in Figure 2. This is helpful for the identification
of the calibration parameters, an example of which is given in Section 5.3.

3.2 Emulation

In this subsection, we discuss parameter estimation with the JR prior in a GaSP em-
ulator introduced in Section 2.2. As computer models are often deterministic, the JR
prior has the following form

πJR(β1, . . . , βpx) = C0

(
px∑
l=1

Clβl

)a

exp

{
−b

(
px∑
l=1

Clβl

)}
, (13)

where C0 =
(px−1)!ba+px

∏px
l=1 Cl

Γ(a+px)
. The JR prior in (13) is a special case of (12) with

η = 0, so the properties of the prior discussed in Section 3.1 can be easily extended to
this scenario.

One important feature of the reference prior is that the marginal posterior mode
estimation is robust under the γ and ξ parameterization. Here we show a similar result
when the JR prior is used to replace the reference prior in the maximum marginal
posterior estimation in (8).
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Figure 2: Priors for the log inverse range parameter of the Matérn correlation function
where αl = 2.5, 1 ≤ l ≤ px. From left to right, the number of the design points is n = 20,
n = 40 and n = 80, respectively. The designs are generated from the maximin LHD
on [0, 1]px . In the upper panels, the blue solid curves are the density of the JR prior
and the red dashed curves are the density of the reference prior (up to the normalizing
constants) with px = 1. The densities of the JR prior for px = 2 are graphed in the
lower panels. For all the panels, we assume H = 1n.

Theorem 2. (Robust estimation of the JR prior.) Assume the JR prior in (13) with
b > 0 and Cl > 0.

• Under the parameterization of the range parameter γ and the log inverse range
parameter ξ, the marginal posterior mode estimation with the JR prior is robust
if a > −px.

• Under the parameterization of the inverse range parameter β, the marginal pos-
terior mode estimation with the JR prior is robust if a > 0.

Proof of Theorem 2. By Lemma 3.3 in Gu et al. (2018b), the marginal likelihood L(γ |
y) ≤ O(1) if γl → ∞ for all l, or γl → 0 for any l, l = 1, . . . , px. The results follow from
the fact that the density of the prior is zero when R = 1n1n and R = In.

Note that the marginal posterior mode with the reference prior under the param-
eterization of the inverse range parameter β is not robust. Surprisingly, the marginal
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posterior mode with the reference prior will always be at R̂ = 1n1
T
n under β parameter-

ization, and should clearly be avoided (Gu et al. (2018b)). By Theorem 2, the marginal
posterior mode estimation with the JR prior is robust under the β parameterization if
a > 0. It has some added advantages for variable selection, as the posterior is positive
if any βl = 0 given in the following remark.

Remark 1. (Tail rates.) Assume the JR prior in (13) with a > 0, b > 0 and Cl > 0.
Here βE denotes the vector of βl for all l ∈ E, E ⊂ {1, 2, . . . , px}.

(i.) When βE → ∞, the natural logarithm of the JR prior approximately decreases
linearly with the rate −b

∑
l∈E βl.

(ii.) When βl → 0 for all l = 1, . . . , px, the natural logarithm of the JR prior decreases
at the rate of alog(

∑px

l=1 Clβl).

(iii.) When βE → 0 and #E < px, π
JR(β1, . . . , βpx) is finite and positive.

The first and second parts of the jointly robust prior match the exponential and
polynomial tail decay rates of the reference prior discussed in Section 2.2. The third
part is an improvement, which allows the identification of inert inputs by the marginal
posterior mode with the jointly robust prior, discussed more in the next section. Note
that the third part only holds for the parameter estimation under the parameterization
by the inverse range parameter β, while the JR prior loses such property under the
parameterization by the other parameterizations, e.g. γ and ξ. Thus we propose the
following marginal posterior mode estimation with the reference prior

(β̂1, . . . β̂px) = argmax
β1,...,βpx

{
L(β1, . . . , βpx | y)πJR(β1, . . . , βpx)

}
,

where πJR(·) is the JR prior in (13), with a > 0, b > 0 and Cl > 0. Here we use the same
default prior parameters b = 1 and Cl = n−1/px |xmax

l − xmin
l | for the reasons discussed

in Section 3.1. a = 1/5 is implemented in the RobustGaSP Package as a default choice
for emulation (Gu et al. (2018a)).

