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Implicit Copulas from Bayesian Regularized
Regression Smoothers

Nadja Klein∗ and Michael Stanley Smith†

Abstract. We show how to extract the implicit copula of a response vector from a
Bayesian regularized regression smoother with Gaussian disturbances. The copula
can be used to compare smoothers that employ different shrinkage priors and func-
tion bases. We illustrate with three popular choices of shrinkage priors—a pairwise
prior, the horseshoe prior and a g prior augmented with a point mass as employed
for Bayesian variable selection—and both univariate and multivariate function
bases. The implicit copulas are high-dimensional, have flexible dependence struc-
tures that are far from that of a Gaussian copula, and are unavailable in closed
form. However, we show how they can be evaluated by first constructing a Gaus-
sian copula conditional on the regularization parameters, and then integrating over
these. Combined with non-parametric margins the regularized smoothers can be
used to model the distribution of non-Gaussian univariate responses conditional
on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating
the copula are given for this case. Using both simulated and real data, we show
how such copula smoothing models can improve the quality of resulting function
estimates and predictive distributions.

Keywords: distributional regression, horseshoe prior, penalized splines, radial
basis, regression splines.

1 Introduction

A popular way to estimate a smooth unknown function from noisy data is to approxi-
mate it with a linear combination of basis functions in a regression with coefficients that
are regularized (Ruppert et al., 2003). We refer to such an approximation as a regularized
regression smoother. In a Bayesian context, the regularization term arises from adopt-
ing a shrinkage prior for the coefficients. When the response is Gaussian, conditional
on the signal, it is common to adopt a conditionally Gaussian shrinkage prior. Exam-
ples include (but are not limited to) the pairwise priors of penalized splines (Lang and
Brezger, 2004), the horseshoe prior (Carvalho and Polson, 2010), and Bayesian variable
selection priors (Clyde and George, 2004). In this paper we show how to extract the ‘im-
plicit copula’ of the distribution of a response vector from such a regularized regression
smoother. This captures the dependence structure between the elements of the vector.
It can be used to compare the smoothing properties of different combinations of priors
and function bases. Moreover, it can also be combined with non-parametric marginal
distributions to create new regularized regression smoothers for non-Gaussian data. We
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call these ‘copula smoothers’, and they have exactly the same dependence structure as
that of the original smoother, but are substantially more flexible. As such, they pro-
vide an alternative approach to semi-parametric distributional regression (Rigby and
Stasinopoulos, 2005; Klein et al., 2015; Wood et al., 2016) for a univariate response.

An implicit copula—also called an ‘inversion copula’ by Smith and Maneesoonthorn
(2018)—is constructed from a random vector Z̃ with distribution function FZ̃ , by in-
verting the usual expression of Sklar’s theorem; see Nelson (2006, Section 3.1). For
example, the simplest implicit copula is the Gaussian copula, which is obtained when
FZ̃ is Gaussian (Song, 2000). In this paper, Z̃|x is a vector of observations on the re-
sponse from a regularized regression model, where x are the observed covariate values.
If the joint and marginal distribution functions are FZ̃(z̃|x) and FZ̃i

(z̃i|x), respectively,
and u = (u1, . . . , un)

′, then the resulting implicit copula function for n observations is

Cπ(u|x) = FZ̃

(
F−1

Z̃1
(u1|x), . . . , F−1

Z̃n
(un|x)|x

)
, (1)

which is itself a function of x. Throughout the paper we refer to Z̃ as a vector of
observations on a ‘pseudo-response’, because it is not observed directly.

