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A Novel Algorithmic Approach to Bayesian
Logic Regression (with Discussion)

Aliaksandr Hubin®$, Geir Storvik', and Florian Frommlet!

Abstract. Logic regression was developed more than a decade ago as a tool to
construct predictors from Boolean combinations of binary covariates. It has been
mainly used to model epistatic effects in genetic association studies, which is very
appealing due to the intuitive interpretation of logic expressions to describe the in-
teraction between genetic variations. Nevertheless logic regression has (partly due
to computational challenges) remained less well known than other approaches to
epistatic association mapping. Here we will adapt an advanced evolutionary al-
gorithm called GMJMCMC (Genetically modified Mode Jumping Markov Chain
Monte Carlo) to perform Bayesian model selection in the space of logic regres-
sion models. After describing the algorithmic details of GMJMCMC we perform
a comprehensive simulation study that illustrates its performance given logic re-
gression terms of various complexity. Specifically GMJMCMC is shown to be able
to identify three-way and even four-way interactions with relatively large power,
a level of complexity which has not been achieved by previous implementations
of logic regression. We apply GMJMCMC to reanalyze QTL (quantitative trait
locus) mapping data for Recombinant Inbred Lines in Arabidopsis thaliana and
from a backcross population in Drosophila where we identify several interesting
epistatic effects. The method is implemented in an R package which is available
on github.

Keywords: logic regression, Bayesian model averaging, mode jumping Monte
Carlo Markov Chain, genetic algorithm, QTL mapping.

1 Introduction

Logic regression (not to be confused with logistic regression) was developed as a general
tool to obtain predictive models based on Boolean combinations of binary covariates
(Ruczinski et al., 2003). Its primary application area is epistatic association mapping
as pioneered by Ruczinski et al. (2004) and Kooperberg and Ruczinski (2005) although
already early on the method was also used in other areas (Keles et al., 2004; Janes et al.,
2005). Important contributions to the development of logic regression were later made
by the group of Katja Ickstadt (Fritsch, 2006; Schwender and Ickstadt, 2008), which
also provided a comparison of different implementations of logic regression (Fritsch and
Ickstadt, 2007). Schwender and Ruczinski (2010) gave a brief introduction with various
applications and potential extensions of logic regression. Recently a systematic com-
parison of the performance of logic regression and a more classical regression approach
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based on Cockerham’s coding to detect interactions illustrated the advantages of logic
regression to detect epistasic effects in QTL mapping (Malina et al., 2014). Given the
potential of logic regression to detect interpretable interaction effects in a regression
setting it is rather surprising that it has not yet become wider addressed in applica-
tions.

Originally logic regression was introduced together with likelihood based model se-
lection, where simulated annealing served as a strategy to obtain one “best” model
(see Ruczinski et al., 2003, for details). However, assuming that there is one “best”
model disregards the problem of model uncertainty. Whilst this approach works well in
simulation studies, it seems to be quite an unrealistic assumption in real world appli-
cations, where there often is no “true” model. Hence Bayesian model averaging, which
implicitly takes into account model uncertainty, becomes important. Bayesian versions
of logic regression combined with model exploration include Monte Carlo logic regres-
sion (MCLR) (Kooperberg and Ruczinski, 2005) and the full Bayesian version of logic
regression (FBLR) by Fritsch (2006). Both MCLR and FBLR use Markov Chain Monte
Carlo (MCMC) algorithms for searching through the space of models and parameters.
Inference is then based on a large number of models instead of just one model as in
the original version of logic regression. MCLR utilizes a geometric prior on the size of
the model (defined through the number of logic terms and their complexity). All mod-
els of the same size get the same prior probability while larger models implicitly are
penalized. Regression parameters are marginalized out, significantly simplifying com-
putational complexity. In contrast FBLR is performed on a joint space of parameters
and models. FBLR uses multivariate normal priors for regression parameters, while
model size is furnished with a slightly different prior serving similar purposes as the
MCLR prior. In case of a large number of binary covariates these MCMC based meth-
ods might require extremely long Markov chains to guarantee convergence which can
make them infeasible in practice. Additionally both of them utilize simple Metropolis-
Hastings settings which, together with the fact that the search space is often multimodal,
increases the probability that they are stuck in local extrema for a significant amount
of time.

In this paper we propose a new approach for Bayesian logic regression including
model uncertainty. We introduce a novel prior for the topology of logic regression models
which is slightly simpler to compute than the one used by MCLR and which still shows
excellent properties in terms of controlling false discoveries. We consider two different
priors for regression coefficients: Jeffreys’ prior and the robust g-priors as a state of
the art choice for priors of regression coefficients in variable selection problems. For
Jeffreys’ prior computing the marginal likelihoods can be performed with the Laplace
approximation as in BIC (Bayesian information criterion) and similar model selection
criteria. For the robust g-prior the marginal likelihood is efficiently computed using the
integrated Laplace approximation (Li and Clyde, 2018).

The main contribution of this paper is the proposed search algorithm, named
GMJMCMC, which provides a better search strategy for exploring the model space
than previous approaches. GMJMCMC combines genetic algorithm ideas with the mode
jumping Markov Chain Monte Carlo (MJMCMC) algorithm (Tjelmeland and Hegstad,
2001; Hubin and Storvik, 2018) in order to be able to jump between local modes in the
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model space. After formally introducing logic regression and describing the GMJMCMC
algorithm in detail we will present results from a comprehensive simulation study. The
performance of GMJMCMC is compared with MCLR and FBLR in case of logistic
models (binary responses) and additionally analyzed for linear models (quantitative
responses). Models of different complexities are studied which allows us to illustrate
the potential of GMJMCMC to detect higher order interactions. Finally we apply our
logic regression approach to perform QTL mapping using two publicly available data
sets. The first study is concerned with the hypocotyledonous stem length in Arabidopsis
thaliana using Recombinant Inbred Line (RIL) data (Balasubramanian et al., 2009), the
second one considering various traits from backcross data of Drosophila Simulans and
Drosophila Mauritana is presented in the web supplement (Hubin et al., 2018b). The
method is implemented as an R package which is freely available on GitHub at http://
aliaksah.github.io/EMJMCMC2016/, where one can also find examples of further logic
regression applications.

2 Methods

2.1 Logic regression

The method of logic regression (Ruczinski et al., 2003) was specifically designed for the
situation where covariates are binary and predictors are defined as logic expressions
operating on these binary variables. Logic regression can be applied in the context of
the generalized linear model (GLM) as demonstrated in Malina et al. (2014). It can also
be easily expanded to the domain of generalized linear mixed models (GLMM), but
to keep our presentation as simple as possible we will focus here on generalized linear
regression models.

Consider a response variable Y € R, together with m binary covariates X1, Xs, ...,
X Our primary example will be genetic association studies where, depending on the
context, each binary covariate, X, j € {1,2,...,m}, can have a different interpretation.
In QTL mapping with backcross design or recombinant inbred lines X; simply codes
the two possible genetic variants. In case of intercross design or in outbred populations
different X; will be used to code dominant and recessive effects (see for example Malina
et al., 2014). We will adapt the usual convention that a value 1 corresponds to logical
TRUE and a value 0 to logical FALSE where the immediate interpretation in our ex-
amples is that a specific marker is associated with a trait or not. Each combination of
the binary variables X; with the logical operators A (AND), vV (OR) and X°¢ (NOT X),
is called a logic expression (for example L = (X7 A X2) V X$). Following the nomen-
clature of Kooperberg and Ruczinski (2005) we will refer to logic expressions as trees,
whereas the primary variables contained in each tree are called leaves. The set of leaves
of a tree L will be denoted by v(L), that is for the specified example above we have
’U(L) = {Xl, XQ, X3}

We will study logic regression in the context of the generalized linear model (GLM,
see McCullagh and Nelder (1989)) of the form

Yo~y | w(X);9), (1)
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h(p(X) = a+Y vbiL;, (2)

J=1

where f denotes the parametric distribution of Y belonging to the exponential family
with mean p(X) and dispersion parameter ¢. The function h is an appropriate link
function, o and §;,7 € {1,...,q} are unknown regression parameters, and 7; is the
indicator variable which specifies whether the tree L; is included in the model. For
the sake of simplicity we abbreviate by u(X) the complex dependence of the mean
on X via the logic expressions L; according to (2). Our primary examples are linear
regression for quantitative responses and logistic regression for dichotomous responses
but the implementation of our approach works for any generalized linear model.

We will restrict ourselves to trees with no more than C,,,; leaves. Consequently the
total number of trees ¢ will be finite. The considered models are restricted to include
no more than kp,q, trees. The vector of binary random variables M = (y1,...,7,) fully
characterizes a model in terms of which logical expressions are included. Here we go
along with the usual convention in the context of variable selection that ‘model’ refers
to the set of regressors and does not take into account the specific values of the non-zero
regression coeflicients.

Bayesian model specification

For a fully Bayesian approach one needs prior specifications for the model topology
characterized by the index vector M as well as for the coefficients o and j3; belonging
to a specific model M. This is a common approach in Bayesian model selection, used
for example in Clyde et al. (2011) or Hubin and Storvik (2018). We start with defining
the prior for M by

p(M) o< T(|M] < Emax) Hp(w)- 3)

Here [M| = 3 %_, 7; is the number of logical trees included in the model and kynqz is
the maximum number of trees allowed per model. The factors p(7y;) are introduced to
give smaller prior probabilities to more complex trees. Specifically we consider

p(ry) = aVE) (4)

with 0 < a < 1 and ¢(L;) > 0 being a non-decreasing measure for the complexity of the
corresponding logical trees. In case of ; = 0 it holds that p(y;) = 1 and thus the prior
probability for model M only consists of the product of p(v;) for all trees included in
the model. It follows that if M and M’ are two vectors only differing in one component,
say 7; = 1 and 7; = 0, then

p(M)

p(M)
showing that larger models are penalized more. This result easily generalizes to the
comparison of more different models and provides the basic intuition behind the chosen
prior.

=a°t) <1
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The prior choice implies a distribution for the model size |M| which can be inter-
preted as a multiple-testing penalty (Scott and Berger, 2008). For k.. = ¢ and a
constant complexity value on all trees, |M| follows a binomial distribution. With vary-
ing complexity measures, |M| follows the Poisson binomial distribution (Wang, 1993)
which is a unimodal distribution with E[|M|] = 375_, p; and Var[|[M|] = 3°_, p;(1-p;)
where p; = a®L3) /(1 4 a®£4)). A truncated version of this distribution is obtained for
k'f?lal‘ < q

The choices of a and the complexity measure ¢(L;) are crucial for the quality of the
model prior. Let N(s) be the total number of trees having s leaves. Choosing a = e~ !
and ¢(L;) = log N(s;) as long as the number of leaves is not larger than Ci,4, results
for y; =1in

1
aLi) — N5 i < Crna -
Therefore the multiplicative contribution of a specific tree of size s to the model prior
will be indirectly proportional to the total number of trees N(s) having s leaves as
long as s < Cae- Given that N(s) is rapidly growing with the tree size s this choice
gives smaller prior probabilities for larger trees. The resulting penalty closely resembles
the Bonferroni correction in multiple testing as discussed for example by Bogdan et al.
(2008) in the context of modifications of the BIC.

The number N(s) will in practice be difficult to compute. To compute a rough
approximation of N(s) we ignore logic expressions including the same variable multiple
times. Then there are (7:) possibilities to select variables. Each variable can undergo
logic negation giving s binary choices and furthermore there are s—1 logic symbols (V, A)
to be chosen resulting in 227! different expressions. However, due to De Morgan’s law
half of the expressions provide identical logic regression models. This gives

N(s) ~ (m) 9252, (5)

S

Using this approximation, for a model of size k = | M| the full model prior is of the form

5], < Cmaw)

k
P<M) o I k < kmaw H 228“_2 y (6)

5J7

where ji, ..., ji refer to the k trees of model M.

We will next discuss priors for the parameters given a specific model M. The GLM
formulation (1) includes a dispersion parameter ¢, which for example in case of the linear
model is connected with the variance term o2 for the underlying normal distribution.
If a GLM has a dispersion parameter then for the sake of simplicity we will adapt the
commonly used improper prior (Li and Clyde, 2018; Bayarri et al., 2012)

m(¢) =¢~ . (7)

If a GLM does not include a dispersion parameter (like logistic regression) then one
simply sets ¢ = 1.



268 A Novel Algorithmic Approach to Bayesian Logic Regression

Concerning the intercept a and the regression coefficients (3;, where j € {j1,. .., jjm |}
correspond to the non-zero coefficients of model M, we will consider two different types
of priors, simple Jeffreys’ priors and robust g-priors. Jeffreys’ prior (Jeffreys, 1946, 1961;
Gelman et al., 2013) assumes for the parameters of the model an improper prior distri-
bution of the form

Ta(@)75(8) =|Tn (0, B) %, (8)
where 7, (o, 8) is the observed information.

To obtain model posterior probabilities one needs to evaluate the marginal likelihood
of the model P(Y | M) by integrating over all parameters of the model which is often
a fairly difficult task. The greatest advantage of Jeffreys’ prior is that this integral can
be approximated simple and accurate through the Laplace approximation. In case of
the Gaussian model choosing Jeffreys’ prior (8) for the coefficients and the simple prior
(7) for the variance term yields that the Laplace approximation becomes exact (Raftery
et al., 1997) and gives a marginal likelihood of the simple form

P(Y | M) P(Y | M,0) n'%", (9)

where 6 refers to the maximum likelihood estimates of all parameters involved. On the
log scale this exactly corresponds to the BIC model selection criterion (Schwarz, 1978)
when using a uniform model prior. In case of logistic regression the marginal likelihood
under Jeffreys’ prior becomes approximately (9) with an error of order O(n~!) (Tierney
and Kadane, 1986; Claeskens and Hjort, 2008). Barber et al. (2016) also describe that
Laplace approximations of the marginal likelihood yield very accurate results and can
be trusted in Bayesian model selection problems.

Although there are many situations in which selection based on BIC like criteria
works well, within the Bayesian literature using Jeffreys’ prior for model selection has
been widely criticized for not being consistent once the true model coincides with the
null model (all 7; = 0, Bayarri et al., 2012). A large number of alternative priors
have been studied, see for example Li and Clyde (2018) who give a comprehensive
review on the state of the art of g-priors. In a recent paper Bayarri et al. (2012) gave
theoretical arguments in case of the linear model recommending the robust g-prior,
which is consistent in all situations and yields errors diminishing significantly faster
than other prior choices. Thus we will introduce the robust g-prior as an alternative to
Jeffreys’ prior.

Our description of robust g-priors follows Li and Clyde (2018) who consider an
improper constant prior for the intercept, P(a) o 1, and a mixture g-prior for the
regression coefficients 3;, j € {j1,...,jam |} of the form

P(B1g) ~ N (0,9 6Tn(B)7"). (10)

Here J,,(8) is the subblock of the full observed information matrix 7, (a, B) related to 8
and g itself is assumed to be distributed according to the so called truncated Compound
Confluence Hypergeometric (tCCH) prior

1 ab s
P (1—‘,—9) NtCCH <2,2,7’,2,’U,K/> . (11)
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This family of mixtures of g-priors includes a large number of priors discussed in the
literature, see Li and Clyde (2018) for more details. The recommended robust g-prior
is a particular case with the following choice of parameters:

n+1 _

a=1,b=2r=15,s=0v=—— K=
M|+ 1

Under this prior specification precise integrated Laplace approximations of the marginal
likelihood for GLM are given by Li and Clyde (2018), whilst exact values are available
for Gaussian models (Li and Clyde, 2018; Bayarri et al., 2012).

2.2 Computing posterior probabilities

Given prior probabilities for any logic regression model M the model posterior proba-
bility can be computed according to Bayes formula as
PY | M)P(M)

POTIY) =~ BV | MY PTY) (12)

where P(Y | M) denotes the integrated (or marginal) likelihood for model M and € is
the set of all models in the model space. The sum in the denominator involves a huge
number of terms and it is impossible to compute all of them. Classical MCMC based
approaches (like MCLR and FBLR) overcome this problem by estimating model poste-
riors with the relative frequency with which a specific model M occurs in the Markov
chain. In case of an ultrahigh-dimensional model space (like in case of logic regression)
this is computationally extremely challenging and might require chain lengths which
are prohibitive for practical applications.

An alternative approach makes use of the fact that most of the summands in the
denominator of (12) will be so small that they can be neglected. Considering a subset
Q* C Q containing the most important models we can therefore approximate (12) by

P(Y | M)P(M)

POTIY) = PATIY) = 5 o6 | M PO (13)

To obtain good estimates we have to search in the model space for those models that
contribute significantly to the sum in the denominator, that is for those models with
large posterior probabilities or equivalently with large values of P(Y | M)P(M). In
Frommlet et al. (2012) specific memetic algorithms were developed to perform the model
search for linear regression. Here we will rely upon the GMJMCMC algorithm, which
is described in the next section. For now we assume that some method for computing
the marginal likelihood P(Y | M) is available. The details of such computation depend
on the prior specifications of the parameters of a particular model and are given for the
examples in the experimental sections.

Based on model posterior probabilities one can easily obtain an estimate of the
posterior probability for a logic expression L; to be included in a model (also referred



270 A Novel Algorithmic Approach to Bayesian Logic Regression

to as the marginal inclusion probability) by

P(L;|Y)= > PM|Y)! (14)
MEQ*:’yjzl

Inference on trees can then be performed by means of selecting those trees with a poste-
rior probability being larger than some threshold probability 7. In case of exploratory
studies where the main aim is to discover many potentially interesting features to be
explored in further studies it can be reasonable to use low threshold values on IB(LJ- | Y).
High threshold values can be used if false discoveries need to be avoided. In general the
threshold can be specified through a decision theoretic framework, including the aim of
controlling false discovery rates, see (Wakefield, 2007).

A threshold of 0.5 corresponds to the median probability model of Barbieri et al.
(2004) which under certain circumstances has greater predictive power than the most
probable model. However, one of the criteria for the median probability model to be
optimal in the linear Gaussian case, the graphical model structure criterion, will not
always be valid in cases where one makes restrictions on the number of trees that can be
included. The graphical model structure criterion requires that the median probability
model results in a legal model. Consider the case with three covariates x1,x2,x3 but
with k.. = 2 and the posterior probabilities for models v = (1, 1,0), v = (1,0, 1) and
v = (0,1,1) each equal to 1/3. Then all marginal inclusion probabilities are 2/3 and the
median probability model includes all variables which then has a model size larger than
kmaz- The median probability model can however still be a useful model to consider
even in cases where the optimality results do not apply.