4 Variable selection and sensitivity analysis

This section discusses the issue of selecting influential inputs of computer models. We
first introduce a computationally feasible approach of identifying the inert inputs by
the JR prior and then discuss the sensitivity analysis approach.

4.1 Identifying the inert inputs by the JR prior

Consider a GaSP model to emulate the computer model fM (x). W.l.o.g., we assume the
input only appears in the covariance function in (1). Variable selection in this context
was considered in some previous studies. In Schonlau and Welch (2006), the variable is
selected one by one through a screening algorithm with the functional analysis of the
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variance, while the number of models to be computed is at the order of p2x. In Linkletter
et al. (2006), the size of the transformed range parameters is used as an indicator
to decide whether the input is influential and the full posteriors are sampled from a
Metropolis Hasting algorithm. In Savitsky et al. (2011), a spike and slab prior is used
for the transformed range parameters for variable selection. However, the difficulty with
the model selection strategy comes from the computational burden, as the model space
is 2px , and each evaluation of the likelihood requires O(n3) operations for n observations.

Note that the variable selection is hard in this context, as no closed-form marginal
likelihood is available. However, when using the product correlation function in (1),

the hope is that, for an inert input l, R̂l = 1n1
T
n , in which it will not affect the

correlation matrix R. Using the marginal posterior mode estimation with the reference
prior, this would happen if γ̂l → ∞. However, as shown in the following lemma, marginal
posterior mode estimation with robust parameterizations utilizing the reference prior
cannot identify inert inputs. The proof follows directly from the tail rate computed in
Lemma 4.1 and Lemma 4.2 in Gu et al. (2018b).

Lemma 3. The marginal posterior of range parameters γ (or the logarithm of the
inverse range parameters ξ) goes to 0 if some, but not all, γl → ∞ (or ξl → 0),
l = 1, · · · , px, for the power exponential and Matérn correlation functions, when the
reference prior in (6) is used.

According to Lemma 3, the marginal posterior mode with two parameterizations will
never appear at R̂l = 1n1

T
n for any l, as the posterior density is 0 if R̂l = 1n1

T
n for some

but not all l, l = 1, . . . , px. The identifiability of inert inputs with the posterior mode
estimation, however, requires the posterior density is positive when Rl = 1n1

T
n for some

l = 1, . . . , k. Other transformation of the reference prior is also less likely to both main-
tain the robustness parametrization and identify inert inputs. Such difficulties could lead
to inferior results of predictions when some inert inputs are present in computer models.

Note when a product of marginal priors of the range parameters is used, the marginal
posterior mode may be either not robust or unable to identify the inert inputs. This is
because to identify an inert input by the posterior mode, the posterior density should be
positive when R̂l = 1n1

T
n , l = 1, . . . , px. However, when a product of marginal priors of

the range parameters is used, it requires positive posterior density when R̂l = 1n1
T
n , for

all l = 1, . . . , px, as the inert inputs cannot be determined a priori. This often violates
the robust estimation in Definition 1, as the posterior mode can appear at R = 1n1

T
n .

Luckily, the marginal posterior mode with the JR prior is positive when R̂l = 1n1
T
n

for some but not all l, l = 1, . . . , px, stated in the following lemma.

Lemma 4. The marginal posterior of the inverse range parameters β is positive if
1n /∈ C(H) and some, but not all, βl → 0, l = 1, · · · , px, for the power exponential and
Matérn correlation functions using the JR prior in (13) with a > 0, b > 0 and Cl > 0.

The proof of Lemma 4 follows from the tail rate of the marginal likelihood of the
GaSP model (Lemma 3.1 and Lemma 4.1 in Gu et al. (2018a)) and the tail rate of the
JR prior in Remark 1. When βl = 0, the lth input is not in the covariance in GaSP
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model. In practice, the exact zero estimation is not likely to be obtained. Thus, we use
the normalized inverse range parameters as an indicator of the importance of each input

P̂l =
Clβ̂l∑px

i=1 Ciβ̂i

, (14)

where (β̂1, . . . , β̂px) are estimated in Equation (14). The involvement of Cl is to take the

scale of the input into account. The part
∑px

l=1 Clβ̂l in the denominator is the overall

size of the estimation and the Clβ̂l is the contribution by the lth input.

The size of the transformed range parameters has been used to infer which the input
is inert, but with a different prior (Linkletter et al. (2006)). However, the jointly robust
prior yields better results, as compared in Section 5.2.