To construct our copula, we first derive the implicit copula of Z̃|x with the basis
coefficients integrated out, but conditional on the regularization parameters. This is a
Gaussian copula with a correlation matrix that is a function of x and the regularization
parameters. The latter can include parameters that allow the basis to be of varying
dimension. We then integrate over the distribution of the regularization parameters,
denoted as π, to obtain the desired implicit copula Cπ of the regularized regression
smoother, which is unavailable in closed form. In a Bayesian context, the integration can
be done with respect to either the prior or posterior of the regularization parameters. In
either case, we stress here that the resulting implicit copula has a dependence structure
that is very different from that of a Gaussian copula – something we illustrate in our
empirical work. The implicit copula density can be expressed as an integral that can be
computed readily using Bayesian methods – even when the dimension of the copula is
high. This approach greatly simplifies computation of the implicit copula compared to
direct evaluation of (1) as suggested by Smith and Maneesoonthorn (2018).

Three shrinkage priors for the basis coefficients are considered in detail: an autore-
gressive prior, a horseshoe prior and a g prior augmented with point mass. These are
combined with a number of matching bases, including B-spline, augmented Fourier and
regression spline bases for univariate functions, and additive or radial bases for multi-
variate functions. We show how to compute dependence metrics (such as Spearman’s
rho or quantile dependence) between the response variable at two different covariate
values. Varying these covariate values produces a surface of dependence metric values
that characterize the level of smoothing of the regression smoother. Different combi-
nations of shrinkage prior and basis result in large differences between these surfaces.
The surfaces provide a tool for comparing the level of smoothing from the different
regularized regressions, which is otherwise difficult.

The proposed implicit copula is used to model the dependence between the elements
of a vector of response values Y = (Y1, . . . , Yn)

′, conditional on the covariate values x.
The margin FY of Yi is modeled non-parametrically, while all regression smoothing is
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through the copula function Cπ(u|x) only, which is why we call it a copula smoother.
For this case, efficient Markov chain Monte Carlo (MCMC) schemes to estimate the
posteriors are outlined for each choice of shrinkage prior. We show how to estimate the
regression function, which is the expectation of Yi conditional on the covariate values x.
We also show how to compute the Bayesian predictive density of Yi conditional on x.
A simulation study illustrates the effectiveness of the copula smoother for function and
predictive density estimation.

The approach can be extended to multiple covariates in two ways. First, we construct
the implicit copula of an additive regularized regression smoother for Z̃i. However, the
copula smoother for response Yi that uses this copula is not additive in the covariates.
Therefore, the usual partial residuals (Hastie and Tibshirani, 1990) cannot be computed,
and we show how to compute both function estimates and partial residuals on the
domain of the pseudo-response instead. To illustrate, the model is applied to the widely
studied Boston housing data. The copula smoother captures the non-Gaussian marginal
distribution, increasing accuracy of the predictive density. Our second approach, is to
construct the implicit copula when using a radial basis for the mean of Z̃i. We show how
to do this in Part A of the Supplementary Material to this paper (Klein and Smith,
2018), and apply it to an example with n = 11,375 observations, demonstrating the
viability of using the copula smoother when the n-dimensional implicit copula is of high
dimension.

The rest of this paper is structured as follows. Section 2 outlines the implicit copula;
both in general and for the three regularization priors considered in detail. Section 3
employs the proposed copula with arbitrary margins to construct a copula smoother for
non-Gaussian data. Section 4 contains the simulation study. Section 5 extends our copula
to additive bases, and illustrates using the Boston housing data. Section 6 concludes.
The Supplementary Materials contain extensive additional material, including tables
and figures referred to in the text with prefix ‘S’.

2 Implicit Copula

In this section, we explain our approach for constructing the copula of a regularized
regression model for the pseudo-response with a single covariate. It is extended to the
case of multiple covariates in Section 5 and Part A of the Supplementary Material.