2.3 The GMJMCMC algorithm

To fix ideas consider first a variable selection problem with ¢ potential covariates to
enter a model. Recall that 7; needs to be 1 if the j-th variable is to be included into the
model and 0 otherwise. A model M is thus specified by the vector v = (v1,...,74) and
the general model space € is of size 29. If this discrete model space is multimodal in
terms of model posterior probabilities then simple MCMC algorithms typically run into
problems by staying for too long in the vicinity of local maxima. Recently, the mode
jumping MCMC procedure (MIJMCMC) was proposed by Hubin and Storvik (2018) to
overcome this issue in a model selection setting.

MJMCMC is a proper MCMC algorithm equipped with the possibility to jump
between different modes within the discrete model space. The key to the success of
MJMCMC is the generation of good proposals of models which are not too close to
the current state. This is achieved by first making a large jump (changing many model
components) and then performing local optimization within the discrete model space
to obtain a proposal model. Within a Metropolis-Hastings setting a valid acceptance
probability is then constructed using symmetric backward kernels, which guarantees
that the resulting Markov chain is ergodic and has the desired limiting distribution
(Tjelmeland and Hegstad, 2001; Hubin and Storvik, 2018).

'Here by P(L; | Y) we mean P(vy; =1|Y).



A. Hubin, G. Storvik, and F. Frommlet 271

The MJMCMC algorithm requires that all of the covariates defining the model space
are known in advance and are all considered at each iteration of the algorithm. In case
of logic regression the covariates are trees and a major problem in this setting is that it
is quite difficult to fully specify the space €2. In fact it is even difficult to specify ¢, the
total number of feasible trees. To solve this problem we present an adaptive algorithm
called Genetically Modified MJIMCMC (GMJMCMC), where MJIMCMC is embedded
in the iterative setting of a genetic algorithm. In each iteration only a given set S of
trees (of fixed size d) is considered. Each S then induces a separate search space for
MJMCMC. In the language of genetic algorithms S is the population, which dynamically
evolves to allow MJMCMC exploring different reasonable parts of the unfeasibly large
total search space.

To be more specific, we consider different populations S1,Ss, ... where each S; is
a set of d trees. For each given population a fixed number of MJMCMC steps is per-
formed. Since the MJMCMC algorithm is specified in full detail in Hubin and Storvik
(2018), we will concentrate here on describing the evolutionary dynamics yielding sub-
sequent populations S;. Utilization of the approximation (13) in combination with exact
or approximated marginal likelihoods allows us to compute posterior probabilities for
all models in Q* which have been visited at least once by the algorithm. Consequently
we do not need a proper MCMC (an algorithm with convergence towards the target
distribution) which is needed if model posterior probabilities are estimated by the rel-
ative frequency of how often a model has been visited. In principle it is possible to
construct a proper MCMC algorithm which aims at simulating from extended models
of the form P(M,S |Y) having P(M | Y) as a stationary distribution. This version of
the algorithm is considered in (Hubin et al., 2018a) where the main idea is to perform
both forward and backward swaps between populations in order to obtain a reversible
Markov chain.

The algorithm is initialized by first running MJMCMC for a given number of iter-
ations N;,;: on the set of all binary covariates X, ..., X,, as potential regressors, but
not including any interactions. The first d; < d members of population S; are then
defined to be the d; covariates with largest marginal inclusion probability. In our cur-
rent implementation we select the d; leaves which have marginal posterior probabilities
(estimated from the first N;,;; iterations) larger than p,,in,, thus d; is not pre-specified
but is obtained in a data driven way. For later reference we denote this set of d; leaves
by Sp. The remaining d — d; members of S; are obtained by forming logic expressions
from the leaves of Sy where trees are generated randomly by means of the crossover
operation described below. In practice one first has to choose some k,,q; which will
depend on the expected number of trees to enter the model in the problem one studies.
The choice of d can then be guided by the results of Theorem 1 given below.

After 81 has been initialized MJMCMC is performed for a fixed number of iterations
Negpr before the next population S, is generated. This process is iterated for Ti,qq
populations S;, ¢t € {1,...,Tjhas}.- The di input trees from the initialization procedure
remain in all populations S; throughout our search. Other trees from the population S;
with low marginal inclusion probabilities (below a threshold pj,;,) will be substituted
by trees which are generated by crossover, mutation and reduction operators to be
described in more detail below.
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Let D; be the set of trees to be deleted from S;. Then |D;| replacement trees must
be generated instead. Each replacement tree is generated randomly by a crossover op-
erator with probability P, and by a mutation operator with probability P,, =1 — P..
A reduction operator is applied if mutation or crossover gives a tree larger than the
maximal tree size C),q0-

Crossover: Two parent trees are selected from S; with probabilities proportional to
the approximated marginal inclusion probabilities of trees in S;. Then each one of the
parents is inverted with probability P,.: by the logical not ¢ operator, before they are
combined with a A operator with probability P,,q and with a V operator otherwise.
Hence the crossover operator gives trees of the form L; A Lj, or L, V L;, where either
Lj, or L§, is in S; fori=1,2.

Mutation: One parent tree is selected from S; with probability proportional to the
approximated marginal inclusion probabilities of trees in S;, whilst the other parent
tree is selected uniformly from the set of m — d; leaves which did not make it into the
initial population Sy. Then just like for the crossover operator each of the parents is
inverted with probability P,,; by the logical not ¢ operator, before they are combined
with a A operator with probability P,,q and with a V operator otherwise. The mutation
operator gives trees of the form Lj A X or Lj; VX where either L;, or L} is in Sy and
X or X€isin Dy.

Reduction: A new tree is generated from a tree by deleting a subset of leaves, where
each leave has a probability of pge; to be deleted. The pruning of the tree is performed
in a natural way meaning that the ‘closest’ logical operators of the deleted leaves are
also deleted. If the deleted leave is not on the boundaries of the original tree the oper-
ation is resulting in obtaining two separated subtrees. The resulting subtrees are then
combined in a tree with a A operator with probability P,,q or with a VvV operator oth-
erwise.

For all three operators it holds that if the newly generated tree is already present
in &; then it is not considered for S;41 but rather a new replacement tree is proposed
instead. The pseudo-code Algorithm 1 describes the full GMJMCMC algorithm. For
each iteration ¢ the initial model for the next MJMCMC run is constructed by randomly
selecting trees from S; with probability P;,;:. For the final population Sz, MIMCMC
is run until My;, unique models are visited (within St,,,,,). My, should be sufficiently
large to obtain gopod MJMCMC based approximations of the posterior parameters of

interest based on the final search space St

max *

The following result is concerned with consistency of probability estimates of
GMJMCMC when the number of iterations increases.

Theorem 1. Assume Q* is the set of models visited through the GMJMCMC algorithm
where d —dy > kpas. Assume further the marginal likelihoods are calculated without er-
rors. Then the model estimates based on (13) will converge to the true model probabilities
as the number of iterations Tyax goes to oo.

Proof. Note that the approximation (13) will provide the exact answer if Q* = Q. It is
therefore enough to show that the algorithm in the limit will have visited all possible
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Algorithm 1 GMJMCMC.

1: Run the MJIMCMC algorithm for V;,;; iterations on X,..., X,, and define Sy as
the set of d; variables among them with the largest estimated marginal inclusion
probabilities.

2: Generate d — d; trees by randomly selecting crossover operations of elements from
Sp and add those trees to the set Sy to obtain Sj.

3: Run the MJMCMC algorithm within search space S;.

4: fort=2,..., T4 do

5: Delete trees within S;—1\Sp which have estimated inclusion probabilities less
than ppin.
6: Add new trees which are generated by crossover, mutation or reduction operators

until the having again a set of size d, which becomes S;.
Run the MJIMCMC algorithm within search space S;.
8: end for

models. Since Sy is generated in the first step and never changed, we will consider it to
be fixed.

Define Mg, to be the last model visited by the MJIMCMC algorithm on search
space S;. Then the construction of S;41 only depends on (S;, Mg,, X) while Ms,,,
only depends on S;y;1. Therefore {(Si, Ms,, X)} is a Markov chain. Assume now S
and &’ are two populations differing in one component with L € S, L' € §', L # L'.
Define Ly, to be any tree that is a subtree of both L and L’ (where a subtree is
defined as a tree which can be obtained by reduction) and S, to be the search space
where L is substituted with L,,; in S. Then it is possible to move from S to Sgup
in [ steps using first mutations and crossovers to grow a tree L* of size larger than
Cnaz, which can undergo reduction (note that although only trees that have low enough
estimated marginal inclusion probabilities can be deleted, there will always be a positive
probability that marginal inclusion probabilities are estimated to be smaller than the
threshold pp,in) to get to Lgyp. Further, assuming the difference in size between Ly,; and
L' is r, a move from Sy, to S’ can be performed by r steps of mutations or crossovers.
Two search spaces which differ in s trees can be reached by s combinations of the moves
described above. Since also any model within a search space can be visited, the Markov
chain {(S;, Ms,, X)} is irreducible. Since the state space for this Markov chain is finite,
it is also recurrent, and there exists a stationary distribution with positive probabilities
on every model. Thereby, all states, including all possible models of maximum size d,
will eventually be visited.

When d; > 0, some restrictions on the possible search spaces are introduced. How-
ever, when d — d; > ke, any model of maximum size k., will eventually be vis-
ited. O

Remark 1. If d — di < kpaz, then every model of size up to d — d; plus some of
the larger models will eventually be visited, although the model space will get some
additional constraints. In practice it is more important that d — d; > k*, where k*
is the size of the true model. Unfortunately neither £* nor d; are known in advance,
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and one has to make reasonable choices of k4, and d depending on the problem one
analyses.

Remark 2. The result of Theorem 1 relies on exact calculation of the marginal likeli-
hood P(Y | M). Apart from the linear model, the calculation of P(Y | M) is typically
based on an approximation, giving similar approximations to the model probabilities.
How precise these approximations are will depend on the type of method used. The
current implementation includes Laplace approximations, integrated Laplace approx-
imations, and integrated nested Laplace approximations. In principle other methods
based on MCMC outputs (Chib, 1995; Chib and Jeliazkov, 2001) could be incorporated
relatively easily resulting however in longer runtimes.

Parallelization

Due to our interest in exploring as many unique high quality models as possible and
doing it as fast as possible, running multiple parallel chains is likely to be computation-
ally beneficial compared to running one long chain. The process can be embarrassingly
parallelized into B chains using several CPUs (Central processing units), GPUs (graph-
ics processing units) or clusters. If one is mainly interested in model probabilities, then
Equation (13) can be directly applied with Q* now being the set of unique models visited
within all runs. However, we suggest a more memory efficient approach. If some statistic
A is of interest, one can utilize the following posterior estimates based on weighted sums

over individual runs:
B

P(AY)=> wh(A]Y). (15)

b=1

Here wy, is a set of weights which will be specified below and P,(A | Y) are the posteriors
obtained with formula (4) from run b of GMJMCMC.

Due to the irreducibility of the GMJMCMC procedure it holds that for . w, = 1 we
obtain limy, oo P(A|Y) = P(A|Y) where T},q, is the number of iterations within
each run. Thus for any set of normalized weights the approximation ]5(A | Y) converges
to the true posterior probability P(A | Y). Therefore in principle any normalized set
of weights w;, would work, like for example w;, = %. However, uniform weights have
the disadvantage to potentially give too much weight to posterior estimates from chains
that have not quite converged. In the following heuristic improvement w; is chosen to
be proportional to the posterior mass detected by run b,

_ Tapeq; PO | M)P(M)
Y1 ey PY | M)P(M')

Wy

This choice indirectly penalizes chains that cover smaller portions of the model space.
When estimating posterior probabilities using these weights we only need, for each
run, to store the following quantities: P,(A | V) for all statistics A of interest and
sp = ZM'GQ; P(Y | M")P(M') as a ‘sufficient’ statistic of the run. There is no further
need of data transfer between processes.
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Alternatively (as mentioned above) one might use (4) directly to approximate P(A |
Y’) based on the totality Q* of unique models explored through all of the parallel chains.
This procedure might give in some cases slightly better precision than the weighted sum
approach (15), but it is still only asymptotically unbiased. Moreover keeping track of all
models visited by all chains requires significantly more storage in the quick memory and
RAM and requires significantly more data transfers across the processes. Consequently
this approach is not part of the current implementation of GMJMCMC.

The consistency result of Theorem 1 also holds in case of the suggested embarrassing
parallelization. Moreover it holds that even when the number of iterations per chain
is finite that letting the numbers of chains B go to infinity yields consistency of the
posterior estimates as shown in Theorem A.1 in the web supplement. The main practical
consequence is that running more chains in parallel allows for having a smaller number
of iterations within each thread.

Choice of algorithmic parameters Apart from the number of parallel chains, the
GMJIMCMC algorithm relies upon the choice of a number of tuning parameters which
were described above. Section A of the web supplement presents the values that were
used in the following simulation study and in real data analysis.

3 Experiments

3.1 Simulation study

The GMJMCMC algorithm was evaluated in a simulation study divided into two parts.
The first part considered three scenarios (numbered 1-3) with binary responses and
the second part three scenarios (4-6) with quantitative responses. For each scenario we
generated N = 100 datasets according to a regression model described by Equations (1)
and (2) with n = 1000 observations and p = 50 binary covariates. The covariates
were assumed to be independent and were simulated for each simulation run as X; ~
Bernoulli(0.3) for j € {1,...,50} in the first two scenarios and as X; ~ Bernoulli(0.5)
for j € {1,...,50} in the last four scenarios. All computations were performed on the
Abel cluster.?

For Scenarios 3, 5 and 6 the effect sizes (8;’s) for higher order interactions might seem
unrealistically large compared to real applications. To obtain more realistic scenarios
with moderate effect sizes and still sufficient power to detect larger trees one would have
to increase the sample sizes. However, this would be quite challenging computationally
for a simulation study. In the section on sensitivity analysis additional simulations for
Scenario 5 illustrate which effect sizes are needed with a sample size of n = 1000
for GMJMCMC to detect trees of different size. Furthermore, we demonstrate that
increasing the sample size by a factor 10 and reducing the effect sizes by a factor 1/1/10
yields approximately the same power. This relationship indicates which sample sizes

2The Abel cluster node (http://www.uio.no/english/services/it/research/hpc/abel/) with 16 dual
Intel E5-2670 (Sandy Bridge, 2.6 GHz.) CPUs and 64 GB RAM under 64 bit CentOS-6 is a shared
resource for research computing.
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would be necessary in practice to detect higher order interactions with smaller effect
sizes.

Binary responses

The responses of the first three scenarios were sampled as modes of Bernoulli random
variables with individual success probability 7 specified according to

S.1: logit(m) = — 0.7+ Ly + Ly + Ls,
S.2 : logit(n) = —0.454+0.6 L; + 0.6 Ly + 0.6 L3,
S.3:logit(r)= 04—-5L1+9Ly—9 Ls,

where the corresponding logic expressions are provided in Table 1. The first two scenarios
with models including only two-way interactions were copied from Fritsch (2006) except
that we deliberately did not specify the trees in lexicographical order. The reason for this
is that for some procedures (like stepwise search) it might be an algorithmic advantage
if the effects are specified in a particular order. The second scenario is slightly more
challenging than the first one due to the smaller effect sizes. The third scenario is more
demanding with a model including three-way and four-way interactions. As mentioned
above the corresponding regression coefficients were chosen rather large to make sure
that these higher order trees can be detected for the given sample size. In practice when
interested in smaller effects one would need larger sample sizes.

For the binary response scenarios GMJMCMC was compared with FBLR (Fritsch,
2006) and MCLR (Kooperberg and Ruczinski, 2005), where GMJMCMC was run with
Jeffreys’ prior as well as with the robust g-prior. For GMJMCMC the default setting
of the maximal number of leaves per tree is C,,a: = 5. For Scenarios 1 and 2 we
additionally report the results for C,,4, = 2, which were the values used in the original
study of Fritsch (2006) and which we also used here for MCLR and FBLR. For Scenario
3 we set Cqe = 5 for all three approaches. The maximal number of trees per model
was set to kpqp = 10 for GMJMCMC and FBLR whereas for MCLR it is only possible
to specify a maximum of k4, = 5. This is apparently due to the complexity of prior
computations in MCLR. Apart from the specification of C,,,q. and k4, we used for all
3 algorithms their default priors. In all scenarios we used d = 15 for the population size
in GMJMCMC.

GMJIMCMC was run until up to 1.6 x 108 models were visited in the first two scenar-
ios and up to 2.7 x 10° models were visited for the third scenario (divided approximately
equally on 32 parallel runs). The length of the Markov chains for FBLR and MCLR
were chosen to be 2 x 10° for the first two scenarios and 3 x 10° for the third scenario.

By default a tree is classified as detected if the (estimated) marginal inclusion prob-
ability is larger than 0.5. This corresponds to the median probability model of Barbieri
et al. (2004). To evaluate the performance of the different algorithms we estimated the
following metrics:

Individual power —the power to detect a particular tree from the data generating model;

Owverall power — the average power over all true trees;
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FP — the expected number of false positive trees;

FDR — the false discovery rate of trees;

WL — the total number of wrongly detected leaves.

Further computational details are given in Section B.1 of the web supplement.