One may use a certain threshold of the normalized inverse range parameters to
predict whether the input is inert or not, i.e.

P̂l ≤ p0/px, (15)

where p0 may be chosen as a constant between 0 to 1, l = 1, . . . , px. Such value could also
depend on the number of observations, dimension of the inputs and expected number
of inputs to be chosen. However, because typically all inputs affect the outputs in a
computer model, the threshold might be less important and can be chosen based on the
scientific goal. We do not try to present a method for the full model selection, as each
computation of the likelihood can be expensive. The point, here, is that the computation
of Pl does not take any extra computation (as the posterior modes are typically needed
for building a GaSP model), and can serve as an indicator of the inert inputs.

4.2 Sensitivity analysis

Sensitivity analysis of computer model studies how changes of inputs affect the out-
puts. The inputs, in the computer model, typically associate with a distribution π(x),
reflecting the belief of the input values. One of the main goal related to the sensitivity
analysis is to identify how much a set of inputs influence the variability of outputs,
which is studied through the functional analysis of the variance (functional ANOVA).

It is possible to decompose a function fM (·) as follows (Hoeffding (1948))

fM (x) = z0 +

px∑
i=1

zi(xi) +

px∑
i<j

zij(xi,j) + . . .+ z12...px(x),

where xi,j = (xi, xj) and x = (x1, . . . , xpx). One can obtain these element functions
by taking expectation on x: z0 = E[fM (x)], zi(xi) = E[fM (x)|xi] − z0, zij(xi,j) =
E[fM (x)|xi,j ]− z0 − zi − zj , and so on. Here zi(xi) is often referred as the main effect
and zi,j(xi,j) is referred as the second order effect.

The variance of the function can be decomposed below (Efron and Stein (1981))

Var[fM (x)] =

px∑
i=1

Wi +

px∑
i<j

Wij + . . .+W12...px ,
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where Wi = Var[E[fM (x)|xi]] = Var[zi(xi)], Wij = Var[E[fM (x)|xi,j ]]−Wi −Wj . Two
principal measures called the main effect index and the total effect index were defined
as follows (Sobol’ (1990))

Si = Vi/Var[f
M (x)],

STi = VTi/Var[f
M (x)],

where Vi = Wi = Var[E[fM (x)|xi]] and VTi = Var[fM (x)]− Var[E(fM (x) | x−i)]. Si is
referred as the main effect index of xi and STi is referred as the total effect index of xi.

As pointed out in Oakley and O’Hagan (2004), Si has very clear interpretation. If we
were to know the real value of the ith input, denoted as xr

i , the uncertainty left is thus
Var[fM (x) | xi = xr

i ], and the decrease of the uncertainty is Var[fM (x)]−Var[fM (x) |
xi = xr

i ]. Since we do not know xi, it is common to take the expectation. Consequently,
the decrease of the variance is then Var[E[fM (x) | xi]] = Vi. It means if we were able
to select one input to explore its true value, we will select xi that maximizes Vi.

However, if one were able to select two inputs to explore, the answer is not to select
the largest main effect index, but to select the largest Vi,j :

Vi,j = Var[E(fM (x) | xi,j)] = Var[zi(xi) + zj(xj) + zij(xij)].

Thus, many higher order indices are needed to compute if one is interested in exploring
more than the first few influential inputs. Main effect indices may serve as an approxi-
mation, and they are frequently used due to the computational reason.

When fM (x) and π(x) have simple forms, the main effect indices and higher or-
der indices may be computed explicitly. However, these indices generally do not have a
closed-form expression, thus the numerical estimation of these indices becomes impor-
tant. Monte Carlo methods are proposed to evaluate these indices (Sobol’ (2001)).

The shortage of the Monte Carlo method is that lots of computer model runs are
often needed for the numerical estimation, which is unrealistic when the computer model
is slow. One approach that significantly reduces the number of evaluation of the functions
is discussed in Oakley and O’Hagan (2004). The idea is to use a small number of runs
to fit the GaSP emulator and the posterior predictive distribution is used to replace the
computer model outputs. The estimation of the indices can be implemented based on
the emulator built on only very small number of runs from the computer model. We
compare with these methods in Section 5.