2.1 The General Idea

Consider the regression model

Z̃i = m̃(xi) + εi, for i = 1, . . . , n (2)

for a pseudo-response Z̃i, where m̃ is an unknown univariate function, xi is a covariate
value, and εi is distributed independently N(0, σ2). It is popular to model m̃ as a linear
combination of p basis functions b1, . . . , bp, so that m̃(x) =

∑p
j=1 βjbj(x). In this case,

(2) can be rewritten as the linear model

Z̃ = Bβ + ε, (3)
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for Z̃ = (Z̃1, . . . , Z̃n)
′ ∈ Rn, with ε ∼ N(0, σ2I). The (n × p) design matrix B has ith

row b′i = (b1(xi), . . . , bp(xi)) evaluated at xi. There are many bases used in practice, and
we consider three common choices here: regression splines, B-splines and an augmented
Fourier basis.

In the Bayesian literature, priors are employed on β = (β1, . . . , βp)
′ to allow for

a data-driven level of shrinkage to provide a smooth, but flexible, estimate of m̃. We
follow this approach and employ the prior

β|x, σ2,θ,γ ∼ N(0, σ2P (θ)−1), (4)

where the precision matrix P (θ) is of full rank. The parameters θ are shrinkage param-
eters, while γ are further parameters that allow for the basis to be of varying dimension
(which we discuss later). The matrix P may also be a function of the covariate vec-
tor x = (x1, . . . , xn)

′. In Section 2.2 we consider three different priors of this form.
Conditional on (x, σ2,θ,γ), β can be integrated out to give

Z̃|x, σ2,θ,γ ∼ N(0, σ2(I −BΩB′)−1), (5)

with Ω = (B′B+P (θ))−1. Application of the Woodbury formula gives (I−BΩB′)−1 =
I +BP (θ)−1B′, with ith diagonal element equal to 1 + b′iP (θ)−1bi. Therefore, the ith
margin of this distribution is Z̃i|x, σ2,θ,γ ∼ N(0, σ2(1 + b′iP (θ)−1bi)).

The copula of the distribution at (5) is called a Gaussian copula (Song, 2000), and is
constructed by standardizing the distribution to have zero mean and unit variances. To
do so here, we set Z = σ−1S(x,θ,γ)Z̃, where S(x,θ,γ) = diag(s1, . . . , sn) is a diagonal

scaling matrix with elements si =
[
1 + b′iP (θ)−1bi

]−1/2
. With this standardization, the

regression at (2) can be rewritten as

Zi = m(xi) +
si
σ
εi, (6)

where m(xi) = (si/σ)b
′
iβ and both si and bi are functions of xi. The conditional

distribution of the standardized vector Z = (Z1, . . . , Zn)
′ is then

Z|x,β, σ2,θ,γ ∼ N

(
S(x,θ,γ)

σ
Bβ, S(x,θ,γ)S(x,θ,γ)′

)
. (7)

Integrating out β as before, gives the unconditional (on β) distribution of Z, which we
summarize in the following Theorem.

Theorem 1. Let Z̃ follow the linear model at (3), with the prior for β as given at (4).
Then:

(i) The joint distribution Z|x, σ2,θ,γ ∼ N (0, R(x,θ,γ)) with

R(x,θ,γ) = S(x,θ,γ)(I −BΩB′)−1S(x,θ,γ)′. (8)

(ii) The marginal distributions Zi|x, σ2,θ,γ ∼ N(0, 1) for i = 1, . . . , n.
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(iii) The copulas of Z̃ and Z, conditional on (x,θ,γ), are both the same Gaussian cop-
ula with copula function C(u|x,θ,γ) = Φn

(
Φ−1

1 (u1), . . . ,Φ
−1
1 (un);0, R(x,θ,γ)

)
,

where u = (u1, . . . , un)
′, while Φn(·;0, R) and Φ1 are the distribution functions

of Nn(0, R) and N(0, 1) distributions, respectively.

(iv) The corresponding copula density is

c(u|x,θ,γ) = p(z|x, σ2,θ,γ)∏n
i=1 p(zi|x, σ2,θ,γ)

=
φn(z;0, R(x,θ,γ))∏n

i=1 φ1(zi)
, (9)

where zi = Φ−1
1 (ui), z = (z1, . . . , zn)

′ and φn(·;0, R) and φ1 are the densities of
Nn(0, R) and N(0, 1) distributions, respectively.