FBLR MCLR GMJMCMC
Scenario 1 Jef. R. g
Ly =X{NXy 0.30 < 0.67 0.99 (0.97) 1.00 (0.98)
Ly = X5 A X9 0.42 < 0.61 0.99 (1.00) 0.96 (0.95)
Ly = X11 N X3 0.33  <0.59 0.95(0.91) 0.53 (0.77)
Overall Power 0.35 < 0.62 0.98 (0.96) 0.84 (0.90)
FP 3.88 >2.70 0.08 (0.25) 1.01 (0.63)
FDR 0.77 >0.06 0.03 (0.06) 0.25 (0.16)
WL 1 0 0 (0) 0 (0)
Scenario 2
Ly =X{NXy 0.32 < 0.66 0.98(0.97) 0.98 (0.97)
Ly = X5 A X9 040 < 0.67 0.99 (0.99) 0.94 (0.96)
Ly = X171 N X3 0.37 < 0.60 0.96 (0.86) 0.54 (0.76)
Overall Power 0.36 <0.64 0.98(0.94) 0.82(0.90)
FP 3.83 >2.58 0.10 (0.38) 1.08 (0.66)
FDR 0.75 >0.06 0.03 (0.09) 0.27 (0.16)
WL 1 1 0 (0) 0 (0)
Scenario 3
Li=Xo/NXg 0.93 <0.93 1.00 1.00
Lo = X7 A X192 A Xog 0.04 <0.67 0.91 0.56
L3 = XuNX10NX17A X350 0.00 <0.19 1.00 0.56
Overall Power 0.32 <0.60 0.97 0.71
FP 6.40 > 2.98 0.15 1.74
FDR 0.54 > 0.06 0.04 0.39
WL 90 72 1 0
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Table 1: Results for the three simulation scenarios for binary responses. Power for in-
dividual trees, overall power, expected number of false positives (FP) and FDR are
compared between FBLR, MCLR and GMJMCMC using either Jeffreys’ prior (Jef.) or
the robust g-prior (R.g.). For GMIJMCMC the default Cy,q, = 5 is used. For the first
two scenarios we also present results for Cy,q, = 2 (inside parentheses) corresponding
to the parameters used by MCLR and FBLR. All algorithms were tuned to use ap-
proximately the same computational resources. In case of MCLR we can only provide
upper bounds for the power and lower bounds for FP. We also report the total number
of wrongly detected leaves (WL) over all simulation runs.
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A summary of the results for the first three simulation scenarios is provided in
Table 1. In all three scenarios, MCLR performed better than FBLR, even when taking
into account the positively biased summary statistics of MCLR (see Section B.1 in
the web supplement). On the other hand, GMJMCMC clearly outperformed MCLR
and FBLR both in terms of power and in terms of controlling the number of false
positives, where using Jeffreys’ prior gave slightly better results than using the robust
g-prior.

In the first two scenarios GMJMCMC with Jeffreys’ prior worked almost perfectly
both for Cy,az = 5 and Ciur = 2. In the few instances where it did not detect the
true tree it reported instead the two corresponding main effects. Note however that in
case of Cy,qz = 5 there were several instances where GMJMCMC detected L§ A L§ with
(1 < i < j < 3), which according to De Morgan’s law is equivalent to L; + L; and
was therefore counted as true positive both for L; and L;. GMJMCMC with the robust
g-prior had a few more instances where pairs of singletons were reported instead of the
correct two-way interaction, especially when Cp,,, = 5 was used. FBLR and MCLR
were also good at detecting the true leaves in these simple scenarios, but GMJMCMC
was much better in terms of identifying the exact logical expressions.

The third scenario is more complex than the previous ones but nevertheless
GMJMCMC with Jeffreys’ prior performed almost perfectly. GMJMCMC with the
robust g-prior had more difficulties to correctly identify the three-way and four-way
interaction. Both FBLR and MCLR had severe problems to detect the true logic ex-
pressions and they also reported a considerable number of wrongly detected leaves. For
a more in depth discussion of these simulation results we refer to Section B.1 of the web
supplement.

Continuous responses

Responses were simulated according to a Gaussian distribution with error variance
02 =1 and the following three models for the expectation:

S4:E(Y)=14143 Ly +0.80 Ly + 0.7 Ls,

S5:E(Y)=141.5 Ly +3.5 Ly +9 Ly + 7 Ly,

S6:E(Y)=1+15L; +1.5 Ly + 6.6 Ly + 3.5 Ly
+9 Ls+7 Le+7 Ly + 7 L.

The logic expressions used in the three different scenarios are provided in Table 2.
Scenario 4 is similar to the first two scenarios for binary responses and contains only
two-way interactions. The models of the last two scenarios both include trees of size 1
to 4, where Scenario 5 has one tree of each size. Scenario 6 is the most complex one
with two trees of each size, resulting in a model with 20 leaves in total.

For scenarios with Gaussian observations we were only able to study the performance
of GMJMCMC since the other approaches cannot handle continuous responses (MCLR
has an implementation but that did not work properly). For these scenarios the settings
of GMJMCMC were adapted to the increasing complexity of the model. We used k4 =
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Scenario 4 Jeffreys Robust g
Ly = X5 AN Xg 1.00 1.00

Lo = Xg AN X711 0.99 1.00
Ls=X1NXy 0.97 0.98
Overall Power 0.99 0.99
FP 0.01 0.00
FDR 0.005 0.00
WL 0 0
Scenario 5 Jeffreys Robust g
Ly = X3y 1.00 1.00
Lo = Xo A X 1.00 0.99

L3 =X7;NX19N Xog 0.96 1.00

Ly = X4 N Xi0NX17 AN X3 0.89 0.90
Overall Power 0.96 0.97
FP 0.37 0.28
FDR 0.06 0.04
WL 2 5
Scenario 6 Jeffreys Robust g
Ly =Xy 0.95 0.99

Lo = X3 0.98 0.99
L3 = X5 N Xg 0.98 0.99

Ly = X185 AN Xo1 0.96 0.95

Ly = X1 AN X3 A Xo7 1.00 1.00
Lg = X190 A Xog A X37 0.95 0.96
L7 = X4 AN X0 A X917 A X30 0.32 0.45
Ls=X11 AN X133V Xi9gAX5 021 (093) 0.16 (085)
Overall Power 0.79 (0.88) 0.81 (0.90)
FP 4.28 (2.05) 4.24 (1.96)
FDR 0.38 (0.19) 0.36 (0.16)
WL 3 7

Table 2: Results for the three simulation scenarios for linear regression. Power for in-
dividual trees, overall power, expected number of false positives (FP), FDR and the
total number of wrongly detected leaves (WL) are given for parallel GMIMCMC. The
four estimates in parentheses for Scenario 6 refer to results obtained when counting an
equivalent logic expression of Lg as true positive as explained in the text.

10,10 and 20, and d = 15,20 and 40, respectively, for the three scenarios thus allowing
for models larger than twice the size of the data generating model and populations at
least twice the size of the number of correct leaves involved. Furthermore, the total
number of models visited by GMJMCMC before it stopped was increased to 3.5 x 106
for Scenario 6. C),qq is set to 5 for all three of these scenarios. Otherwise all parameters
of GMJMCMC were set as described for the binary responses.
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Table 2 summarizes the results and further details are provided in Section B.2 of
the web supplement. Scenario 4 illustrates that given a sufficiently large sample size
GMJMCMC can reliably detect two-way interactions with effect sizes smaller than one
standard deviation. Both Jeffreys’ prior and the robust g-prior worked almost perfectly
in terms of power. In this simple scenario even the type I error was almost perfectly
controlled with false discovery rates equal to 0.005 for Jeffreys’ prior and 0 for the
robust g-prior. Interestingly the only false discovery over all 100 simulation runs was of
the form X; A X4V Xg A X711 and is equal to L3g V Ly. One might argue to which extent
such a combination of trees should actually be counted as a false positive, a question
which is further elaborated in Section B.2 of the web supplement and in the Discussion
section.

The remaining two scenarios are way more complex due to the higher order inter-
action terms involved. In Scenario 5 the power to detect any of the four trees was very
large, with only slightly smaller power for the four-way interaction. The robust g-prior
had only a rather small advantage compared with Jeffreys’ prior both in terms of power
(overall 97% against 96%) and in terms of type I error (FDR of 4% against 6%). For
both priors the majority of false positive results were connected to detecting subtrees
of true trees and in all simulation runs there were only 2 wrongly detected leaves for
Jeffreys’ prior and 5 wrongly detected leaves for the robust g-prior.

For the last scenario we again observed large power for all true trees up to order
three. For the final two expressions L; and Lg of order for the results became slightly
more ambiguous with power estimated to 0.32 and 0.21, respectively, for Jeffreys’ prior
and 0.45 and 0.16 for the robust g-prior. However, among the false positive detections
we very often found the expressions X711 A X13, X19AX50 as well as X117 AX13AX19A X50.
In fact in 72 simulation runs for Jeffreys’ prior and 69 simulation runs for the robust
g-prior all of these three expressions were detected. According to the logic equivalence

Lg = X11 N X3+ X9 A Xs0 — X11 A Xz A Xig A X

one might actually consider these findings as true positives. The numbers in parentheses
in Table 2 were based on taking such similarities into account, resulting in much higher
power. Among the remaining false positive detections more than two thirds were sub-
trees of true trees or trees with misspecified logical operators but consisting of leaves
corresponding to a true tree. Thus again the vast majority of false detections points
towards true epistatic effects where the exact logic expression was not identified. Inter-
estingly like in Scenario 5 GMJMCMC with the robust g-prior detected again a larger
number of wrong leaves than with Jeffreys’ prior.

Sensitivity analysis

We performed sensitivity analysis for the power to detect trees in Scenario 5 based
on P(L;|[Y) > 0.5 for j € {1,...,4}. Figure 1 presents the results for the four-way
interaction L4. Results for the trees with fewer leaves are provided in Figures S1-S3 of
the web supplement. Specifically we wanted to study how the power is effected by the
following factors:
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Figure 1: Dependence of power to detect Ly for Jeffreys’ prior (red) and the robust g-
prior (blue) when varying different parameters as specified above each plot. Parameters
which are not explicitly varied are kept fixed at the levels from the original Scenario 5,
except for the first plot where all four coefficients 31 ..., 34 are simultaneously varied
by multiplying with the same factor.

1. A change in the corresponding coefficients (;, where all coefficients are varied
simultaneously by multiplying them with a factor K € {0.05,0.1,0.2,...,1} and
all other parameters are kept constant.

2. A change in the sample size n, where the sample size n is varied from 100 to
1000 and all other parameters are kept constant.

3. A change in the population size d, where the population size d is varied from
15 to 150 and all other parameters are kept constant.
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4. A misspecified leave within L4, where the misspecified leave is substituted by
a correlated leave with the correlation r varying from 0.1 to 1.

In cases 2, 3 and 4 the relevant parameters were increased uniformly in 10 steps, in
all cases k4, was set to 20. For computational reasons the sensitivity analysis was
performed only using 10 simulation runs for each parameter value, both for Jeffreys’
prior and for the robust g-prior. This number of repetitions is not sufficient to give high
resolution estimates of the power but it is enough to illustrate the general dependence
on each of the considered parameters.

The first two plots of Figure 1 illustrate how the power to detect Ly changes when
either the regression coefficient 84 or the sample size n are varied. With a sample size of
1000 the power seems to deteriorate only for effect sizes smaller than 4, whereas for the
large effect size of Scenario 5 a sample size of n = 600 still seems to provide reasonable
power to detect Ly. The first plots of Figures S1-S3 of the web supplement show that for
the lower order trees a sample size of n = 1000 is sufficient to obtain reasonable power
for much smaller effect sizes. Notably the three-way interaction L3 can be detected with
large power already for 33 = 1 which is of the same order as the standard deviation of
the error term.

To reach sufficient power to detect four-way interactions with smaller regression
coefficients one would have to increase the sample size. For many statistical models
there is the notion that when decreasing the effect size by a factor 1/K one would
roughly have to increase the sample size by a factor K2 to end up with the same power.
Figure S4 from the web supplement indicates that this relationship also holds for the
logic regression approach and together with the results from the first plot of Figure 1
one can induce that a sample size of n > 10000 is needed to have sufficient power to
detect four-way interactions with regression coefficients which are of the order of the
error standard deviation.

The third plot of Figure 1 is concerned with the influence of the population size d
from the GMJMCMC algorithm on the power to detect Ly. Corresponding plots for the
trees of lower size, for which the power is almost always equal to one, are provided in the
web-supplement. As one can see for both priors power to detect Ly grows gradually from
0 to 1 when d changes from 15 to 45. For values of d > 30 the power remains stable
at 1. This illustrates the statement of Theorem 1, according to which one requires
d—dy > ke to have an irreducible algorithm in the restricted space of logic regression
models. In these simulations we have k... = 20 and d; = 10. Hence according to
Theorem 1 a population size d > 30 is sufficient for asymptotic irreducibility of the
GMJMCMC algorithm. For d — dy < k4, irreducibility is no longer guaranteed and
hence we cannot expect the approximations of the model posteriors to be precise in all
cases, specifically when the model size of the data generating model is larger than d—d; .

The final plot of Figure 1 considers the effect of misspecification of one leave. This
setting is motivated by genetic association studies, where it often happens that not a
causal SNP (single nucleotide polymorphism) itself is genotyped but rather a strongly
correlated tag SNP. As long as the correlation of the misspecified leave to the original
leave is larger than 0.5 there appears to be no dramatic loss of power which indicates
that a certain amount of model misspecification can be tolerated by our method.
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Phenotype Chr | Marker expression P(L|Y) | Signif.
Blue Light 4 X44606688 0.767 ok
Blue Light 5 X44607250 0.335 ok
Blue Light 2 X21607656 0.309 ok
Blue Light 4N2 | X44606688/AX44606810 0.203 *
Red Light 2 MSAT2.36 0.441 Hok
Red Light 2 PHYB 0.353 ok
Red Light 2A1 | PHYBCAX44606541 0.112

Red Light 2 X21607013 0.092

Far Red Light | 4 MSAT4.37 0.302 ok
Far Red Light | 4 NGA1107 0.302 ok
White Light 5 X44606159 0.632 ok
White Light 1 X21607165 0.427 ok

Table 3: Potential additive and epistatic QTL for hypocytol length under different light
conditions for Arabidopsis thaliana. Recombinant inbreed line data set taken from Bal-

asubramanian et al. (2009). The last column shows the level of confidence with ***
corresponding to P(L | Y) > 0.5, ** to P(L|Y) > 0.3 and * to P(L | Y) > 0.05.

3.2 Analysis of Arabidopsis data

According to our simulation results there is no large difference in the performance of
GMJMCMC between using Jeffreys’ prior or the robust g-prior. On the other hand
the clear computational advantage of Jeffreys’ prior seems to justify to omit the robust
g-prior for analyzing real data. Hence in this section we only use Jeffreys’ prior for
GMJMCMC. Furthermore we used k;,q; = 15 and d = 25 which allows for way more
complex models than we would expect to see.

Balasubramanian et al. (2009) mapped several different quantitative traits in Ara-
bidopsis thaliana using an advanced intercross-recombinant inbred line (RIL). Their
data is publicly available as supporting information of their PLOS ONE article (Bala-
subramanian et al., 2009) which also gives all the details of the breeding scheme and the
measurement of the different traits. We consider here only the hypocytol length in mm
under different light conditions.? Genotype data is available for 220 markers distributed
over the 5 chromosomes of Arabidopsis thaliana with 61, 39, 43, 31 and 46 markers, re-
spectively. Balasubramanian et al. (2009) had genotyped 224 markers but we dismissed
4 markers which had identical genotypes with other markers. The amount of missing
genotype data is relatively small with a genotype rate of 93.9% and most importantly
the data contains only homozygotes (AA:49.6% vs. BB:50.4%). This means that the
RIL population contains no heterozygote markers and logic regression can be directly
applied using the genotype data as Boolean variables. Missing data were imputed using
the R package R-QTL (http://www.rqtl.org/).

The imputed data was then analyzed with our algorithm GMJMCMC to detect po-
tential epistatic effects and the results are summarized in Table 3. Under blue light Bala-

3Data obtained from the second to fifth column of the file http://journals.plos.org/plosone/article/
file?type=supplementary&id=info:doi/10.1371/journal.pone.0004318.s002.
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subramanian et al. (2009) reported 4 potential QTL’s, the strongest one on chromosome
4 in the regions of marker X44606688 and three further fairly weak QTL on chromo-
somes 2, 3 and 5. Our analysis based on logic regression confirmed X44606688 and also
detected those markers on chromosomes 2 and 5, though with a posterior probability
slightly below 0.5. There was also some indication of a two-way interaction between the
strong QTL on chromosome 4 and the QTL on chromosome 2.

Under red light the original interval mapping analysis reported the region of
MSAT2.36 as a strong QTL on chromosome 2 and x44607889 as a weaker QTL on chro-
mosome 1. Our logic regression analysis distributes the marker posterior weights on three
different markers on chromosome 2 which are all in the neighborhood of MSAT2.36. Ad-
ditionally there is some rather small posterior probability for an epistatic effect between
this region and a marker on chromosome 1 which is rather close to x44607889. Finally
both for Far Red Light and for White Light our analysis essentially yielded the same
results as the interval mapping analysis, when observing that under the first condition
the posterior probability was again almost equally distributed between the neighboring
markers MSAT4.37 and NGA1107. In summary the sample size in this data set might be
slightly too small to detect epistatic effects, although under the first two light conditions
there was at least some indication for a two-way interaction.

We have analyzed a second data set concerned with QTL mapping for Drosophila
where we compare logic regression with a more traditional approach to modeling epis-
tasis. Further details and results are presented in Section D of the web supplement.

4 Discussion

We have introduced GMJMCMC as a novel algorithm to perform Bayesian logic regres-
sion and compared it with the two existing methods MCLR, (Kooperberg and Ruczinski,
2005) and FBLR (Fritsch, 2006). The main advantage of GMJMCMC is that it is de-
signed to identify more complex logic expressions than its predecessors. Our approach
differs both in terms of prior assumptions and in algorithmic details. Concerning the
prior of regression coefficients we compared the simple Jeffreys’ prior with the robust
g-prior. Jeffreys’ prior in combination with the Laplace approximation coincides with
a BIC-like approximation of the marginal likelihood, which was also used by MCLR.
The robust g-prior has some very appealing theoretical properties for the linear model.
However, in our simulation study it gave only slightly better results than Jeffreys’ prior
for the linear model and in case of logistic regression actually performed worse in terms
of power to detect the trees of the data generating logic regression model. With respect
to the model topology we chose a prior which is rather similar to the one suggested
by Fritsch (2006) for FBLR, but instead of using a truncated geometric prior for the
number of leaves of a tree we suggest a prior which penalizes the complexity of a tree
indirectly proportionally to the total number of trees of a given size. The motivation
behind this prior is to control the number of false positive detections of trees in a similar
way to how the Bonferroni correction works in multiple testing.

GMJMCMC has the capacity to explore a much larger model search space than
MCLR and FBLR because it manages to efficiently resolve the issue of not getting
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stuck in local extrema, a problem that both MCLR and FBLR have in common. In
logic regression the marginal posterior probability function is typically multi-modal in
the space of models, with a large number of extrema which are often rather sparsely
located. Additionally, the search space for logic regression is extremely large, where
even computing the total number of models is a sophisticated task. As discussed in
more detail in Hubin and Storvik (2018), in such a setting simple MCMC algorithms
often get stuck in local extrema, which significantly slows down their performance and
convergence might only be reached after run times which are infeasible in practice.