5 Numerical study

5.1 Emulation

We numerically compare the predictive performance of the GaSP emulator using the
marginal posterior mode estimation with the JR prior and reference prior. For the ref-
erence prior, we choose the log inverse range parameterization, ξl = log(1/γl), because
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it is both robust and has empirically better predictive performance than the γl param-
eterization (Gu et al. (2018b)). Both methods are implemented in the RobustGaSP
package (Gu et al. (2018a)). The Matérn correlation with αl = 5/2 and a constant
mean function are assumed for all cases. Also included are the results from the DiceK-
riging Package (Roustant et al. (2012)) with the same correlation function and mean
function.

In each experiment, we use n inputs to construct the GaSP emulator, where n
is typically chosen to be around 10px, and then record the out-of-sample normalized
root of mean squared error (NRMSE) of n∗ = 10,000 held-out outputs. We repeat the
experiments for N = 200 random designs, generated from the maximin LHD (Carnell
(2018)), and report the average normalized root of mean square error (Avg-NRMSE):

NRMSEj =

√√√√ n∗∑
i=1

(y(x∗
ij)− ŷ(x∗

ij))
2
/

n∗∑
i=1

(y(x∗
ij)− ȳj)

2
,

Avg-NRMSE =
1

N

N∑
j=1

NRMSEj ,

(16)

with x∗
ij being the ith held-out input in the jth experiment, ŷ(x∗

ij) being its prediction
and ȳj being the mean of the observed output in the jth experiment, j = 1, . . . , N .

We test the following functions (implemented in Surjanovic and Bingham (2017)).

Example 1. i. Y = [X2− 5.1X2
1/(4π

2)+5X1/π− 6]2+10[1− 1/(8π)] cos(X1)+10
where Xi ∈ [0, 1], for i = 1, 2.

ii. Y = 4(X1−2+8X2−8X2
2 )

2+(3−4X2)
2+16

√
X3 + 1(2X3−1)2, where Xi ∈ [0, 1],

for i = 1, 2, 3.

iii. Y = 2 exp{sin[0.98(X1+0.48)8]}+X2X3+X4, where Xi ∈ [0, 1), for i = 1, 2, 3, 4.

iv. Y = 10 sin(πX1X2) + 20(X3 − 0.5)2 + 10X4 + 5X5, where Xi ∈ [0, 1], for i =
1, 2, 3, 4, 5.

v. Y = 2πX3(X4−X6)
ln(X2/X1){1+2X7X3/[ln(X2/X1)X2

1X8]+X3/X5} , where X1 ∈ [0.05, 0.15], X2 ∈
[100, 50000], X3 ∈ [63070, 115600], X4 ∈ [990, 1110], X5 ∈ [63.1, 116], X6 ∈
[700, 820], X7 ∈ [1120, 1680] and X8 ∈ [9855, 12045] are the 8 inputs.

The Avg-NRMSEs of three methods of the five testing functions in Example 1 are
shown in Table 1. The Avg-NRMSE of the methods with the reference prior and JR prior
is similar, whereas the computational time of the JR prior is smaller, as the closed-form
derivatives of the JR prior are known. The DiceKriging is the fastest method among
three but the predictions are not as good as the robust methods.

When the sample size increases, the difference of the computational time for search-
ing the marginal posterior mode between the JR prior and reference prior typically
becomes larger (shown in Figure 4.4 in Gu (2016)). This is because the numerical
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Robust GaSP ξ JR prior DiceKriging
case i .028 (.15 s) .028 (.054 s) .063 (.029 s)
case ii .011 (.53 s) .011 (.10 s) .061 (.04 s)
case iii .059 (1.1 s) .051 (.15 s) .21 (.059 s)
case iv .018 (3.3 s) .018 (.37 s) .10 (.074 s)
case v .0093 (20 s) .0094 (1.4 s) .094 (.43 s)

Table 1: Avg-NRMSE and average computational time in seconds for parameter estima-
tion in the bracket of the three estimation procedures for the five experimental functions
in Example 1. From the upper row to the lower row, the sample size is n = 30, 40, 50, 60
and 80 for these five cases, respectively.

derivative of the reference prior requires many extra evaluations of the likelihood,
each having O(n3) operations. In comparison, when the JR prior is used, we only
need to compute the Cholesky decomposition of the correlation matrix once for the
inversion of the covariance matrix in each iteration, because of the closed-form deriva-
tives.

5.2 Variable selection

We first study the following example reported in Linkletter et al. (2006).