We make four observations concerning Theorem 1 above. First, σ2 does not feature
in the expression for the copula function or density and is therefore unidentified, so
that we simply set it to 1 throughout the rest of the paper. This is because the copula
is invariant to the scale of Zi. Second, if a non-conjugate prior is used for β|x,θ,γ,
then the implicit copula above would not be a Gaussian copula. Third, if an improper
prior is employed for β—such as those popular in the Bayesian spline literature (Lang
and Brezger, 2004)—then the distribution Z|x,θ,γ is also improper, and the copula is
undefined. Therefore, we only employ strictly proper priors here. Last, while the copula
is n-dimensional, the matrix R at (8) is a parsimonious function of (θ,γ). In the next
subsection we give expressions for R for the three shrinkage priors considered in detail.

While the copula at (9) is Gaussian, mixing over the distribution π(θ,γ) results in a
non-Gaussian copula that cannot in general be expressed in closed form, as summarized
in the following corollary.

Corollary 1. If Z̃ follows the linear model at (3), with the prior for β given at (4),
and π(θ,γ) is a proper density, then

cπ(u|x) =
∫ ∫

c(u|x,θ,γ)π(θ,γ)d(θ,γ)

is also a copula density.

The proof of Corollary 1 can be found in Part B of the Supplementary Material. The
corresponding copula function is denoted as Cπ(u|x) =

∫ ∫
C(u|x,θ,γ)π(θ,γ)d(θ,γ).

In this paper, we consider both the prior π0(θ,γ) and the posterior p(θ,γ|y) densities
for π(θ,γ). When a regularized smoother is fit to data, it is this mixture copula that
captures the dependence structure of the resulting data distribution. Evaluation of (and
generation from) cπ and Cπ can be undertaken efficiently by Monte Carlo simulation, as
we show later. It is Cπ that we use in Section 3 to construct the new copula smoothers.

Representation of Cπ as a mixture of Gaussian copulas greatly simplifies its com-
putation. It makes computation of the copula much faster, as shown in Section 5 and
Part A of the Supplementary Material for two high-dimensional examples. In contrast,
Cπ is much harder to compute via inversion of the distribution Z̃|x directly, as in (1).
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This is because the marginal distribution function of Z̃i|x is

FZ̃i
(z̃i|x) =

∫
Φ1

(
z̃i; 0, (1 + b′iP (θ)−1bi)

)
π(θ,γ)d(θ,γ),

where the integral typically requires computation via numerical methods. The direct
inversion approach requires evaluation of the quantile functions z̃i = F−1

Z̃i
(ui|x), for

i = 1, . . . , n, which is prohibitively slow for large sample sizes.

2.2 Three Implicit Copulas

We construct implicit copulas using three popular shrinkage priors for β. Each prior is
of the form at (4), and is usually matched with specific bases. We discuss each in further
detail below and summarize them in Table S1 in the Supplementary Material.

P-Spline Copula (PSC) There is an extensive literature on Bayesian P-splines that
employ differenced priors, also called random walk priors (Fahrmeir and Lang, 2001).
However, these are improper, so that Z|x,θ,γ with β integrated out is also, and the
copula at (9) undefined. Therefore, we instead employ a first order stationary autore-
gression βi|βi−1 ∼ N(ψβi−1, τ

2), which approximates a first order random walk when
ψ → 1. For this prior, γ = ∅, θ = {ψ, τ}, and P (θ) = (τ2)−1P0(ψ) is a full rank band
one matrix. Following Lang and Brezger (2004), we match this prior with a B-spline
basis of degree l = 3 (i.e. a cubic B-spline) with m+ 2l equally-spaced knots, where m
is the number of inner knots. In our empirical work, we set m to values between 20 and
30, which is a typical choice, resulting in a dimension of m+ l − 1 for β.