The success of GMJMCMC relies upon resolving the local extrema issue, which is
mainly achieved by combining the following two ideas. First, when iterating through a
fixed search space S, GMJMCMC utilizes the MJMCMC algorithm (Hubin and Storvik,
2018) which was specifically constructed to explore multi-modal regression spaces effi-
ciently. Second, the evolution of the search spaces is governed within the framework of
a genetic algorithm where a population consists of a finite number of trees forming the
current search space. The population is updated by discarding trees with low estimated
marginal posterior probability and generating new trees with a probability depending
on the approximations of marginal inclusion probabilities from the current search space.
The aim of the genetic algorithm is to converge towards a population which includes the
most important trees. Finally the performance of GMJMCMC is additionally boosted
by running it in parallel with different starting points. Irreducibility of the proposals
both for search spaces and for models within the search spaces guarantees that asymp-
totically the whole model space will be explored by GMJMCMC and global extrema will
at some point be reached under some weak regularity conditions. Clearly the genetic
algorithm used to update search spaces results in a Markov chain of model spaces.

One important question in the context of logic regression is concerned with how to
define true positive and false positive detections in simulations. We adapted a rather
strict point of view which might be called an ‘exact tree approach’: Only those de-
tected logic expressions which were logically equivalent with trees from the data gener-
ating model were counted as true positives. While this seems to be a natural definition
there are certain pitfalls and ambiguities that occur in logic regressions which might
speak against this strict definition. Apart from the more obvious logic equivalences ac-
cording to Boolean algebra, for example due to De Morgan’s laws or the distributive
law, there can be slightly more hidden logic identities in logic regression. For exam-
ple the expressions (X7 V X3) — X7 and Xo — (X7 A X2) give identical models. We
have seen a less trivial example including four-way interactions in Scenario 6 of our
simulation study, where the data generating tree Lg is equivalent to the expression
X11 A X134+ X9 A X50 — X1 A X13 A Xq9 A X509 consisting of three trees. Furthermore,
different logic expressions can be highly correlated even when they are not exactly
identical.

Especially the results from the most complex Scenario 6 impose the question whether
the exact tree approach is slightly too strict to define false positives. Subtrees of true
trees give valuable information even if they are not describing the exact interaction.
Often combinations of several subtrees and trees with misspecified logical operators can
give expressions which are very close to the correct interaction term. For Scenario 6 we
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reported two possible summaries of the simulation results, one based strictly on the exact
tree approach and the other one counting simultaneous detections of X171 AX13, X19AX50
and X711 A X13A X19 A X550 also as true positives. This was slightly ad hoc and we believe
that good reporting of logic regression results is an area which needs further research.
The output of MCLR takes a step in that direction, where only the leaves of trees
are reported and if a tree has been detected then also all its subtrees are reported.
However, in our opinion MCLR, throws away too much information. We believe that
several different layers of reporting might be more desirable, for example the exact tree
approach, the MCLR approach and then something in between which does not reduce
trees completely to their set of leaves. We have started to think more systematically in
that direction and leave this topic open for another publication.

This paper has had a focus on model selection and selection of features of interest.
The method is however directly applicable to prediction as well. One can approximate
the posterior probability of some parameter/variable A via model averaging by

P(A|Y)= > PA|MY)P(M|Y),
MeQ*

where A might be for example the predictor of unobserved data based on a specific set of
covariates. Given estimates of posterior model probabilities, other prediction procedures
such as the median probability model (Barbieri et al., 2004) or the posterior weighted
median (Clarke et al., 2013) can also easily be applied.

Supplementary Material

Supplementary Material for: A novel algorithmic approach to Bayesian Logic Regression
(DOTI: 10.1214/18-BA1141SUPP; .pdf). https://github.com/aliaksah/EMIMCMC2016/
tree/master/supplementaries/Bayesian’20Logic%20Regression.
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Invited Discussion

Ingo Ruczinski*, Charles Kooperberg', and Michael LeBlanct

The logic regression project started some 20 years ago as part of the doctoral disserta-
tion of Ingo Ruczinski. The initial motivation was indeed to develop and implement a
method specifically to detect epistatic interactions in genetic studies measuring single
nucleotide polymorphisms (SNPs). However, it soon occurred to us that logic regression
could also be useful for many other data types and settings, particularly in medical
studies where often many binary data are collected. In its final version, the disserta-
tion contained two applications of logic regression: 1) a genetic association study using
SNP data from the Genetic Analysis Workshop (GAW), and 2) a medical study to
infer which brain regions affected by infarcts influence the cognitive state of patients.
Logic regression was quickly adopted by the community after the first open source soft-
ware release, with many applications analyzing data with predictors other than SNPs.
Moreover, various groups also developed new methodology extending the original logic
regression framework (including Bayesian versions of logic regression), which is partic-
ularly rewarding for its creators. The algorithm introduced here by Hubin, Storvik and
Frommlet (HSF hereafter) is an improvement for Bayesian model selection in the space
of logic regression models. We would like to congratulate the authors and say “thank
you” for their contribution to the field, and would like to offer a few additional thoughts
and perspectives.

We completely agree with the authors that the search algorithm in the original
Bayesian version of logic regression (Kooperberg and Ruczinski, 2005) had room for
improvement. We also experienced that the Markov Chain Monte Carlo (MCMC) algo-
rithm can get stuck in a particular part of the model space, and we are not surprised
that the method and implementation put forth by HSF based on “mode jumping”, the
Genetically modified Mode Jumping Markov Chain Monte Carlo (GMJMCMC) algo-
rithm, performs better in this regard. Our implementation of MCMC was in essence a
modification of the simulated annealing algorithm we developed to maximize the (fre-
quentist) likelihood function. Great care in setting the parameters for the annealing
scheme is required, since the algorithm for the search of the global optimum can easily
get trapped in local extrema as well. The main contribution by HSF is a greatly im-
proved search strategy to explore an extremely “ragged” likelihood landscape. We think
that a non-Bayesian equivalent of GMJMCMC can also be used for maximizing such a
likelihood, similar to simulated annealing. We discuss this in more detail further below.

In the abstract, HSF motivate the GMJMCMC algorithm by stating that logic re-
gression “has been mainly used to model epistatic effects in genetic association studies,
which is very appealing due to the intuitive interpretation of logic expressions to describe
the interaction between genetic variations. Nevertheless logic regression has (partly due
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to computational challenges) remained less well known than other approaches to epistatic
association mapping.” We believe the strong focus on epistasis in the abstract is not
necessary, and it might actually deter practitioners who do not work with genetic data.
The Boolean combinations of binary variables used in logic regression indeed lend them-
selves to genetic analyses, be it as recorded mutations, markers in breeding studies, or
bi-allelic SNPs recorded as two binary variables in dominant and recessive coding. In our
initial efforts, we used data from genetic candidate studies, which at the time recorded
between a few dozen and a few hundred markers. The early 2000s, when the logic re-
gression methodology was published and the software released (Kooperberg et al., 2001;
Ruczinski et al., 2003), saw the emergence of commercial SNP genotyping arrays (Bum-
garner, 2013), typing tens of thousands of markers at a time. Trying to infer higher-order
epistatic interactions (with logic regression or otherwise) in data generated from even
these first generation arrays is futile, given the size of the search space to explore these
interactions and the ensuing multiple comparisons problem. Even when only pairwise
interactions are considered, 100,000 markers yield 4.5 billion possible SNP-SNP interac-
tions! We note that this is also reflected in the data HSF present: the simulation study
comprises of 50 markers, the Arabidopsis data have 220 markers, and the Drosophila
data in the supplementary materials have 45 markers. Logic regression and similar algo-
rithms are suitable for data of this dimensionality, but certainly not for modern genome
scans with millions of markers typed or sequenced. But this is not a limitation of the
GMJMCMC algorithm — logic regression is still being used in many settings, particularly
in the medical literature (see for example the Introduction of Tietz et al. (2019) for a

number of recent examples), and these applications will also benefit from advancements
such as GMJMCMC.

The GMJMCMC algorithm puts a prior on model size (equations (3) and (6) in
HSF) and therefore depends on a definition of model complexity. This is not a trivial
issue, since the predictors in logic regression models are Boolean combinations of binary
covariates, and the number of parameters in the model is the same regardless how com-
plex the Boolean terms are. In addition, equivalent Boolean terms can have different
expressions and therefore also a different number of binary predictors, for example the
Boolean expressions X1 A (X2 V X3) and (X7 A Xo) V (X3 A X3). HSF write the model
prior (equation (3)) as a product of terms, introduced to give smaller probabilities to
more complex trees (subject to the total number of trees not exceeding the number
of trees allowed). These terms are chosen so the multiplicative contribution of a logic
tree of a given size is inversely proportional to the number of possible trees having the
same number of leaves. To estimate this number and to deal with the thorny issue of
tree complexity, HSF propose to ignore Boolean terms that include the same binary
covariate multiple times. This is a very reasonable proposal we believe, and allows for
a straightforward estimate of the number of possible trees to be incorporated in the
model prior. These terms are also chosen so larger models are penalized more (i.e. the
prior probability of a model is always larger than the prior probability of any other
model it is nested in). Using Jeffreys’ prior for the regression parameters, the authors
highlight that the model posterior probabilities can be calculated using the Laplace
approximation, and discuss the relationship with the Bayesian Information Criterion.
We would like to add that this approach also allows for an alternative model selec-
tion strategy in the original logic regression approach as introduced in Ruczinski et al.
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(2003), where we try to obtain a model that best explains the observed data. Logic
regression uses simulated annealing to find optimal models (according to the objective
function used) for a variety of possible model sizes, and then employs cross-validation
or permutation tests to select the suitable size for the model. Jeffreys’ prior proposed
by HSF for generalized linear models leads to an objective function that in essence
corresponds to a penalized likelihood. Thus, when adopting the framework of HSF, one
could dramatically save on CPU time by only running one annealing chain using the
above described posterior probability terms as the objective function, without the need
for cross-validation or permutation tests for model size selection. We note that our soft-
ware allows for the specification of one’s own objective function, as described in the
software manual (https://CRAN.R-project.org/package=LogicReg).

In addition to numerous options to define complexity for logic regression models, we
concur with the authors that it is also not clear-cut how the performance of algorithms
to detect Boolean interactions should be evaluated (HSF, p. 23). In their simulation
study, HSF classify a tree as detected if the marginal inclusion probability is estimated
to be at least 50%, and report various metrics (the power to detect a particular tree from
the data generating model, the average power over all true trees, the expected number
of false positive trees, the false discovery rate of trees, and the total number of wrongly
detected leaves) to evaluate the performance of the algorithm. Since “Jeffreys’ prior for
model selection has been widely criticized for not being consistent once the true model
coincides with the null model” (HSF, p. 6) the authors also evaluate the GMJMCMC
algorithm using the robust g-prior. While no dramatic differences are observed in their
simulation based on non-null models, it appears that Jeffreys’ prior performs a bit
better for the logistic models than the robust g-prior according to the above mentioned
metrics. So which one to choose in practice? For the analysis of the Arabidopsis data the
authors argue that “the clear computational advantage of Jeffreys’ prior seems to justify
to omit the robust g-prior for analyzing real data” (HSF, p. 21). We suggest a simple
two-step procedure for the practitioner that circumvents the need to make this decision.
The original logic regression framework offers an easily executed permutation test to
determine whether there is any signal in the data (the “null model test” in Ruczinski
et al., 2003), which answers the questions whether the assumption of a non-null model
is correct. If there is a signal, simply proceed with the GMJMCMC algorithm using
Jeffreys’ prior.

It was a bit surprising to us that the authors simulated independent binary predictors
to assess the performance of the algorithms. In real data we commonly see dependent
random variables (e.g. genetic markers can be highly correlated due to linkage dise-
quilibrium), and Bayesian approaches are particularly suitable to address the ensuing
model uncertainty as the notion of one “best” model is very questionable due to the
correlation structure between the binary variables (the sensitivity analyses presented
in HSF Figure 1 and the supplementary materials speak to that to some degree). We
also wonder if in the here presented simulation study, especially for the models with
large effect sizes, the original logic regression approach as introduced in Ruczinski et al.
(2003) might have been a more suitable approach than for example Markov Chain logic
regression (MCLR)? Due to the independence of the predictors and the large effect sizes
used, it would not be surprising to us if the original annealing based approach would
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consistently detect the underlying interactions in the simulation study. As mentioned
above and discussed by HSF (p. 23), it could also be debated whether any algorithm
employed really needs to detect the exact Boolean trees, or simply harnesses the power
to explore binary interactions to detect the leaves involved in these Boolean trees (this,
we argue, would be the case for example in genetic association studies). Thus, in ad-
dition to the total number of wrongly detected leaves (i.e. the specificity), we think
the number of correctly detected leaves (i.e. the sensitivity) could also be of interest
(and if all leaves are consistently detected due to the large effect sizes, a maybe more
challenging simulation could be considered).

To end, we have a few more technical questions for the authors. In many biomedical
applications we want to adjust for some predictors (additively) in the model, such as
the age and body mass index of subjects, or some principal components to correct
for genetic heterogeneity in association studies. Is this easily accommodated in the
implementation of the GMJMCMC algorithm, specifying a prior for the corresponding
parameters similar to the one for the intercept? For linear models as the ones presented
in this manuscript one could of course also regress these variables out, and use the
residuals as dependent variables to search for the Boolean expressions of the binary
predictors, but that strategy is not possible for generalized linear models with non-
linear link functions, such as the logistic model in the simulation study.

Another practical question is how the relevant parameters in the GMJMCMC al-
gorithm should be chosen to obtain dependable results. Clearly, this depends on the
problem at hand — more predictors require a longer run, but also a more complex data
structure (i.e. higher order interactions) demands a longer search. The authors use
the default tuning parameters of the implementation of the underlying Mode Jumping
Markov Chain Monte Carlo (MJMCMC) algorithm in all simulations and data analyses
presented, but use a range of values for the parameters related to the genetic algorithm
of the GMIJMCMC algorithm (HSF, Supplementary Table A.1). Do the authors have
some general guidance how to choose these? A simulated annealing approach like the
one implemented in logic regression — in theory — converges to the optimal solution as
long as the chain is aperiodic and irreducible (van Laarhoven and Aarts, 1987). We do
not have infinite CPU time in practice however, so rely on some observable metrics to
guide the annealing algorithm in logic regression. We implemented the search as a se-
quence of Metropolis-Hastings algorithms by keeping the temperature fixed for a chain,
and then gradually decreasing the temperature to generate a sequence of limiting distri-
butions converging to the optimum. In our implementation we suggest to monitor the
acceptance probabilities of the proposed moves in each of the chains: these probabilities
have to be essentially 100% early on at higher temperatures when almost every move
has to be accepted, and slowly have to converge to 0% as only moves that improve
the score should be accepted for very low temperatures (and once the optimum has
been reached, the acceptance probability for any move at that temperature should be
zero in essence). Further, these types of Metropolis-Hastings based simulated annealing
approaches also undergo a phase transition (van Laarhoven and Aarts, 1987), and the
variance of the scores visited in a chain should be constant before dropping to zero.
Are there similar metrics for the GMJMCMC algorithm that could be considered to
guide the selection of the critical parameters such as M¢;y, and T4z, and therefore the
resulting chain length?
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Invited Discussion

Malgorzata Bogdan®*, Blazej Miasojedow!, and Jonas Wallin*

First of all we would like to congratulate the authors for a very interesting and important
article. Logic regression model introduced in Ruczinski (2000); Ruczinski et al. (2003,
2004) is a Generalized Linear Model (GLM) where individual predictors take form of
logic expressions dependent on binary explanatory variables. This model arises naturally
in the context of identifying epistatic effects in genetic studies. Following Bateson and
Mendel (1909), biological epistasis is usually understood as a phenomenon in which
“a variant or allele at one locus [...] prevents the variant or allele at another locus
from manifesting its effect” (see Cordell, 2002), or more generally as a situation when
the effect of one allele can only be observed when a second allele is also present. Such
epistatic effects can be naturally expressed using logic expressions of the binary variables
dependent on the genotypes of genetic markers. While each logic expression can be also
represented in the form of the regular linear model, this usually requires many main
effects and lower interaction terms. For example, a single “logic interaction” involving
four variables (21 V x2) A (z3 V x4) in classical representation takes the form

T1T3 + 14 + T2T3 + ToTy — T1X3T4 — T2X3L4 — T1T2XL3 — T1T2T4 + T1X2X3T4 , (01)

and its natural interpretation is lost in the large number of classical interaction terms.
Moreover, the possible causal influence of this “logic interaction” is practically impos-
sible to recover by the regular linear model, where the regression coefficients by each
component of (0.1) are estimated separately.

Logic regression seems to be particularly useful for the analysis of outbred popula-
tions (like humans), where the number of genetic variants is often much larger than in
controlled populations (like e.g. domesticated animals or experimental crosses). Also,
it can be applied in a much wider context, like e.g. for the natural representation of
the joint influence of general qualitative variables or for the model selection for discrete
multicolored graphical models, like the Potts model, in the spirit of (Miasojedow and
Rejchel, 2018; Banerjee et al., 2008; Hofling and Tibshirani, 2009; Ravikumar et al.,
2010). In case of multicolored graphical models logic expressions can naturally describe
dependence between nodes of the graph.

Application of logic regression in real life problems requires solving complex compu-
tational and statistical issues, resulting from the large number of possible logic expres-
sion models and the possibility of writing a single logic expression in many equivalent
tautological forms. For example, the logicFS program of Schwender and Ickstadt (2008)
uses simulated annealing (Kirkpatrick et al., 1983) to maximize the likelihood function
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over all logic regression models with a given number of leaves. After selecting the “best”
model, each logic expression is transformed into a disjunctive normal form (DNF) i.e.,
OR combination of AND combinations (i.e. prime implicants or logic interactions). The
importance of individual interactions is estimated by repeating the whole procedure
using many bootstrap samples from the original data and taking into account both the
frequency with which a given interaction appears in bootstrap replications as well as its
contribution to a total model likelihood.

The disadvantage of the importance measures proposed in Schwender and Ickstadt
(2008) is that their values depend on the size of the data set and there exist no natural
thresholds which would allow to separate important interactions from false predictors.
However, these importance measures can be used for ranking the potential interactions.
Concerning model selection strategies, Malina et al. (2014) use logicFS importance
measures to build a GLM model including a moderate number of most important inter-
actions. Then the “statistically significant” interactions are selected using the backward
elimination procedure based on the multiplicity adjusted p-values. The multiplicity ad-
justment takes into account that the number of interactions in the space searched by
logicFS increases with the interaction complexity.