Example 2. i. Y = 0.2X1 +0.2X2 +0.2X3 +0.2X4 + ε, where ε ∼ N(0, 0.052) and
Xl ∈ [0, 1], l = 1, . . . , 10.

ii. Y = 0.2X1 +0.2/2X2 +0.2/4X3 +0.2/8X4 +0.2/16X5 +0.2/32X6 +0.2/64X7 +
0.2/128X8 + ε, where ε ∼ N(0, 0.052) and Xl ∈ [0, 1], l = 1, . . . , 10.

In Example 2, the last six input variables and the last two input variables are noises
in case i and ii in Example 2, respectively. We use n = 54 design points and the
Gaussian correlation function, same as in Linkletter et al. (2006). N = 1,000 random
designs are generated from the maximin LHD design (Carnell (2018)). Both functions
in Example 2 are linear, however, in the GaSP model, we only use the constant mean
function, pretending that we don’t know the linear trend of the real function.

The normalized inverse range parameter P̂l of Example 2 is shown in Figure 3. In
the left figure, it is clear that the first four inputs are much more important than the
rest of input. Indeed these are 4 signals while the other are noises. The second figure
shows that the normalized inverse range parameters can identify the largest 3 to 4
signals.

A detailed comparison of our method and the reference distribution variable selec-
tion (RDVS) method introduced in Linkletter et al. (2006) is given in Table 2. In RDVS,
a noise input is added to the design in each simulation, and the posterior median of
the transformed range parameter of the inert input is recored. After many simulations,
the transformed range parameters of the other inputs are compared to the percentile
of the posterior median of the transformed range parameter of the inert input to de-
termine whether an input is inert or not. In both cases, using P̂l with the JR prior has
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Figure 3: Normalized inverse range parameter P̂l, l = 1, . . . , px, for case i (left panel)
and case ii (right panel) in Example 2.

case i 1 2 3 4 5 6 7 8 9 10
JR prior, p0 = 1 .974 .979 .967 .974 .003 .004 .001 .002 .002 .006
JR prior, p0 = .75 .994 .997 .997 .995 .006 .008 .005 .007 .006 .009
JR prior, p0 = .5 1 1 1 1 .034 .033 .035 .032 .022 .043
RDVS, 5th PT .619 .618 .717 .631 .030 .034 .021 .074 .051 .051
RDVS, 10th PT .852 .855 .910 .880 .061 .064 .053 .137 .076 .102
RDVS, 15th PT .947 .954 .973 .955 .079 .091 .080 .173 .108 .135
case ii 1 2 3 4 5 6 7 8 9 10
JR prior, p0 = 1 .998 .967 .504 .165 .074 .050 .041 .038 .026 .041
JR prior, p0 = .75 1 .982 .633 .267 .126 .119 .093 .089 .072 .111
JR prior, p0 = .5 1 .993 .736 .383 .217 .214 .196 .165 .157 .187
RDVS, 5th PT .679 .180 .062 .025 .016 .023 .017 .031 .009 .036
RDVS, 10th PT .889 .379 .133 .058 .034 .051 .035 .067 .030 .094
RDVS, 15th PT .959 .540 .217 .092 .061 .098 .065 .107 .063 .149

Table 2: Proportion of times each input is identified as influential inputs in Example 2
by the JR prior with different p0 in (15) and RDVS method in Linkletter et al. (2006)
with different percentiles (PT).

smaller false positives and false negatives, compared with the RDVS method, shown in
Table 2. Furthermore, our method only relies on the marginal posterior mode of the
range parameters in the full model, which is also faster than the RDVS method.

The cutoff value p0 in our method can be hard to define. However, typically all
inputs influence the outputs of the computer models. The task is then not to identify
the true signals, but to identify what set of inputs are more important than the others.
This seems successful for both functions in Example 2, as the importance of the factors
is correctly ordered, shown in Figure 3.

In Example 3, we test the four functions (implemented in Surjanovic and Bingham
(2017)) to explore whether the method can identify the signals. For the JR prior, we
use the normalized inverse range parameter in (14) of each input as the index of the
signal. We evaluate the performance by the fraction of times when the smallest index
of the signals is larger than the largest index of the noises over N experiments.
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JR prior Sobol GaSP Sobol Sobol2007 S Sobol2007 T
Case i 20 (.960) 20 (.970) 130 (.835) 130 (.825) 130 (.820)
Case ii 35 (.965) 40 (.290) 20,000 (.800) 20,000 (.780) 600 (.820)
Case iii 35 (.905) 35 (.795) 4,000 (.695) 4,000 (.675) 4,000 (.765)
Case iv 35 (.920) 35 (.780) 1,000 (.810) 1,000 (.805) 1,000 (.790)

Table 3: Tested sample size and the fraction of times when the smallest index of the
signals is larger than the largest index of the noises recorded in the bracket for Example 3
by the different methods over N = 200 experiments.