For the prior π0(θ) we assume ψ and τ2 are independent, with ψ ∼ Uniform(0.01,
0.99), so that P0(ψ) is full rank and coefficients are positively correlated. Klein and
Kneib (2016) study appropriate priors for τ2, and we follow these authors and use a
Weibull distribution with scale parameter bτ2 = 2.5. From Theorem 1, the correlation
matrix

R(x,θ) = S(x,θ)(I + τ2BP0(ψ)
−1B′)S(x,θ),

and we label the implicit copula ‘PSC’. In Section 2.3 we show that ψ and τ2 control
different aspects of the dependence structure. Last, we note that higher order autore-
gressive priors for β can also be used, similar to the popular higher order random
walks (Fahrmeir and Kneib, 2011).

Horseshoe Copula (HSC) The horseshoe prior is attractive due to its robustness,
local adaptivity and analytical properties (Carvalho and Polson, 2010). It is a scale
mixture, where βj |λj ∼ N(0, λ2

j ), with prior π0(λj |τ) = Half-Cauchy(0, τ) and π0(τ) =
Half-Cauchy(0, 1). With this prior γ = ∅, θ = {λ, τ}, with λ = (λ1, . . . , λp)

′, while

R(x,θ) = S(x,θ)(I +B diag(λ1, . . . , λp)
2B′)S(x,θ).

While we are unaware of any previous usage of the horseshoe prior for smoothing, the
localized shrinkage of the prior makes it an attractive choice. Here, we employ the prior
with two univariate bases. The first is the same B-spline basis employed for the PSC,
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while a second is the augmented Fourier basis of 2K basis terms {sin(kπx), cos(kπx); k =
1, . . . ,K}, where the covariate is scaled to [0, 1] and we typically set K = 10 in our
empirical work. We label this copula ‘HSC’.

Bayesian Variable Selection Copula (BVSC) For this prior, θ = ∅, so that we drop
reference to it when discussing this implicit copula. Spike-and-slab priors are popular in
the Bayesian variable selection literature (Clyde and George, 2004). They allow for bases
of varying dimension, with γ = (γ1, . . . , γp)

′ a vector of binary indicators (γi ∈ {0, 1})
denoting whether, or not, each basis term is included or omitted from p candidates. Let
pγ =

∑p
i=1 γi, and at (4) denote β, B and P as βγ , Bγ and Pγ , respectively. We adopt

the g prior for the included terms, where βγ |γ ∼ N(0, P−1
γ ), with P−1

γ = c(B′
γBγ)

−1

and c = 100 as in Smith and Kohn (1996). Substituting Pγ into (8), the correlation
matrix

R(x,γ) = S(x,γ)(I + cBγ(B
′
γBγ)

−1B′
γ)S(x,γ),

Ω = c
1+c (B

′
γBγ)

−1, and bγ,i is the ith row of Bγ . Note that for this prior si = (1 +

cb′γ,i(B
′
γBγ)

−1bγ,i)
−1/2, and is a function of all elements of x, not just xi.

We use the prior mass function π0(γ) = Beta(p − pγ + 1, pγ + 1). This has been
used extensively in the Bayesian selection literature (e.g. in Smith and Kohn (2002)),
and accounts for the multiplicity of the 2p possible configurations of γ (Scott and
Berger, 2010). It implies a uniform distribution on π0(pγ) = 1/(p + 1) and Bernoulli
margins Pr(γi = 1) = 1/2. We employ this prior with the cubic regression spline basis
{x, x2, x3, (x−k1)

3
+, . . . , (x−kK)3+}, where {a}3+ = min(0, a3) and k1, . . . , kK are knots

chosen to follow the empirical distribution of the covariate with K = 25. We label this
implicit copula ‘BVSC’.

2.3 Dependence Structure

We use metrics of pairwise dependence from our copulas for two new observations
to measure their dependence structure. Possible metrics include quantile dependence
and Kendall’s tau (Nelson, 2006, Chapter 5), but we illustrate here using Spearman
correlation.