In Hubin et al. (2020) the issue of identifying important logic interactions is ad-
dressed within a Bayesian framework, where the importance of a given logic expression
is measured by the sum of posterior probabilities of GLM models which contain this
expression as one of predictors. The algorithm in Hubin et al. (2020) calculates the
posterior probability for a GLM model M by an approximation to the Bayes rule. The
marginal likelihood of the data given M is calculated using the analytical formulas or
Laplace approximations for Jeffreys’ or robust g-priors. This allows to avoid computa-
tional burden of Markov Chain Monte Carlo (MCMC) search over the space of model
parameters. Similarly as in Bogdan et al. (2004); Baierl et al. (2006), the prior for each
model M depends on its complexity and is selected in such a way that the prior ex-
pected numbers of logic expressions of different lengths are approximately the same and
do not depend on the number of predictors m. Since the number of complex interactions
increases with m at a higher rate than the number of simple interactions, this effectively
introduces the additional penalty on the model complexity, which depends on m. The
arguments presented in Bogdan et al. (2008b,a) illustrate that this penalty is related to
the Bonferroni-type correction for multiplicity, similar to the multiple testing correction
used in Malina et al. (2014).

To calculate the posterior probability of a model M the authors use the Bayes rule
P(Y[M)P(M)

POIY) = = By P - 0:2)

where 2 contains all possible logic regression models. Since it is not possible to visit all
these models, the main computational challenge relies on designing a search algorithm
which can visit most of the likely models, thus well approximating the denominator
of (0.2). Similar problem appears also when fitting regular regression models and in
Frommlet et al. (2012a) it was approached by the application of the genetic algorithm
supplied with the “local” research in the neighborhood of promising models. In Hu-
bin et al. (2020) the authors propose an iterative algorithm, where in each iteration
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some new predictors are formed using the specifically designed crossover, mutation and
reduction operators on the selected set of logic expressions and then apply the Mode
Jumping MCMC (MJMCMC) of Hubin and Storvik (2018) to search the space of GLM
models based on these predictors.

While we believe that the article of Hubin et al. (2020) is an interesting and impor-
tant contribution to the research on the logic regression, we are rather reserved with
respect to the proposed algorithm.

In Section 2.3 of Hubin et al. (2020) it is mentioned that a proper MCMC algorithm
is not needed if the main purpose is to visit many highly probable models. We agree with
the authors and believe that the reversibility of MJMCMC is actually not desired, since
it creates unnecessary loops and increases the time of visiting many distinct models.
In our opinion a better performance could be obtained by constructing an irreducible
and well mixing algorithm of walking over the space of GLM models. In the recent
years non-reversible MCMC algorithms received large attention (see e.g. Bouchard-
Coté et al., 2018; Bierkens et al., 2019) due to the fact that non-reversible chains are
able to explore the state space much faster than the reversible algorithms. For example,
let us consider a uniform distribution on the set 0,1,...,N. In this case the standard
reversible MCMC algorithm reduces to a random walk. Hence, after n steps the expected
number of explored states is proportional to v/n and the number of moves to explore the
whole space is proportional to N2. Instead, we could construct a simple, non-reversible
algorithm; i.e. we remember the direction of the previous move and go in the same
direction until we hit 0 or IV, where the direction is reversed. Then we can explore the
whole space in at most 2NV steps. In case of the problem discussed in Hubin et al. (2020),
the construction of the non-reversible MCMC algorithm would be rather simple, since
the convergence to the stationary measure is not needed. The only requirement is that
the algorithm is irreducible and aperiodic. One solution here would be to define the
global and local moves and accept the new state with probability (7 (y)/m(x))® with
some « > 0. The parameter o would control the permissible deviations of the posterior
with respect to its maximum. Another solution could rely on storing the visited states
in a priority queue, with priority proportional to the posterior probability. Then the
elements from the queue could be modified by some kernel and placed back to the
queue. Such an approach would allow us to explore the space starting from the more
promising candidates. Also, this method could be easily parallelized without the need
of post processing.

Further, we are concerned with the lack of treatment for tautologies. It seems to us
that this might lead to the dilution of the posterior probability among many tautological
representations of a given interaction and the loss of power of identification of this
interaction. While at the final stage of the algorithm this problem can be solved by
post-processing of the output, it is not clear what is the impact of this dilution on
elimination of interesting interactions at the earlier stages of the algorithm. It is also
important to observe that the number of tautological representations increases with the
interaction complexity. Thus, if one merges all tautologies to a single logical expression
in a post-processing step, the total prior probability assigned to this unique expression
effectively increases with its length and counterbalances the effect of the multiplicity
correcting priors suggested by the authors.
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The authors estimate the posterior probabilities of different models using (0.2). It
is not clear to us why the sum in the denominator of (0.2) contains only My, =
10000 models based on d trees from the final stage of the algorithm. Why not use
the information from the earlier stages? Further, in some of the reported simulation
examples the authors use d = 15. Thus the final search is performed only over d =
215 = 32768 models, which could be easily looked at without application of the MCMC
algorithm.

Also, a huge random reduction of the final model space leads to substantially different
results for different parallel runs of the algorithm. Therefore the authors aggregate
results from different runs using a weighting scheme specified in (15) of their paper. In
our opinion it seems more reasonable to estimate the posterior probabilities of different
models simply by including all models visited in different runs in denominator of (0.2).
Also, as we mentioned above, it seems to us that the priority queues would allow for
some synchronization between different runs and more efficient search through the model
space.

Concerning implementation issues — we observed that the denominator of (0.2) cal-
culated by the currently implemented algorithm includes only the models accepted by
MJMCMC. Taking into account that the acceptance rate is usually below 0.1, storing
all the models proposed rather than only accepted would give a better estimate of the
denominator of (0.2). Further, it seems to us that in the current implementation the
denominator of (0.2) increases every time the model is accepted by MIMCMC, with-
out checking if this model already appeared in the sum. However, the detailed analysis
of the hidden duplication problems would require a more careful analysis of the code,
which is rather difficult due to its structure.

The authors conclude that there is almost no difference between the results when the
Jeffreys’ or the robust g-prior is used when calculating the model marginal likelihood.
However, it seems important to note that the simulations justifying this claim were
performed using rather simple GLM models with independent predictors. Actually, it
seems that many of the solutions proposed by the authors are specifically designed for
this case. For example, consider the case when a given predictor is strongly correlated
with other explanatory variables. Then the posterior probability of a “true” model
including this predictor will be diluted between “neighboring” models and this predictor
might easily miss the threshold for inclusion in the subsequent populations. As noted
by the authors, the dilution of posterior probabilities actually occurred in the real
data from the experimental recombinant inbred line, where the neighboring markers
are rather strongly correlated. We simulated similar spatially correlated data and had a
substantial difficulty with identifying a simple two-way logic interaction. Actually, the
dilution issue seems to be even more problematic for interactions than for the main
effects since the number of correlated interaction terms is substantially higher than the
number of respective correlated markers.

Also, one of important features of the algorithm is the initial selection of d; important
binary variables, which stay as the single trees in the spaces S; in all iterations of
the algorithm. The initial space S; is formed by including logic expressions dependent
only on these predictors. Other variables can enter the search space only during the
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mutation, which occurs with a relatively low probability. Thus, the selection of these
initial predictors effectively reduces the search space. This approach again seems to be
very well suited for the situation when explanatory variables are independent but might
lead to missing important predictors otherwise.

Another interesting property, worth studying, is the scaling of the algorithm with
respect to the number of explanatory variables m. This number seems to hinder the
speed of MJMCMC only at the first step, where d; important main effects are selected.
However, the magnitude of m probably strongly influences the power of identifying logic
interactions. Since the number of possible logic interactions increases rapidly with m,
the prior probability for each of them quickly diminishes, which results in decrease of
posterior probabilities.

To summarize: it appears to us that the usefulness of the proposed algorithm and the
GLM logic regression model is rather restricted to the case when predictors are roughly
independent and n > m. This is however still of a great value in genetic studies,
where the raw data are often pre-processed and only relatively few candidate genetic
markers are used for building more sophisticated predictive models. If such markers are
sufficiently distant, they are almost not correlated. The candidate markers are usually
selected using the prior biological knowledge. Since logic interactions usually have strong
main effects components, the candidate markers could also be selected using the classical
Genome Wide Association Studies (see e.g. Frommlet et al., 2012b or Brzyski et al.,
2017).
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Holger Schwender* and Katja Ickstadt!

We congratulate Hubin, Storvik, and Frommlet to this nice paper providing an approach
to (Bayesian) logic regression that substantially differs from the existing procedure for
fitting logic regression models. Their valuable work contributes a new view on how
to generate such models, and, therefore, on how to model and identify interactions,
in particular, in genetic association studies. Moreover, their work enhances the use of
logic regression due to the algorithmic improvement by their GMJMCMC (Genetically
modified Mode Jumping Markov Chain Monte Carlo) procedure.

Since their methods differ from the common approaches to logic regression, we will
briefly discuss in the following the original approach to logic regression that to some
extent also underlies the other Bayesian logic regression procedures MCLR (Monte
Carlo Logic Regression) and FBLR (Fully Bayesian Logic Regression) considered in the
paper. We will also present another procedure called GPAS (Genetic Programming for
Association Studies) that uses similar operators as GMJMCMC to move through the
search space consisting of all possible models. Finally, we will mention how procedures
based on logic regression can be employed to not just identify interactions associated
with the outcome of interest, but also to rank these interactions by their importance
and to guide statements on their relevance and significance.

1 Fitting Logic Regression Models

The starting point of the original logic regression developed by Ruczinski et al. (2003)
is a regression model containing one logic expression consisting of one binary/logic
variable as predictor. This model is then modified by either adding a new logic expression
consisting of one binary variable as predictor to the model or by modifying the logic
expression (or later, one of the logic expressions) already in the model by either changing
one of the logic variables or logic operators in the logic expression or by adding or
removing a logic variable to/from the model. This step is repeated until a score function
assessing the fit of the logic regression model converges. E.g., when considering a binary
response, the binomial deviance serves as score.

In both logic regression and GMJMCMC, tree-based structures are used to repre-
sent the logic expressions in the regression models or populations, respectively, and to
modify these logic expressions to move through the space of all possible models. While
GMJMCMC borrows ideas from genetic algorithms for the modification of the logic
expressions, other, partly related moves directly embedded in the framework of logic
trees are employed by logic regression for this purpose. In the nomenclature of logic
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regression, replacing a logic variable or operator is called “Alternating a leaf” or “Al-
ternating an operator”, respectively. A logic variable can be added to a logic expression
by “Splitting a leaf” or “Growing a branch” depending on the position in the logic
tree at which this change should be made. Logic variables can also be removed from
the models by the countermoves “Delete the leaf” and “Prune a branch” to the adding
moves.

Thus, a logic tree can be modified at any level of this tree and not just by adding
a new level to the hierarchy of the tree. This is in contrast to CART (Classification
And Regression Trees, Breiman et al., 1984), the arguably most well-known tree-based
classification and regression method, in which the trees have a hierarchical structure.
Because of their non-hierarchical structure, logic trees do not only provide a much more
concise representation of logic expressions compared to CART trees, but also a flexible
framework to search for a logic regression model that best explains the considered
response variable.

Depending on the search algorithm, all choices in all steps of logic regression are
either made randomly (when the stochastic search algorithm simulated annealing is
employed) or by selecting the modification of the currently considered logic regression
model that leads to the largest improvement of the score (when a greedy search is
used). As mentioned by Hubin et al., the standard search procedure in logic regression
is simulated annealing. This stochastic search algorithm is based on Markov chains,
where the probability of accepting a proposed new model is governed by a parameter
called temperature that decreases the acceptance probability during the run of simulated
annealing. As a result, many models are visited at the beginning of the search, but
towards the end of the search it gets more and more unlikely that a modification to the
logic regression model gets accepted when the proposed model has a worse score than
the current model. In LogicReg, the R package in which the original logic regression is
implemented (Kooperberg and Ruczinski, 2019), also a greedy search is implemented
that has the drawback that it is not capable to escape from a local minimum. However,
this greedy search works also well when it is put into an ensemble framework such as
bagging (Breiman, 1996; see also Section 3 of this discussion).

As mentioned by Hubin et al., in particular in genetic association studies, there
usually does not exist the one and only explanation for a response variable such as the
disease status, but many competing models that fit the data almost equally well. Hubin
et al., therefore, correctly argue that generating just a single best model — as the original
logic regression does — ignores the problem of model uncertainty. For this reason, they
disregard the original logic regression in their following discussion and consider only
Bayesian versions of logic regression enabling Bayesian model averaging by generating
and considering many competing logic regression models. It might be, at first sight,
a drawback of the original logic regression that it generates just one model. However, as
we will discuss in Section 3, it is straightforward to formulate an ensemble framework
that can be employed to fit a large number of logic regression models, and thus, to
analyze uncertainty in the models.
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2 Genetic Programming for Association Studies

Another procedure more closely related to GMJMCMC than logic regression is GPAS
(Genetic Programming for Association Studies) proposed by Nunkesser et al. (2007). As
implied by its name, GPAS employs genetic programming instead of genetic algorithms
as search procedure. As in GMJMCMC, logic expressions are represented by trees and
crossover, mutation as well as reduction operators are used to generate in each iteration
of the search algorithm a new population of logic expressions that are then evaluated
to remove dispensable logic expressions from the population.

In GPAS, each logic expression is generated directly in disjunctive normal form,
i.e. as OR~combination of AND-combinations of the logic variables, since the AND-
combinations can (at least in a statistical sense) be interpreted as the interactions
contained in the logic expression. Besides a crossover operator similar to the one of
GMJMCMC, a logic variable that is part of a logic expression in the population of the
current iteration of GPAS can be replaced by another logic variable. Also a new logic
variable can be added either to an AND-combination or to the OR-combination as a
start of a new AND-combination. As in logic regression, countermoves to these two
operations are also part of the move set of GPAS. In each iteration of GPAS, two logic
expressions are randomly selected to generate a new logic expression by performing
a randomly chosen crossover operation on these two expressions. Moreover, five logic
expressions — one expression for each of the described mutation operations — are chosen
at random to apply a random modification to each of these expressions. In this way,
a new population consisting of all logic expressions from the population of the current
iteration and six new logic expressions is generated.

While in GMJMCMC a fixed number of MJMCMC (Mode Jumping Markov Chain
Monte Carlo) iterations is performed for each population of the genetic algorithm
to compute marginal inclusion probabilities and to remove logic expressions with a
marginal inclusion probability below some threshold from the population, GPAS em-
ploys multi-objective optimization and domination selection in which logic expressions
dominated by other logic expressions are removed from the population. Thus, multiple
criteria are used to evaluate the performance of a logic expression. If this expression
shows a worse value for one of these criteria than another logic expression in the popu-
lation and not a better value for all the other criteria, then this expression is dominated
by the other logic expression, and hence, removed from the population. Since GPAS has
been developed for the association analysis of case-control data, the criteria considered
in GPAS are the rate of correctly classified observations, the number of correctly pre-
dicted controls (in simulations, it has turned out to be beneficial to use the controls in
two objectives), and the length of the logic expression.

Because of the similarities in the operators considered in GPAS and GMJMCMC
and the differences in the selection processes, it would be valuable to compare these two
procedures, which might perhaps even enhance GMJMCMC. Furthermore, as indicated
in FBLR, the representation of logic expressions in their disjunctive normal form could
also be employed to formulate the full model prior P(M) for GMIJMCMC.
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3 Assessing the Importance of Identified Interactions

After identifying potentially interesting interactions, i.e. interactions that potentially
influence the outcome of interest and are important for a correct prediction of the
outcome, with search procedures such as GMJMCMC, GPAS, or logic regression, the
importance of these interactions for correctly predicting the outcome should be mea-
sured to differ between interactions associated with this outcome and interactions found
almost at random. Such a measure can then also be used to rank the interactions by
their importance, which is often of particular interest.

Hubin et al. consider for this purpose the marginal inclusion probability P(L; | Y),
i.e. the estimated probability for a logic expression L; to be included in a model. This
probability is, however, determined on the same data on which the models are built,
which usually results in a positively biased estimate of the importance of L;. It would,
thus, be preferable to quantify the importance of a particular logic expression or inter-
action based on new/independent data.

One approach for such a quantification on independent data that was originally de-
veloped by Breiman (2001) for measuring the importance of variables in Random Forests
is (in a modified version) also used in logicFS (logic Feature Selection; Schwender and
Ickstadt, 2008). In logicFS, the original logic regression is applied to B bootstrap sam-
ples drawn from the considered data set, resulting in B logic regression models. The logic
expressions in each of these models are, afterwards, transformed into disjunctive normal
forms to identify the interactions composing these models by the conjunctions/AND-
combinations in these disjunctive normal forms. The importance of each of the inter-
actions is then quantified by considering the respective out-of-bag observations, i.e. the
observations that do not belong to the respective bootstrap sample and were, therefore,
not used in the fitting of the respective model. For the quantification of the importances,
the predictive power of each of the B logic regression models is determined, e.g., by the
number of correctly out-of-bag observations. Afterwards, the interaction for which the
importance should be computed is removed from all the logic regression models, and
again, the predictive power of each of the now reduced models is determined. The mean
difference between the predictive powers of the models before and after an interaction
has been removed from them can then be employed to quantify the improvement in the
prediction due to this interaction and thus as a measure of the importance of this inter-
action for a good prediction of the outcome. Using a permutation test, the importances
of the interactions can also be tested (Schwender et al., 2011).

Since logicFS also results in several logic regression models, a comparison of the
performance of GMJMCMC and logicFS as well as their importance measures might
be valuable.

4 Effect Sizes in Genetic Association Studies

It is much appreciated that Hubin et al. consider the same scenarios as Fritsch (2006).
In the other scenarios, they, however, consider effect sizes, in particular, for interactions
of higher order from which they admit that they “might seem unrealistically large
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compared to real applications.” In our opinion, this is a large understatement. E.g., in
Scenario S.3, odds ratios of exp(5) &~ 148 and exp(9) ~ 8103 are, even for epidemiological
risk factors such as smoking, implausibly vast.

In genetic association studies, individual noteworthy SNPs (Single Nucleotide Poly-
morphisms) seldomly show an odds ratio larger than 1.5 (see, e.g., Golka et al., 2011).
Interactions of SNPs might have a substantially higher impact on diseases, but the effect
sizes do by far not reach the effect sizes considered in the simulation study. E.g., Selinski
et al. (2017) identified a combination of four SNPs showing an odds ratio of 2.59 in a
subgroup of urinary bladder cancer patients (where the odds ratios of the individual
SNPs ranged between 1.1 and 1.3).