Example 3. i. Y = 1
6 [(30+5X1sin(5X1))(4+exp(−5X2))−100]+ε, Xi ∈ Unif(0, 1),

i = 1, . . . , 7, ε ∈ N(0, 0.32).

ii. Y = 4(X1−2+8X2−8X2
2 )

2+(3−4X2)
2+16

√
X3 + 1(2X3−1)2+ε, Xi ∈ Unif(0, 1),

i = 1, . . . , 6, ε ∈ N(0, 0.052).

iii. Y = 2
3 exp(X1 + X2) − X4 sin(X3) + X3 + ε, Xi ∈ Unif(0, 1), i = 1, . . . , 8, ε ∈

N(0, 0.152).

iv. Y = 10sin(πX1X2)+20(X3−0.5)2+10X4+5X5+ε, Xi ∈ Unif(0, 1), i = 1, . . . , 10,
ε ∈ N(0, 0.22).

The results of Example 3 are recorded in Table 3. From left to right, we show
the performance using the normalized inverse range parameter, Sobol GaSP (Oakley
and O’Hagan (2004); Le Gratiet et al. (2014)), Sobol (Sobol’ (1990)), Sobol2007 S and
Sobol2007 T (Sobol’ et al. (2007)). All Sobol methods are implemented in the Sensitivity
package in R (Pujol et al. (2007)).

In Table 3, the Sobol method with the Monte Carlo samples and its variants needs
many more computer model runs to identify the signals, while the Sobol GaSP method
needs many fewer runs, consistent with the previous study in Oakley and O’Hagan
(2004). The Sobol GaSP method is not as good as the normalized inverse range pa-
rameter with the JR prior. One possible reason is that the Sensitivity package (Pujol
et al. (2007)) utilizes the DiceKriging package (Roustant et al. (2012)) for the GaSP
emulator, which is not as accurate as the robust GaSP emulator in prediction, discussed
in Section 5.1.

5.3 Calibration

In this section, we compare the GaSP and S-GaSP calibration using a pedagogic example
studied in Bayarri et al. (2007).

Example 4. The sampling model is yF (x) = yR(x)+ε with the target function yR(x) =
3.5 exp(−1.7x) + 1.5, the computer model fM (x, θ) = 5 exp(−θx) and an independent
Gaussian noise ε ∼ N (0, 0.32). Thirty observations are recorded at 10 different xi ∈
[0, 3], each with three repeated experiments shown in Bayarri et al. (2007). The goal is
to estimate θ and predict the outputs at [0, 5].
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Figure 4: Histograms of the posterior samples of the parameters with the JR prior (red
boxes) and the reference prior (green boxes) for the Example 4.

Because the uncertainty of the calibration parameters is important in calibration,
sampling from the posterior is typically more preferred than the MLE or posterior mode
estimation. The Markov Chain Monte Carlo Algorithm is implemented in RobustCali-
bration package (Gu (2018)). We compare the GaSP calibration model in (9) with the
reference prior and JR prior, based on S = 100,000 posterior samples with S0 = 20,000
burn-in samples. As the computer model does not explain the mean of the process, we
add a mean discrepancy term to the computer model (i.e. h(x) = 1) for all the mod-
els we considered. The mean discrepancy is treated as a part of the computer model
because of its interpretability.

The posterior samples of the parameters with the reference prior and JR prior are
graphed in the Figure 4. Since the reference prior has a flatter tail when the log inverse
range parameter ξ → 0, the posterior of ξ with the reference prior is much smaller than
the one with the JR prior, meaning that the correlation is estimated to be much larger.
The large correlation by the reference prior leads to the large values of the posterior
samples of the variance parameter, shown in the left panel at the second row in Figure 4,
and consequently, the posterior samples of the mean parameter θm spread widely over
[−2 × 104, 2 × 104], shown in the last panel in Figure 4. In comparison, the posterior
mean parameter with the JR prior is much more concentrated, because the tail of the
density of JR prior is slightly steeper when ξ → 0, preventing the correlation from being
estimated to be too large.