Consider two new covariate values x0,1, x0,2, and denote the vector of these two
values combined with n existing covariate observations as x+ = (x0,1, x0,2,x

′)′. If u+ =
(u0,1, u0,2,u

′)′, then from Theorem 1, C(u+|x+,θ,γ) is a Gaussian copula. If a random
vector has this copula, then the Spearman correlation between its first two elements
Y0,1 and Y0,2 is

ρs(x0,1, x0,2|x,θ,γ) =
6

π
arcsin(r12(x

+,θ,γ)),

where r12(x
+,θ,γ) is the first off-diagonal element in the (n + 2) × (n + 2) matrix

R(x+,θ,γ). For the PSC and HSC implicit copulas, it is straightforward to show that
r12 is a function of only (x0,1, x0,2) and not x, so that ρs is also. However, for the
BVSC implicit copula r12 depends on all elements of x+ because each element of the
diagonal scaling matrix S does so also. It is this feature that makes the smoothing
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locally adaptive for this copula, as discussed further in Section 2.4. Last, we write ρs

as a function of (x0,1, x0,2) to underline that it is a function of these two values of the
regression covariate.

The same dependence metrics for the mixture copula Cπ(u
+|x+) at Corollary 1 can

be computed via simulation. For example, the Spearman’s pairwise correlation between
Y0,1 and Y0,2 from this copula is

ρsπ(x0,1, x0,2|x) =
∫

ρs(x0,1, x0,2|x,θ,γ)π(θ,γ)d(θ,γ)

≈ 1

J

J∑
j=1

ρs(x0,1, x0,2|x,θ[j],γ[j]),

where (θ[j],γ[j])′ ∼ π(θ,γ) and J is the total number of iterates. Simulating from π is
typically straightforward when it is the prior distribution, and can be achieved using
the MCMC methods in Section 3 when it is the posterior.

2.4 Empirical Illustration of the Dependence Structure

To illustrate the dependence structure of our proposed copulas, we first consider the
PSC with θ = {ψ, τ2}. Figure 1 shows ρs as a function of (x0,1 − x0,2), where in
panel (a) ψ = 0.5 and τ2 ∈ {0.01, 0.1, 0.5, 1, 10, 100}, and in panel (b) τ2 = 1 and
ψ ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 0.95}. This reveals that τ2 determines the overall level of
dependence between Y0,1 and Y0,2, while ψ determines how quickly ρs decreases as
|x0,1 − x0,2| increases. The dependence is symmetric around (x0,1 − x0,2) = 0.

We next compare the dependence structure of the three (non-Gaussian) implicit
copulas Cπ(u

+|x+), where the copula parameters are integrated out with respect to

Figure 1: Spearman’s rho ρs(x0,1, x0,2|x,θ) plotted against (x0,1 − x0,2) for the
PSC with B-spline basis and conditional on θ. In panel (a), ψ = 0.5 and τ2 ∈
{0, 01, 0.1, 0.5, 1, 10, 100}. In panel (b), τ2 = 1 and ψ ∈ {0.1, 0.25, 0.5, 0.75, 0.9, 0.95}.



N. Klein and M. S. Smith 1151

Figure 2: Normalized histogram of the n = 200 covariate values x1, . . . , xn from the
empirical illustration in Sections 2.4 and 3.5.

the prior π = π0. Because ρsπ is a function of x for the BVSC, n = 200 covariate values
are generated from a χ2 distribution and scaled to [0, 1]. Figure 2 shows a histogram of
these values. We then compute ρsπ(x0,1, x0,2|x) over a bivariate grid for (x0,1, x0,2) on
the unit square, with J = 10, 000 iterates simulated from the priors π0 for each case.
Figure 3 plots ρsπ as surfaces in the left-hand panels for four copula models: (a) PSC
with a B-spline basis, (c) HSC with a B-spline basis, (e) HSC with an augmented Fourier
basis, and (g) BVSC with a regression spline basis.