Even though the sensitivity analysis of Hubin et al. gives some insight in the per-
formance of GMJMCMC for a range of effect sizes and sample sizes, the effect sizes in
the simulated analysis in our opinion could have been chosen a bit more realistically.

Considering these unrealistically large effect sizes, however, does not really diminish
this nice, well-thought-out paper, and in particular, not the proposed method. It is a very
welcome contribution to the association analysis of interactions in genetic association
studies and opens the field for further research in this direction.
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Contributed Discussion

Grégoire Clarté* and Christian P. Robert®

While logic regression is not to be confused with logistic regression, the distinction may
be proved more delicate than stated. For one thing, as the central object of interest is a
generalised linear model (or rather a family of such models) based on a vector of binary
covariates, it covers the special case of logistic regression. For another thing, it does
not very clearly slit from a standard generalised linear model—or generalised analysis
of variance model—when all covariates are dummy variables. Culling the number of
total covariates (trees) away from the exponential of exponential number of possible
covariates defined by logical combinations appears to be a significant component of the
approach but this selection of potential (sub-)models remains obscure. If this primary
selection is to be data-dependent, there could be a connection with variable length
Markov chain models (Biihlmann and Wyner, 1999).

1 Prior Issues

With respect to the prior modeling adopted in the paper, it mostly relies on a rather
standard decomposition in variable indicators—to signify whether or not some trees
are included in the regression (and hence the model)—. The prior modelling on these
indicators is purely a complexity penalisation in that it is only function of the number
of active trees, hence not accounting for a possible specificity of some covariates, as for
instance when dealing with imbalanced binary covariates (many more 1’s than 0’s, say).

“...using Jeffreys’ prior for model selection has been widely criticized for not being con-
sistent once the true model coincides with the null model.”

A central issue with the prior modelling adopted in the paper is its loose handling
of improper priors. It is well-known that the use of improper priors is debatable for
model choice settings and hence that they should be best avoided altogether, to wit the
Lindley-Jeffreys paradox (Lindley, 1957; DeGroot, 1973, 1982). Let us first recall that
Jeffreys (1939) distinguishes between estimation and testing reference priors (Bayarri
and Garcia-Donato, 2007; Robert et al., 2009). Not only does the paper adopt the notion
of a same, improper, prior on the GLM scale parameter, which is a position advocated
in some part of the Bayesian literature (Berger et al., 1998), but it also seems to be using
an improper prior on each set of model parameters (further undifferentiated between
models). Because the priors operate on different (sub)sets of parameters, we wonder
whether or not this jeopardises the later discourse on the posterior probabilities of
the different models, since such probabilities are not meaningful from a probabilistic
viewpoint. Such a prior construct indeed implies there is no joint distribution and no
marginal density. In some cases, it may even be that p(y|M) becomes infinite. Referring
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to a “simple Jeffreys”’ prior in this setting is therefore anything but simple as Jeffreys
(1939) himself shied away from using improper priors on the parameter of interest.

We therefore find it surprising that this fundamental and well-known difficulty with
improper priors in hypothesis testing is not even alluded to in the paper, the above
quote being a much milder criticism, core setting thus seems to be flawed. Now, the
numerical comparisons run in the paper between Jeffreys’ prior and a regular g-prior
exhibit close numerical proximity and we wonder at the reason if the Bayes factor is
defined up to an arbitrary constant. Could it be that the culling and selection processes
end up having a similar number of covariates and hence ignore the overall impact of
the prior? Or is it rather a consequence of recoursing to a Laplace approximation of
the marginal likelihood since it completely escapes the problem lack of definition of the
said marginal?

2 Algorithmic Aspects

Methinks the proposed strategy is fruitful in a discrete space; we agree with the au-
thors that contrary to Metropolis-Hastings-like methods, it does not involve repeated
computations of the same quantity (which can be expensive, especially when involv-
ing marginal likelihoods). However, even a limited number of computations of these
marginal likelihoods may constitute a real challenge, while the solutions mentioned in
the paper are not necessarily the most efficient (Geyer, 1993; Gutmann and Hyvérinen,
2012).

“...we do not need a proper MCMC (an algorithm with convergence towards the target
distribution) which is needed if model posterior probabilities are estimated by the relative
frequency of how often a model has been visited.”

While we have not read the referred article on MJMCMC in detail, a first comment
is that the name itself is somewhat unsuitable, as indeed the algorithm does not sample
from a distribution but only explores its surface. There is no proper sampling part in
the algorithm, as quantities are computed over * with integrals of the form

> fa)m(x)/ 2",

reN*

where 7 the target and Z2* = ) _. m(z) is an approximation of the normalizing
constant. Finding such a set Q* is the main goal of the method developed in the paper.

“...hereby, all states, including all possible models of maximum sized, will eventually be
visited.”

In a self-avoiding mode, keeping track of all the previous states visited by the chain
ensures that those states will never be visited again. As we are in a discrete setting, this
implies that once a mode has been visited the algorithm is constrained to eventually
visit another mode, even if the potential between the modes is almost zero. The set
Q* is then built sequentially, removing states with too low posterior probability to add
more interesting states which neighbours have been recently visited.
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GMJMCMC starts from this idea to develop a more complex algorithm in which
the previous exploration technique is used inside a subset of models which is then
updated. We however wonder whether or not the algorithm is not wasting time overall
by exploring some parts of an already explored section of the space. More generally, it
seems to us that the genetic layer in the algorithm has solely been added to constrain
the exploration to smaller spaces, hence are wondering of the efficiency gain brought by
this addition.

This method may in the end suffer from several flaws. First, it does not provide the
theoretical security of (asymptotic) unbiasedness that is attained with MCMC method.
However, it could be of interest to study the variance of such estimators, as Markov
chains with poor mixing properties can have huge variance in a multi-modal context.
For example, assuming the function f is primarily supported by points outside of 2*, it
is clear that the estimation is inefficient; however, an MCMC algorithm will similarly be
inefficient in the sense that low probability states will also be underexplored, leading to
a massive variance estimator. In our opinion, the main issue is to ensure that Q* is well-
chosen, that is to say, that it contains the right amount of points. Several parameters
account for this in the algorithm, choosing these parameters may be a tough calibration
problem—especially the choice of the cutoff parameter p,,;n, even though it could be
chosen as a “quantile of posterior probability” or be adaptive.
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Rejoinder
Aliaksandr Hubin*, Geir Storvik', and Florian Frommlet?

1 Introduction

We would like to begin this rejoinder with expressing our sincere gratitude to all of
the discussants for their interesting and thought-provoking comments and remarks.
We also feel heartily thankful to the editorial board of Bayesian Analysis for giving
us the opportunity to publish our paper entitled “A novel algorithmic approach to
Bayesian logic regression” (Hubin et al., 2020a) as a discussion article. Logic regres-
sion is a tool to model non-linear relationships between binary covariates and some
response variable by constructing predictors as Boolean combinations. The number of
possible logic expressions grows exponentially with the number of binary variables in-
volved, making the model search significantly harder with the increasing complexity
of Boolean combinations. Due to Boolean equivalence, it is in fact almost impossible
to specify the full model space a priori even for a relatively small number of covari-
ates.

Our primary goal is to identify those logic expressions which are associated with
the response variable. To this end, we want to estimate posterior probabilities of logic
expressions within the framework of generalized linear models. The major contributions
of our paper are two-fold: Firstly, we have introduced novel model priors for Bayesian
logic regression (BLR), which yield good power to detect important logic expressions
while controlling the number of false positive discoveries. Secondly, we have introduced
a novel genetically modified mode jumping Markov chain Monte Carlo (GMJMCMC)
algorithm to efficiently explore the space of logic regression models.

The main idea of GMJMCMC is to embed the mode jumping Markov chain Monte
Carlo (MJMCMC) algorithm (Hubin and Storvik, 2018) into the iterative setting of a
genetic algorithm. Populations for the genetic algorithm consist of relatively small sets
of logic expressions. Any such subset forms a well defined model space which allows to
run MJMCMC. The population is then regularly updated in such a way that the algo-
rithm is guaranteed to be irreducible in the model space of all logic regression models.
This is required for asymptotic unbiasedness of the estimated posterior probabilities,
as we will discuss in more detail below. Although GMJMCMC is not a proper MCMC
algorithm (in the sense that its stationary distribution does not coincide with the target
distribution of interest), renormalized estimates of the posterior probabilities are readily
available.

The discussants have pointed out several interesting extensions and open problems.
We have structured the rejoinder according to different topics while trying to address all
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the points raised by the discussants. We also provide several interesting extensions of the
model. Finally, we give a brief tutorial on the relevant part of our R-package EMJMCMC
http://aliaksah.github.io/EMIMCMC2016/ dealing with BLR. This should facilitate
the practical application of the methodology developed in Hubin et al. (2020a).

2 Applications of Bayesian logic regression

We very much appreciate that Ruczinski et al. (2020) have pointed out important ap-
plications of logic regression outside of genetics. Our emphasis on genetic applications
was not meant to indicate limitations of the usefulness of logic regression in other areas
but rather reflects our own previous research interests. Also, the applications mentioned
by Bogdan et al. (2020) in the context of multicolored graphical models sound quite
interesting. We are however more sceptical whether logic regression, in whichever form,
will ever be applicable directly to association studies of outbred populations, where
the number of genetic variants is much larger than in controlled populations. For large
numbers of binary covariates, already the number of pairwise logic expressions becomes
prohibitively large to apply logic regression, both in terms of algorithmic feasibility and
in terms of having sufficient power while controlling type I error. Realistic applications
of logic regression (with the aim of identifying true logic expressions) will most likely be
restricted to applications with a few hundred binary covariates unless technologic ad-
vances allow one day to efficiently resolve the A'P hard combinatorial problem of model
search. However, one might consider bagging and boosting to obtain scalable versions
of logic regression for prediction.

In this rejoinder, we also discuss extensions of Bayesian logic regression, allowing
for non-binary predictors and latent Gaussian variables to be included into the model.
This could further extend the applications of Bayesian logic regression methodology to
such fields as epidemiology, spatio-temporal statistics, environmetrics and econometrics.
For example, in Hubin et al. (2020c), a model with latent Gaussian processes (where
a subset of predictors are binary) was used for the analysis of DNA methylation. The
paper discusses the potential of using logic expressions of the binary predictors as a
direction for further research. With the extensions of BLR provided in this rejoinder,
it would become feasible to perform logic regression in the settings of Hubin et al.
(2020c).

Both Ruczinski et al. (2020) and Bogdan et al. (2020) commented on the lack of
correlated regressors in our simulation studies. This was mainly due to the fact that
for the sake of comparison we wanted to use the scenarios from Fritsch (2006). For the
more complex scenarios, we simply extended these scenarios by adding logic expres-
sions of a higher order. In our sensitivity analysis, though, we considered one scenario
with correlations (but only for one true leaf), where reasonably good results were ob-
tained when the correlation of a mis-specified leaf r was being varied from 0.1 to 1.
However, specifically to respond to the remarks from Bogdan et al. (2020), who hypoth-
esised that our approach would only work under independence, we will provide some
additional simulation results, where we consider regressors with different correlation
structures.
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Figure 1: Correlation structure of the simulated covariates with a general correlation
structure (left) and from QTL back-cross (right).

2.1 Simulation study with correlated regressors

In this study, we simulate the data using p = 50 regressors with two different types of
correlation structure: The first one is rather general and uses fairly weak correlations,
whereas the second one is typical for QTL mapping and gives very strong correlations.
For the first scenario, we consider covariates which are marginally distributed according
to X; ~ Bernoulli(0.5),5 € {1,...,50}. The correlation matrix is obtained using the
approach from Joe (2006), which allows to generate positive definite matrices where all
pairwise correlations are i.i.d. from a Beta distribution B(a,a) linearly transformed to
the interval (-1, 1). The parameter of the Beta distribution equals a = alphad+(p—2)/2,
where alphad > 0 can be chosen. In our case, for p = 50 and alphad = 5/2 it holds that
the pairwise correlation lies between —0.2 and 0.2 with probability 0.85 and between
—0.3 and 0.3 with probability 0.97. Correlations with an absolute value larger than 0.4
are extremely unlikely. Multivariate binary random variables X;,j € {1,...,p} with
such correlation structures are then simulated by thresholding normal distributions as
described by Leisch et al. (1998). A typical correlation structure of covariates generated
by this approach is shown in the left panel of Figure 1.

The second scenario is based on the classical back-cross design for QTL mapping.
We used the R/QTL package (Broman et al., 2003) to generate a map of 5 chromo-
somes of different lengths ranging from 100 cM to 40 cM with 10 equidistant markers
per chromosome, see Figure 2. For experimental populations, there is a direct relation-
ship between the genetic distance between markers on the same chromosome and their
correlation as described in any textbook on QTL mapping (Chen, 2016). The corre-
sponding correlation structure from simulated genotypes of n = 1000 individuals from
a back-cross design is illustrated by the heatmap in the right panel of Figure 1. One
can see that the correlations between markers on the same chromosome are very strong,
getting close to 0.9 for neighbouring markers.

Response variables Y are simulated from the data generating model of Scenario 5
from Hubin et al. (2020a), where Y ~ N(u, 1), with

pw=1+4+1.5L1 +3.5Ls +9L3 + TLy. (1)
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Figure 2: Genetic map of markers on five chromosomes of different length (given in
centiMorgan). For the second scenario of our simulation study, these marker positions
are used to simulate genotype data from a back-cross design. The closer markers on the
same chromosome are lying the stronger will be the correlation of the corresponding
genotype data.

The exact definition of the trees L1—L,4 is given in Table 1 below and is equivalent to
the definition in Table 2 of our original article. For the QTL mapping scenario, the
responses were generated for each simulation replicate after randomly permuting the
order of the genetic markers. In this way, we considered different patterns of correlations
between the leaves of the data generating model. For both correlation structures, we
generated N = 100 datasets with n = 1000 observations. Every data set was analysed
with the Jeffreys’ prior and with the robust g-prior using GMJMCMC with the same
tuning parameters as in Scenario 5 of the original article.

We appreciate the comment of Schwender and Ickstadt (2020) that for the higher
order interactions Ls and L4 the effect sizes are unrealistically large. However, as il-
lustrated by our sensitivity analysis, if one wants to have sufficient power do detect
more complex logic expressions with realistic effect sizes then one will need a much
larger sample size. This would be potentially feasible for real data analysis (by means
of simply collecting more observations) but not for a simulation study with hundreds
of simulation runs. In any case, our goal here is to show that correlated regressors are
not an impediment for our approach.

Table 1 summarizes the results of our simulations with correlated regressors. For the
first scenario with the general structure, correlations are ranging between 0 and 0.5 in
absolute values. Comparing the results with Table 2 from the original manuscript which
was based on independent regressors the differences are relatively small. Only for Ly,
there is a decrease in power, for Jeffreys’ prior from 0.89 to 0.66 and for the robust g-prior
from 0.9 to 0.66. On the other hand, the number of false positives increases for Jeffreys’
prior from 37 to 78 and for the robust g-prior from 28 to 73. It has to be expected that the
performance of logic regression becomes a little worse under correlation but GMJMCMC
is still behaving very well for the scenario with a general correlation structure. Jeffreys’
prior and robust g-prior perform almost equally well with only a very slight advantage
of the latter.
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General QTL

Jef. R.g Jef. R.g
Ly = X371 1.00 1.00 0.83 0.85
Lo = X5 A X 0.98 099 0.82 0.81
L3y = X7 A X192 A Xog 0.96 0.99 0.92 0.92
Ly=X4,ANX10NX17A X3 0.66 066 020 0.24
Overall Power 0.90 091 069 0.71
FP 0.78 0.73 202 2.01
FDR 0.13 0.13 0.39 0.38
WL 9 6 108 98

Table 1: Results for the additional simulation scenarios with correlated binary covariates.
Power for individual trees, overall power, the expected number of false positives (FP)
and FDR are compared for GMJMCMC using either Jeffreys’ prior or the robust g-
prior under the general correlation structure and the correlation structure from QTL
mapping with back-cross design.

The results in Table 1 for our second correlation structure from QTL mapping are
based on the strict definition that only discoveries of trees from the data-generating
model itself are counted as true positives. While there is some loss of power, the results
for the first three logic expressions are still quite satisfactory. Only for L4, the estimated
power becomes unacceptably low. At the same time, the number of false positives, as well
as the number of wrongly detected leaves, increases substantially. For QTL mapping, the
correlation between neighboring markers often is so strong, that it becomes extremely
difficult to distinguish between them. For that reason, in simulation studies for QTL-
mapping, one often takes the approach that the detection of a marker strongly correlated
with a QTL is still counted as a true positive. If we take such an approach and consider
markers within a range of 15 ¢cM as correct representatives of a leaf from the data
generating model then we get slightly better results. In particular, the number of wrong
leaves goes down from 108 to 50 for Jeffreys’ prior and from 98 to 58 for the robust g-
prior. Extending the window for defining true positives would further reduce the number
of wrongly detected leaves.

3 Prior related aspects

Clarte and Robert (2020) criticize several aspects of our choice of priors. We fully agree
that the use of improper priors is debatable and should be done with great care. We had
stated this explicitly already in the original article. From a theoretical point of view,
our preference would be mixtures of g-priors. As a representative, the robust g-prior
is implemented within our package. However, given the strong popularity of the BIC
criterion, we wanted to study the performance of this choice as well. Our description of
BIC as an approximation of the marginal likelihood under Jeffreys’ prior could indeed
have included a discussion of its weak points. As Clarte and Robert (2020) remark, the
good performance of the BIC choice is most likely connected with applying the Laplace
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approximation of the marginal likelihood. However, in the case of the Gaussian linear
model, the approximation is exact.

The main empirical point, though, is that in all our examples from the original
manuscript, the BIC measure as an approximation for the marginal density performed
better than the analytical expression under the robust g-prior, both in terms of eval-
uation metrics and speed. Under the correlated designs provided in this rejoinder, the
robust g-prior slightly outperforms Jeffreys’ prior in terms of evaluation metrics but
the BIC choice still performs rather well. Moreover, the running time of GMJMCMC
under Jeffreys’ prior (having all of the tuning parameters of the algorithm fixed) is still
significantly shorter.