To see the predictive performance of calibration, we test on n∗ = 200 held-out
outcomes at x∗

i equally spaced at [0, 5] based on the predictive NRMSE in (16) and the
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Figure 5: Out of sample prediction for the Example 4 with the reference prior (left panel),
JR prior (middle panel) and MLE (right panel). The target function is graphed as black
solid curves and 30 observations are plotted as circles. The colored solid curves are the
predictive mean using the calibrated computer model and discrepancy function, while
the colored dashed curves are the predictive mean using only the calibrated computer
model. The shaded area is the 95% predictive credible interval for the target function.
In the middle panel, the dash curve and the solid curve almost overlap.

following additional two criteria

PCI(95%) =
1

n∗

n∗∑
i=1

1{yR(x∗
i ) ∈ CIi(95%)} and LCI(95%) =

1

n∗

n∗∑
i=1

length{CIi(95%)},

where CIi(95%) is the 95% posterior credible interval of the reality and LCI(95%) is the
average length of the 95% posterior credible interval. For the results by the reference
prior and JR prior, NRMSE is calculated for two scenarios. In the first scenario, only
the calibrated computer model is used for prediction. Both the calibrated computer
model and discrepancy function are used in the second scenario. An efficient method
should have relatively low predictive NRMSE for both scenarios, PCI(95%) close to the
95% nominal level and short average credible interval lengths.

We compare the prediction with the reference prior and JR prior in Figure 5. Also
included is the prediction with the MLE, in which we first maximize over the mean
parameter and variance parameter, and then maximize the profile likelihood to estimate
the rest of the parameters numerically. First, the prediction by the calibrated computer
model with the reference prior overestimates the mean, caused by the posterior samples
of the large correlation and variance parameter shown in Figure 4. In comparison, the
prediction by the calibrated computer model with the JR prior is more accurate.

The prediction combining the calibrated computer model and discrepancy function is
graphed as the colored solid curves in Figure 5. The model with the JR prior has a lower
NRMSE than the one with the reference prior shown in Table 4, and as importantly,
produces 95% posterior credible interval covered around 95% of held-out points in the
target function. In contrast, the model with the reference prior seems overconfident in
their accuracy assessment, caused by the large variance of the posterior mean parameter.

The prediction of the GaSP calibration with the JR prior is also better than the
one with the MLE in terms of NRMSE. For the MLE, the uncertainty of the estimated



M. Gu 881

reference prior NRMSE PCI(95%) LCI(95%)
calibrated computer model 18 / /
calibrated computer model and discrepancy .28 .88 .66
JR prior NRMSE PCI(95%) LCI(95%)
calibrated computer model .24 / /
calibrated computer model and discrepancy .21 .98 .92
MLE NRMSE PCI(95%) LCI(95%)
calibrated computer model .72 / /
calibrated computer model and discrepancy .24 .99 .80

Table 4: NRMSE, PCI(95%) and LCI(95%) by the GaSP calibration with the reference
prior, JR prior and MLE for Example 4.

parameters is typically hard to quantify, when the sample size is small. Besides, the
likelihood of the calibration parameter normally has multiple local modes, indicating
the MLE should be operated with caution.

6 Concluding remarks

We have introduced the JR prior for emulation, calibration and variable selection in UQ.
This prior performs as well as the reference prior in emulation, because the marginal
posterior mode estimation with the JR prior is robust. The JR prior is considerably
faster as the closed-form derivative is easy to compute. Furthermore, the marginal
posterior mode with the JR prior can identify the inert inputs with no extra com-
putational cost, whereas the marginal posterior mode of the reference prior and other
priors may not be both robust in posterior mode estimation and accurate in identify-
ing the inert inputs. In calibration, the JR prior is helpful for parameter identification
with the current choice of the prior parameters, which avoids the correlation from be-
ing estimated to be too large. A principle way of determining the prior parameters
is needed for the tradeoff in predictive accuracy and identifiability of parameters in
calibration.

Nonetheless, the reference prior is still a very good prior for the emulation problem,
as shown in many previous studies (Paulo (2005); Lopes (2011); Gu and Berger (2016)).
We do not expect the JR prior to completely replace the reference prior, but instead offer
researchers an additional choice that provides computational efficiency, explicit mean
and variance, capability to identify the inert inputs using only the marginal posterior
mode of the full model, and tail rates that prevent the correlation from being estimated
to be too large in calibration.
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