Note that the main contributions of our approach are: a) introducing novel model
priors and b) a new search algorithm, whilst for the choice of the parameter priors and
the calculation of the marginal densities we are using already established procedures.
For example, our approach is fully compatible with integrated nested Laplace approx-
imations (INLA) (Rue et al., 2009) and all of the parameter priors available there can
be used. More generally, the R-package we have developed allows the users to easily
specify their own method of calculating the marginal likelihood (whatever they prefer
and/or what is available for their specific model: analytical integration, Monte Carlo
based approximation, or other approximations) for their own choice of parameter priors.
This flexibility allows extending the method easily to broader classes of logic regression
models. In Section 5, for instance, we describe an extension to latent Gaussian models
with both logic and non-logic covariates, where alternative types of parameter priors
are possible and the marginal likelihood is computed via integrated nested Laplace
approximations (INLA) (Rue et al., 2009).

Also note, that in both Bayarri et al. (2012) and Li and Clyde (2018), priors on
models are indirectly obtained through priors on the regression parameters. In our
approach, we include specific priors on model complexity as well. This is done via
equations (3) and (4) in the main paper. The theoretical properties of combining model
and parameter priors definitely require further distinguished research, which, we feel,
lies slightly outside the scope of this rejoinder.

4 Algorithmic aspects

Given that one of the main contributions of this manuscript was the development of the
GMJMCMC algorithm, it is no surprise that many comments of the discussants were
concerned with the algorithm. We will start with replying to some questions which are
simple to answer, then give a more detailed recap of the MJIMCMC algorithm (Hubin
and Storvik, 2018) and finally discuss some questions on the parameter settings of
GMJMCMC.

Ruczinski et al. (2020) wondered whether covariates which are not logic can be easily
combined with Boolean combinations in the model. The answer is yes. We will discuss
this extension in Section 5.2 and provide an example in the tutorial in Section 6.3.
Ruczinski et al. (2020) also suggested a simple two-stage approach where one first checks
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whether the covariates have any association with the response variable at all and one
only then applies logic regression. This is, of course, a viable approach which can be
easily adopted. In practice, this could save resources by avoiding to run computationally
costly inference on BLR.

Whilst Bogdan et al. (2020) are rather reserved with respect to the proposed algo-
rithm, we believe that most of their concerns are actually based on misunderstandings
of the algorithm and we are glad to have the opportunity to clarify some of these points.
The question of correlated regressors has been addressed in Section 2.1 of this rejoinder,
where we have seen that GMJMCMC works reasonably well even when regressors are
heavily dependent. Furthermore, Bogdan et al. (2020) were wondering about a lack of
treatment for tautologies. This can be easily addressed because, in fact, our implemen-
tation of GMJMCMC is taking care of Boolean equivalence already when generating
new trees. In particular, as we discuss in Section 2.3 of the paper, “for all three op-
erators it holds that if the newly generated tree is already present in Sy then it is not
considered for S¢y1 but rather a new replacement tree is proposed instead.” What we do
in practice is to check whether newly generated trees have correlation +1 with any tree
within S;, which for sufficiently large sample size will correspond to logic equivalence.
Consequently, tautologies within a GMJMCMC chain are simply not allowed.

Bogdan et al. (2020) also wonder why the sum in the denominator of (0.2) contains
only My, = 10000 models based on d trees from the final stage of the algorithm. This is
indeed one of the implemented options in our package (though My;,, does not have to be
10000). The reason for this choice is to avoid having either too large and/or too densely
filled hash tables (as a data structure), both of which become quite slow to handle.
Whilst this introduces some undesired limitations, it remains an important pragmatic
decision to make. The number of logic trees grows exponentially with the number of
leaves involved and the number of models grows exponentially with the number of logic
trees. Hence, even for the small examples with p = 50, the size of a hash table including
all visited models and their statistics can become prohibitively large to be used in
practice. That would be even more acute for larger p’s. As an alternative, one could use
the best Ny models from all T generations, where Ny is finite and of reasonable size.
But in this case, when the hash table is filled, the worst models must be deleted to allow
new ones to be included. In practice, this strategy would become extremely slow. One
has to read from, write to and delete from the almost full hash table, which will be also
very large. One would either have to create some novel hashing/dehashing functions
which make this approach efficient or devise an alternative data structure which is
especially designed for the problem at hand. Given the complexity of enumerating logic
expressions due to logic equivalence and due to the super-exponential growth of the
number of models with respect to the number of leaves involved, we would expect this
to be a ground breaking task in the field of algorithms and data structures.

Bogdan et al. (2020) raised the question of why we need MIJIMCMC for the final
population of GMJMCMC when for d = 15 full enumeration is feasible. The simple
answer is that for many applications one needs much larger d to obtain reliable results,
see for example the remark after Theorem 1 of Hubin et al. (2020a) and also Figure 1,
panel 3, from the sensitivity analysis of Hubin et al. (2020a). For larger d, a full enu-
meration will no longer be possible, whilst we would like to offer a generally functioning
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algorithm. Bogdan et al. (2020) additionally say: “Also, a huge random reduction of the
final model space leads to substantially different results for different parallel runs of the
algorithm. Therefore the authors aggregate results from different runs using a weighting
scheme specified in equation (15) of their paper. In our opinion it seems more reasonable
to estimate the posterior probabilities of different models simply by including all models
visited in different runs in denominator of (0.2).” We agree that in principle this is a
reasonable approach, which we, in fact, suggested in Section 2.3 of our paper. There,
however, we also discussed the drawback that this approach is computationally more
costly because one has to transfer a large amount of information from different models
between the cores. Finally, Bogdan et al. (2020) promote using synchronization between
the cores via priority queues. Whilst we find the idea interesting, we are a little sceptical
whether it would actually work. When compared to embarrassing parallelization, syn-
chronization between the processes in practice often slows down the inference instead of
speeding it up (Chai and Bose, 1993; Kukanov, 2008). There, of course, a lot depends
on the back-end used for implementation. We currently do not have the capacity to try
this approach ourselves, but we would like, by all means, to encourage Bogdan et al.
(2020) or other future researchers of BLR to test this idea. We would be very happy if
using synchronization via priority queues could lead to an objectively better and faster
inference algorithm for BLR than GMJMCMC.

4.1 Mode jumping Markov Chain Monte Carlo

Both Bogdan et al. (2020) and Clarte and Robert (2020) seem to be slightly confused
with respect to the MIMCMC algorithm (Hubin and Storvik, 2018), which we did not
describe in detail in Hubin et al. (2020a). We thus briefly discuss the main ideas of
MJMCMC to clarify certain misunderstandings.

In Hubin and Storvik (2018), a proper MCMC algorithm for the search through a
fixed limited model space was proposed. The algorithm deals with the multimodality
in the space of models through mode jumping proposals. The mode jumping MCMC
(MIMCMC) algorithm relies upon the idea of making smart moves between local ex-
trema with a reasonable frequency. Local MCMC is performed in the absolute majority
of steps. For the rest, a large move in the model space (which is likely to hit a model with
very low posterior probability) is made, followed by local optimization. The goal of the
latter step is to reach a local optimum in a different part of the model space. Then the
proposal is randomized around this optimum and the transition to the proposed model
is either accepted or rejected according to a Metropolis-Hastings acceptance probability.
The convergence properties of the suggested Markov chain is proven through a refine-
ment of the results of Tjelmeland and Hegstad (2001). Its limiting distribution is shown
to correspond to the marginal model posterior probabilities. Further extensions of the
algorithm allowing for parallel computing and using mixtures of proposals were also
suggested.

MJMCMC is described in more detail in Algorithm 1 below, where we consider
M = (m,...7p) to be associated with models in the given discrete model space Q (here
7v; € {0,1} indicates whether covariate z; is included in the model). We assume that
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marginal likelihoods p(Y|M) are available for a given M, and then use MJIMCMC to
explore p(M|Y’). By Bayes formula

(e
P = = e Y AP T) @)

In order to calculate p(M|Y") we have to iterate through the whole model space 2, which
becomes computationally infeasible for large p. The ordinary Monte Carlo estimate is
based on a number of MJMCMC samples M) i =1,... , W:

w
FOMIY) = o S 1000 = b)) — L p(u]y), 3)

i=1

where I(+) is the indicator function. An alternative named the renormalized model (RM)
estimate by Clyde et al. (2011), is

. _ p(Y|M)p(M)
P = 5o ampary ) W

where now V is the set of all models visited at least once during the MJMCMC
run. Assuming the Markov chain eventually will visit all possible models, also p(M|Y)
will converge to p(M]Y'). Note that this estimate also can utilize all models that are
visited, not only those that have been accepted. This answers the comment of Bogdan
et al. (2020), who presumed that we include only models accepted by MIMCMC into V.
Although both (4) and (3) are asymptotically consistent, (4) will often be the preferable
estimator since the convergence of the MCMC based approximation (3) is typically much
slower, see Clyde et al. (2011).

We now describe the MJMCMC algorithm in more detail. We aim at approximating
p(M|Y') by means of searching for some subspace V of Q which makes the approxima-
tion (4) as precise as possible. Models with high values of p(Y|M) are important to
be included. This means that modes and near modal values of marginal likelihoods are
particularly important for the construction of V C 2 and missing them can dramatically
influence our estimates. Note that these considerations are equally important for the
standard MCMC estimate (3). The main difference is that when using (3) the number
of times a specific model is visited is important, for (4) it is enough that a model is
visited at least once. In this context, the denominator of (4) becomes an extremely
relevant measure for the quality of the search. It should be as large as possible in order
to capture the probability mass from all the local optima of the posterior distribution,
whilst at the same time the size of V should be low in order to save computational
time.
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Algorithm 1 Mode jumping MCMC.

Generate a large jump Mg according to a proposal distribution ¢ (M| M).
Perform a local optimization, defined through M} ~ g, (M| Mg).

Perform a small randomization to generate the proposal M* ~ g, (M*|M}).
Generate backwards auxiliary variables My ~ q;(Mo|M*), My, ~ qo(My|My).
Put

M M*  with probability 7, (M, M*; My, M});
M  otherwise,

where

v (M, M*; My, M) = min {1 p(M*|y)qr (M| My) } 5

" p(M]y)gr(M*|My)

Algorithm 1 describes in detail the mode jumping step within the MJMCMC algo-
rithm. In the first step, a large change in the model space is made through the proposal
distribution ¢;. This will typically lead to a model with little support in the data, so in
step 2 a local optimization is performed in order to obtain a better model. Due to the
need for a proper Metropolis-Hastings probability derived through a backwards move
(step 4), a randomization, through g,., of the local optima is needed for the reverse move
back to the original model to be possible. Step 5 specifies the acceptance probability
which is shown in Hubin and Storvik (2018) to satisfy the detailed balance equation
with respect to p(M|Y).

Hopefully, this detailed discussion of MJMCMC fully resolves the confusion of Clarte
and Robert (2020), who, in their discussion, presume the following: “While we have not
read the refered article on MJMCMC' in detail, a first comment is that the name itself
is somewhat unsuitable, as indeed the algorithm does not sample from a distribution
but only explores its surface.” We would like to emphasize that the MJIMCMC is not
incorporating any of the ideas of Tabu search algorithms (Glover et al., 1995), which are
not allowing to return to the previously visited models. This should also clarify another
misleading presumption by Clarte and Robert (2020): “In a self-avoiding mode, keeping
track of all the previous states visited by the chain ensures that those states will never
be visited again. As we are in a discrete setting, this implies that once a mode has been
visited the algorithm is constrained to eventually visit another mode, even if the potential
between the modes is almost zero.”

Convergence of GMJMCMC

The MIJMCMC algorithm, in the setting of BLR, only gives convergence within each
of the restricted search spaces (populations) that it considers. We apply the MJMCMC
as an inner iteration within the GMJMCMC algorithm where the space of models is
dynamically modified. Given that the movement within and between the search spaces
is irreducible with respect to the whole model space, which is shown in Theorem 1 of
Hubin et al. (2020a), the GMIMCMC provides the estimates equivalent to (4). They also
converge towards the right model probabilities. This fully resolves another concern from
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Clarte and Robert (2020) who stated that the renormalized estimator of the marginal
posterior model probabilities “does not provide the theoretical security of (asymptotic)
unbiasedness that is attained with MCMC method.”

4.2 Parameter settings

The choice of the tuning parameters for the algorithm is definitely an important problem
as indicated by Ruczinski et al. (2020) and Clarte and Robert (2020). Whilst there is
not (and cannot be) any uniformly best choice of tuning parameters of GMIJMCMC, we
will try to briefly indicate some strategies allowing to manually choose reasonable values
of the most important tuning parameters of the algorithm. Regarding the choice of the
population size d and the maximal number of variables in a model k4., we give some
guidance in Remark 1 after Theorem 1 in Hubin et al. (2020a): “When d; > 0 (which is
the Ninit covariates with largest marginal inclusion probability in S1), some restrictions
on the possible search spaces are introduced. However, when d — dy > kpaz, any model
of mazximum size kpqp Will eventually be visited. If d — di < kmaqz, then every model of
size up to d — di plus some of the larger models will eventually be visited, although the
model space will get some additional constraints. In practice, it is more important that
d—dy > k*, where k* is the size of the true model. Unfortunately, neither k* nor dy are
known in advance, and one has to make reasonable choices of kpmar and d depending on
the problem one analyses.” Also, note that we provide some sensitivity analysis of d in
Section 3.1 of the main article.

Regarding the maximal depth of logic expressions C,,,4., one should use some prior
knowledge on the complexity of logic expressions. It also depends upon the individual
hypotheses the researcher has. At the same time, using unreasonably large Cinq. 1S
prohibitive computationally and also unrealistic in terms of power to detect too complex
trees.

When combining two Boolean expressions, first a decision is made whether it will
be combined through an and or an or operation (with P,,4 specifying the probability
for and) and thereafter a decision is made whether the logic not is applied to it (with
probability P,..:). In our experience, the actual values of these tuning parameters will
not influence the result very much with respect to finding the right expressions within
the equivalence classes. However, simpler expressions (within the equivalence classes)
are usually obtained when choosing somewhat larger P,,q and somewhat smaller P, ;.
We recommend the choice P,,q = 0.9 and P,,; = 0.1.

The tuning parameter p,,;, is used to determine which variables should be removed
from the current population with probability one minus the current approximation of
the marginal inclusion probability of these variables. p,,;, should be chosen in such a
way that it is on the one hand possible to get rid of unimportant trees, while at the same
time avoiding the deletion of potentially important trees. Concerning the question of
Ruczinski et al. (2020) on the choice of My, and T},q, and the resulting chain length,
we provided some guidance in Theorem A.l in Section A.2 of Hubin et al. (2020b).
There, we proved convergence guarantees also for fixed 17,4, and My;, when increasing
the number of parallel chains of GMJMCMC. Thus, apparently, there exists a natural
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trade off: the more chains one can afford running in parallel the fewer resources could
be used within each chain and vice versa — the less parallel chains one runs — the larger
Tinaxr and My, are required.

The choice of the tuning parameters for the examples from Hubin et al. (2020a) are
provided in Section A.1 of Hubin et al. (2020b). These values might be considered for
problems of similar dimensionality, effect sizes and correlations between covariates. At
the same time, we cannot provide a strict stopping criterion for GMJMCMC or a general
rule for the choice of its parameters. Experimental tuning for different applications might
be beneficial. If one has enough computational resources, grid search or an adaptation
of Bayesian optimization for the tuning parameters of GMJMCMC (Snoek et al., 2012)
can be considered. Alternatively, one might consider some kind of adaptive learning
of the algorithm’s tuning parameters similarly to Hubin (2019). More details on these
possibilities are beyond the scope of this rejoinder.

5 Various extensions of BLR and GMJMCMC

In this section, we briefly present extensions of the logic regression model. Some of these
extensions are further discussed in the tutorial of Section 6 of the rejoinder. A more
detailed description of the proposed extensions, including theoretical support and real
applications, are material for a future publication.

5.1 Predictions with BLR

As mentioned in the discussion section of Hubin et al. (2020a), our method is directly
applicable to prediction as well. In particular, the standard Bayesian model averaging
can be easily applied. Thus, one can approximate the posterior probability of some
parameter/variable A via model averaging by

PAIY) = p(A| MY)H(M |Y), (6)
MeV

where A might be, for example, the predictor of unobserved data based on a specific
set of covariates. Given estimates of model posterior probabilities, other prediction pro-
cedures such as the median probability model (Barbieri and Berger, 2004) or the most
probable model can be also easily adopted, yielding:

ﬁ(A|Y)=p(A|M*7Y), (7)

where M™ is the selected median probability or the most probable a posteriori model.

5.2 BLR with non-binary covariates

Responding to a question from Ruczinski et al. (2020), we can allow non-binary fixed
effects to be included in the model. For this extension, we simply replace equation (2)
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in Hubin et al. (2020a) with:

q+q’

q
h(n(X)=a+Y> wBiLi+ > YiBizji-a (8)

=1 j=q+1
where z;,1 € {1,...,¢'} are non-binary covariates which are not allowed to form logic

expressions. In this formulation of the Bayesian logic regression, the model includes g+¢’
possible components. The priors on the additional components v;,j € {¢+1,...,¢+¢'}
are of form (4) from Hubin et al. (2020a) with ¢(z;_4) = 1,5 € {¢+1,...,¢+¢'}. This
results in the following joint model prior:

! q
p(M) x azj’iwl 5! H aicLi), (9)

Jj=1

In terms of model inference, the GMJMCMC is adopted, where modifications, mutations
and reductions are only allowed for the Boolean terms.

5.3 BLR with non-binary covariates and latent Gaussian variables

We also mentioned in Hubin et al. (2020a) that it is straight-forward to extend our
approach for generalized linear mixed models. Here, we will formally describe this ex-
tension by including both fixed effects for non-binary covariates and latent Gaussian
variables, which can be used to model correlation structures between observations (in
space and time) and over-dispersion. For this extension, we further update equation (8),

q+q

q T
h(n(X)=B0+ > wBiLi+ > ViBizi-a+ Y Ok, (10)
j=1 k=1

Jj=q+1

where 2,1 € {1,...,¢'} are non-binary covariates which are not allowed to form logic
expressions and 0k = (01k,...,0nk) ~ Np (0,3y) are latent Gaussian variables. The
latent Gaussian variables with covariance matrices X, allow to model different correla-
tion structures between individual observations (e.g. auto-regressive models or various
other spatio-temporal models). The matrices typically depend only on a few parameters,
so that in practice one has Xy = 3y (v,). Whilst the model priors (9) are still valid,
parameter priors here need to be adjusted as

ﬁh’ ~ pr (07 Ipweiwﬁ"’ )7 (11)
Yy ~ (). (12)

Here, all kind of hyper-parameters of priors compatible with INLA (Rue et al., 2009)
can in principle be chosen. This allows to efficiently compute the marginal likelihoods
of individual models using the INLA approach (Rue et al., 2009; Hubin and Storvik,
2016).
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6 A tutorial on GMJMCMC for BLR

Finally, we provide a brief tutorial on how to apply our approach in practice. Our code
should be run under Linux. One would need to incorporate some sort of extra hacks
(see https://bit.1ly/37t£3cm) to be able to run the code under Windows (due to the
limitations of the standard parallel::mclapply R function which is applied within the
library).

6.1 Installing the packages

We start by preparing the R environment for running our approach to BLR. The R-
script below will install all packages that are needed to run the code. Depending on
which R packages you have already installed, running this script might take a while.
Then we install the EMJMCMC package from GitHub.

1 BRFERARARAK KA KA AR K TARAR AT ATARA A TAKAR AR KA KA AR A TARARA I A TAR AR KKK
2 # install all packages which will be needed for the EMJMCMC package

3 source("https://raw.githubusercontent.com/aliaksah/EMJMCMC2016/master/
14+ R/load_dependencies/loaddeps.R")

B HRAKAKARAAAARA KA A KA KA A A AA R A A KA AAIA A A A A AR A A A KA AR
¢ # (currently works only under Linux)

7 install.packages("https://github.com/aliaksah/EMJMCMC2016/blob/master/
8 EMJMCMC_1.4.2_R_x86_64-pc-linux-gnu.tar.gz?rawv=true",

9 repos = NULL, type="source")

10 HRKARAAKAK AR AA KA AT A A KA A A A A A A A A KA A A AR A A A KA KA A A KA KK

One might want to restart R before proceeding to have a clean environment. After
having the package installed we can load EMJMCMC.

1 FEA Ao oo e e e e e e e KK e He A A A A A A A A A A e e e e e A HeHe HeHeFe Ao e e e e e e e e e e e e A A A Ak o
2 # load the EMJMCMC package

s library(EMJMCMC)
4 BERREAAAAAAFAAAAAAAAFAAAAAAAAAAAIAAAAAAAAAAAAAAAAAAAAAAAAAAAAHAAAA K

Additionally, we will need the following three packages for the tutorial, which you might
have to install from CRAN.

1 BRRRARRIAAAAKFAAAAKFAA A AAA A FAA A AAA AR FAA A TAAA AR FAA AN FA AN FAA AN H K
2 # load other packages needed to stmulate and tllustrate data

3 # 1f nmnecessary these packages first have to be installed from CRAN

14 library(clusterGeneration)

5 library(bindata)

6 library(ggplot2)
7 FE oK o e e o e e o e o o e o e e e e e ok e S e e o o e o e e o e e o e e o e e e e o e e o e e o e e ok e o e e o K ok e o ok ko ok Kk K
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6.2 Running BLR with weakly correlated covariates

We first generate some binary data with the general correlation structure from the first
scenario of the simulation study above.

1 FE K o K K K K o K K K K K K K K K K K K K K K K K S K K K K K K K K K K K K K K K K K K K K K K K K 3K K K K K K K K K K K K K K K K ok K
2 # set the seed

3 set.seed (040590)

4 # construct a correlation matrixz for M = 50 wvariables

5 M = 50

¢ m = clusterGeneration::rcorrmatrix(M,alphad=2.5)

7 # simulate 1000 binary wvariables with this correlation matriz

s X = bindata::rmvbin(1000, margprob = rep(0.5,M), bincorr = m)

9 FEo KKK A A KA A KKK A KK KA KK KA KA KK A A KA A KA A KK KA KKK A KKK A KA A KA A KA AN KKK

The following code generates the heat-map of Figure 1 which illustrates the non-trivial
correlations of the simulated binary variables.

1 BERRARAAFAAAAAAAA A AAA A TAAA A AFAA A A A A A A AAA A FAA A TAAA A FAA A AN FHe K
2 # prepare the correlation matrixz in the melted format

3 melted_cormat = reshape2::melt(cor(X))

4+ # plot the heat-map of the correlations

5  ggplot2::ggplot(data = melted_cormat,

¢ ggplot2::aes(x=Varl, y=Var2, fill=value)) +

7 ggplot2: :geom_tile() +

s ggplot2: :theme(axis.title.x = ggplot2::element_blank(),
9 axis.title.y = ggplot2::element_blank(),
10 axis.text.x = ggplot2::element_blank())

11 FEo KA KA KA AR A A KA KK A A KKK A KKK A KA A A KKK A KKK A KA KA KK AR KKK KKK KKK KKK

Next, we simulate the responses according to Scenario 4 from Hubin et al. (2020a), but
with correlated binary covariates.

1 FERRAAAAAAA A KA A A A A e A A e A A e H A A e e F A e F A A e HeF A e S F A A e A A e S HH
2 # simulate Gaussian responses from a model with two-way interactions
3 # which is constdered in S.4 of the paper

4+ df = data.frame(X)

5 df$Y=rnorm(n = 1000,mean = 1+1.43*(df$X5+xdf$X9)+

6 0.89% (df$X8*df$X11)+0 .7+ (df$X1+xdf$X4) ,sd = 1)

T FERARRAAA A A AN AR A A e H A A e e F A A e A A e e F A e A A e e F A A e A A e S F A A A A e K

Before performing logic regression with GMJMCMC one might like to have a look at
the documentation of the R function LogicRegr:

1 BERREARARAA AR AR AAARAK AT AR AR AKA AR A AT AR A RAK AT AR AR AAAK AR H
2 help("LogicRegr")
3 BRARARARAAAAR AN AR AR AR AN A AR AR A KA AR R RAK AT AR AR AHA AR ARA KA A KKK
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The following code runs inference on BLR with 32 parallel threads of GMJMCMC,
where we are first using the robust g-prior and then Jeffreys’ prior. Depending on the
cluster each of these might run for some time from several minutes to more than half
an hour. If you are running the code on a home PC or a laptop, please reduce ncores
parameter to something reasonable for your machine (e.g. set ncores = 3).

10

11

12

13

A A A A A A A FA A SAEAHFA A A S FE A FA A A S Fe A S F A A HAE A S F A A A F A A K
# specify the initial formula
formulal = as.formula(paste(colnames(df) [M+1],"” 1 + ",
pasteO(colnames(df) [-c(M+1)],collapse = "+")))
FERAAAAAFAATAAAFAAFAA AN FAATAA A A FAATAAAAAAFAA AN AN FAA A A AN FA A H K
# Bayesian logic regression with the robust-g-prior
res4G = LogicRegr(formula = formulal, data = df,
family = "Gaussian", prior = "G", report.level = 0.5,
d = 15,cmax = 2,kmax = 15, p.and = 0.9, p.not = 0.1, p.surv = 0.2,
ncores = 32)
FEAAFAAAAAAAAAFAATAAAAAHAAA A A A A A A A A A A A A A HAE A A FA A AN F A A K
# Bayesian logic regression with the Jeffreys prior
res4J = LogicRegr(formula = formulal, data = df,
family = "Gaussian", prior = "J", report.level
d = 15, cmax = 2,kmax = 15, p.and = 0.9, p.not
ncores = 32)
A A A A A A A A A S FE A e F AT S Fe A H A A A A e Fe A e F A A HAe A S He A S F A A A S F A A K

0.5,
0.1, p.surv = 0.2,

We obtain the following results using the robust g-prior:

FEHHKA KK AAFKA KA FATA I KA AT FFAKAAAI K AFA I AFAK AT AAKA KA AN

# print the results for the robust g-prior

print(base: :rbind(c("expressions","probabilities") ,res4G$feat.stat))
[,1] [,2]

[1,] "expressions" "probabilities"

[2,] "ICCXB))&((X9))H" "1

[3,1 "I(CEXDHI&((X4)))>" "1

[4,] "T(C(X11))&((X8)))" "0.999999645314492"

FE ok ok o e o e o o e o o e o e e o e e o e S e e o o e o e e o e o o e o e e o e o o e o e e o o e o e o o e o ok e o e ke ok o e ok ok ok K

and rather similar results with the Jeffreys’ prior:

FHAAAACA A A A A A A A F A A A A A A AA A A A A KA A A A AAHH A A A A K

#print the results for the Jeffreys prior

print(base: :rbind(c("expressions","probabilities") ,res4J$feat.stat))
[,1] [,2]

[1,] "expressions" "probabilities"

[2,] "I(C(X11))&((X8)))" "0.999999774980675"

[3,1 "I(CX1))&((X4)))" "0.999999520871822"

[4,] "I(((X5))&((X9)))" "0.999873046960372"

P I I N I I O L T T T 1 A2 23

327



328 Rejoinder

6.3 Additional non-binary fixed effects and predictions

Ruczinski et al. (2020) asked whether it would be possible to include covariates in
the model which are not a part of the logic expressions. Furthermore, Schwender and
Ickstadt (2020) are interested in whether the model can be easily used for predictions.
These options are currently not implemented in the LogicRegr function, which we
would like to keep as simple as possible. At the same time, these tasks can be easily
performed by a general call of the EMJMCMC::pinferunemjmcmc function which
is available in our package. This routine is however much more advanced and requires,
at this time, expert knowledge to be used.

First, we will generate an additional Poisson distributed covariate age which is then
used as an additional additive effect in the data generating logic regression model. For
the sake of brevity we perform the analysis here only with Jeffreys’ prior.

1 BRI A AAAAAAA A A e e e e HHHH A A A A A A A A A e e A AAAAA A A A A K K K
2 # simulate Gaussian responses from a model with two-way interactions
3 # and an age effect which is an extension of S.4 of the paper

+ Xp = data.frame(X)

s  Xp$age = rpois(1000,lambda = 34)

¢  Xp$Y=rnorm(n = 1000,mean = 1+0.7*(Xp$X1*Xp$X4) +

7 0.89% (Xp$X8*+Xp$X11)+1 .43+ (Xp$X5+Xp$X9) + 2*XpSage, sd = 1)

8 FERRAAAAAAAA A K e e e A A A A A A A A A A A e e e e e e e e He H A A A A A A A A A A e e e e e e A A A A A A A A K

We will not only perform model inference but also show how to make predictions with
the EMJMCMC' package. To this end, we will randomly divide the data into a training
set (900 observations) and a testing set (100 observations).

1 BERRARAKAAARARA AR AT A A A A A A A A A A A A A A A A A A AR A AR A KK
> teid = sample.int(size =100,n = 1000,replace = F)

3 test = Xplteid,]

4+ train = Xp[-teid,]

5 BRRFKRAIAI AR AR A AT AR AR AR AR AR AR AR AR AR AR AR ARAR AR AR AR AR AR AR ARAR AR AR AR AKAK

The function pinferunemjimemec has more capabilities than performing logic regres-
sion. First, one might want to see its arguments:

1 FE K o e o e o e o e e e e e o e o e e e o e o e o e o e o e o e o e o e o e o e o e o e o e o e o e e e o e o e o e o e o e ok e ok e ok K ok

2 help("pinferunemjmcmc")
3 BRRARARARARARARARARARARARAR AR AR KA KA KKK AR KRR A A AT AT A AR A KA K

The following call of pinferunemgjmcmec performs logic regression using 30 cores. Note
that the non-binary covariate is not a part of the formula passed to the function, but is
rather specified through runemjmeme.params$latnames = “I(age)”. Also, one might
expect this to run slightly longer than previous examples, particularly because keeping
track of the (3 coefficients for prediction takes some additional time. Further, many of
the input options used are explained in the help pages of pinferunemjmeme. If one
is not interested in predictions, runemjmecmec.params$save.beta = F, predict = F and
test.data = NULL should be set (this will decrease inference time for the same training
data sample and other tuning parameters fixed).
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10

11

12

13

14

15

16

17

18

19

23

24

25

26

27

28

29

30

31

T K A A A A A A A A A A A A A A A A A A A A A A A A A e A A A A A A A A A A A KA A A K
# specify the link function
g = function(x) x
T KK oA A A A A A A A A A H e A A A A A A A A A A A e A A A A A A A A K KA A A K
# specify the parameters of the custom estimator function
estimator.args = list(data = train, n = dim(train) [1],
m =stri_count_fixed(as.character(formulal) [3],"+"),k.max = 15)
FE oK K e o e K o 3 K 3 K K K K K 3k K I K K K e K K K 3 K 3 K K K 3k K 3 e K oK K 3k K K K K K K 3 K K K K K K K K K K K 3k ok
# specify the parameters of gmjmcmc algorithm
gmjmcmc.params = list(allow_offsprings=1,mutation_rate = 250,
last.mutation=10000, max.tree.size = 5, Nvars.max =15,
p-allow.replace=0.9,p.allow.tree=0.01,p.nor=0.01,p.and = 0.9)
T A A H A KK A A A A KKK A A A A HHH A A A A A KK A A A A KK H A A A A KKK A A A KKK K
# specify some advenced parameters of mjmcmc
mjmcmc.params = list(max.N.glob=10, min.N.glob=5, max.N=3, min.N=1,
printable = F)
T A A AF AR KA A A A A KKK A A A A KK H A A A A KK A A A A KK HH A A A A KKK A A A KKK KK
# Tun the inference of BLR with a non-binary covariate and predicions
res.alt = pinferunemjmcmc(n.cores = 30, report.level = 0.2,
num.mod.best = 100,simplify = T,predict = T,test.data = test,
link.function = g,
runemjmcmc.params = list(formula = formulal,latnames = c("I(age)"),
data = train,estimator = estimate.logic.lm.jef,
estimator.args =estimator.args,
recalc_margin = 249, save.beta = T,interact = T,outgraphs=F,
interact.param = gmjmcmc.params,
n.models = 10000,unique = T,max.cpu = 4,max.cpu.glob = 4,
create.table = F,create.hash = T,pseudo.paral = T,burn.in = 100,
print.freq = 1000,
advanced.param = mjmcmc.params))
T K e A A A A A A A A A KA A A A A HHHe e A A A A KA A A A KA He A A A A KA A A A HHH K

Below, a list of the logic expressions and non-logic covariates that were found to be of
importance is listed. There, we clearly see that all features from the data-generative
model are detected without any false positive discoveries.

FE oK K o e o e o e e o e o o o o o e K e e o e o o e o K o K o e o e K o o K o e o ok K o oK oK K o ok K ok ok ok ok kK

print(base: :rbind(c("expressions","probabilities"),res.alt$feat.stat))

[,1] [,2]
[1,] "expressions" "probabilities"
[2,] "I(((X8))&((X9)))>" "1
[3,] "I(aged)" "0.999999999999998"

[4,] "ICCX11))&((X8)))" "0.999999990458405"
[5,1 "ICCEXL&((X4)))"  "0.99999997999928"
FEK KA KA A KKK KK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK KKK
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To assess the quality of prediction we use two criteria, RMSE = \/ ny S (171* —-Y*)?

and MAE = n 1 707, |Y;* — Y;*|, where Y;* are responses in the test data, Y;* are model
averaged predictions of them, and n, is the size of the test data set.

1 BERREIARAR AR A I ARARAI A AR AR AN KA AR A KA AR AR A A AR AKAR KA KA K
> print(sqrt(mean((res.alt$predictions-test$Y) "2)))

3 [1] "0.8835489"

1+ print(mean(abs((res.alt$predictions-test$Y))))

[1] "0.6904736"

6 FE K o e e o e e e e e o e e e e e e e o e e e e e e e e o e o e e o e e o e e o e e e e o o e o e e o ok e o e e ok e ke ok e o ok ek ok KK

o

We want to compare the performance of BLR in this example with a simple standard ap-
proach, namely ridge regression (Zou and Hastie, 2005), combined with model selection
according to AIC. In the script below, we run ridge regression and perform prediction
on the test data set.

L BRARAFIFIARAR A A AR AR A AR AR AR KA AR AR KA AR AR A AR AR AR AHA KA AR KK
2 library(HDeconometrics)

3 ridge = ic.glmnet(x = train[,-51],y=train$¥,family = "gaussian",

4+ alpha = 0)

5 predict.ridge = predict(ridge$glmnet,newx = as.matrix(test[,-51]),

¢ type = "response")[,which(ridge$glmnet$lambda == ridge$lambda)]

7 print(sqrt(mean((predict.ridge-test$Y) "2)))

8 [1] "1.061406"

9 print(mean(abs((predict.ridge-test$Y))))

10 [1] "0.865467"

11 FE ke o e e o e o o e o e e o e e o e e o e o e e o e e o e o e e o o e o e e o e e o e o e e o e e ok e o o ke o ok e ok e e ok e o ok K ok K ok

We finally compute the evaluation metrics for prediction based on the expectations of
the data-generative (true) model for the test data:

L BREARARAKAAKARARAATARARIATAARAA AR AR AR TAK AR AR TA AR AR TA AR AR FAK AR AR KK
2 tmean = 1+2+test$age+0.7x(test$X1lxtest$X4) +

3 0.89%(test$X8*test$X11)+1.43* (test$Xb*test$X9)

4+ print(sqrt(mean((tmean - test$Y¥)~"2)))

5 [1] "0.8671786"

¢ print(mean(abs((tmean - test$Y¥))))

7 [1] "0.6850737"

8 FEA A A KA A A A KA A A KA K A A A K A KA A A A A KA KA F A KA A A KA A A KA KA F A KA KKK

We clearly see that for this specific example logic regression significantly outperforms the
ridge regression baseline with respect to both RMSE and MAE. This is not surprising
given that the data generative process has multiple non-linear effects. Moreover, the
predictions obtained by the BLR model are extremely close to the predictions from the
means of the data generative model.
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7 Comparison with other approaches

Several other approaches were mentioned by the discussants. Ruczinski et al. (2020)
mentioned that simulated annealing for logic regression could be equipped with a pe-
nalized likelihood criterion following from the priors used in our setting. Schwender and
Ickstadt (2020) pointed out certain similarities of GMJMCMC with Genetic Program-
ming for Association Studies as well as logic Feature Selection. Bogdan et al. (2020)
mentioned the recently developed non-reversible MCMC algorithms as well as parallel
tempering MCMC algorithms. It would be most interesting to compare all these differ-
ent algorithms with GMJMCMC but we believe this would need substantial additional
effort and goes far beyond the scope of this rejoinder. We leave these possibilities open
as topics for further research.

8 Conclusions

We would like to thank once again all of the discussants for their valuable and insightful
feedback. We are happy to have provoked so many questions, comments and remarks.
We hope that we managed to shed light on the majority of them in this rejoinder.
Moreover, we provided some useful extension of Bayesian logic regression method here.
The discussions also motivate multiple directions for further research, which are outside
the scope of this rejoinder. However, we hope this research will be in future performed
in close collaboration with the discussants.
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