We make five observations. First, in each case ρsπ is highest as |x0,1 − x0,2| → 0,
which is expected for an effective smoother, because response values should be more
dependent when their covariate values are closer. Second, even though the function
bases are identical in panels (a,c), the level of smoothing is higher with the PSC than
HSC. Clearly, the prior for β has a strong impact on the dependence structure. Third,
even though the prior for β is the same in panels (c,e), the bases employed differ, which
also has a large effect on the dependence structure. Fourth, ‘ripples’ in ρsπ are observed
for the augmented Fourier basis, which is because the basis terms are non-monotonic
in |x0,1 − x0,2|. Fifth, the BVSC is the only case where the n values of x have an
impact on ρsπ, as seen in panel (g). Smoothing is higher for values of x0,1 and x0,2

close to 1, and lower for values around 0.3. This is ‘local adaptivity’ in the level of
smoothing to the density of the covariate. We return to Figure 3 in Section 3.5, where
we compare the surfaces against those constructed using the posterior of the copula
parameters.

3 Copula Smoother for Non-Gaussian Data

The main application of our proposed copula is in conjunction with arbitrary marginal
distributions to model non-Gaussian regression data. In this section we outline this
model, and Bayesian methods to estimate the copula parameters, regression function
and predictive distributions.
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Figure 3: Bivariate surfaces of Spearman’s rho ρsπ(x0,1, x0,2|x) values as a function
of (x0,1, x0,2) ∈ [0, 1]2. The left column gives results for the copula Cπ when (θ,γ) is
integrated with respect to the prior π0. The right column gives results for Cπ when (θ,γ)
is integrated with respect to the posterior using the data in Figure 4(b). The panels
give results for different shrinkage prior/basis combinations: (a, b) PSC/B-spline; (c, d)
HSC/B-spline; (e, f) HSC/augmented Fourier basis; (g, h) BVSC/regression spline.
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3.1 Observational Model and Likelihood

Let Y = (Y1, . . . , Yn)
′ be n observations on a continuous response, with covariate values

x. Following Sklar’s theorem, the joint density of Y |x can always be written as

p(y|x) = c† (F (y1|x1), . . . , F (yn|xn)|x)
n∏

i=1

p(yi|xi),

for some copula density c†(u|x) and conditional distribution functions F (yi|xi) – both
of which are unknown. Here, we model the joint distribution of Y |x using a simplified
decomposition where: (i) Yi|xi has distribution function FY and density pY that are
independent of xi and do not vary with i, and (ii) the copula c† is modeled using the
implicit copula outlined in Section 2. With these assumptions, the density of Y |x is

p(y|x) = cπ (FY (y1), . . . , FY (yn)|x)
n∏

i=1

pY (yi), (10)

where cπ is the copula density at Corollary 1 with π = π0. We call the model at (10)
a ‘copula smoother’, because all regression smoothing is introduced through the copula
only, and not the margin FY . We show later that this copula model demonstrates
excellent regression smoothing properties.

From Theorem 1, the likelihood conditional on θ,γ (but not β) is

p(y|x,θ,γ) = p(z|x,θ,γ)
n∏

i=1

pY (yi)

p(zi|x,θ,γ)
= φn(z;0, R(x,θ,γ))

n∏
i=1

pY (yi)

φ1(zi)
. (11)

For large n, direct computation of the n × n correlation matrix R is computationally
infeasible. However, the likelihood also conditional on β is

p(y|x,β,θ,γ) = p(z|x,β,θ,γ)
n∏

i=1

pY (yi)

φ1(zi)
= φn(z;SBβ, SS′)

n∏
i=1

pY (yi)

φ1(zi)
,

which can be evaluated in O(n) operations because S is diagonal. We exploit this ob-
servation to propose MCMC schemes below that avoid direct computation of R.

3.2 Posterior Evaluation

Both the marginal distribution FY and the copula parameters (θ,γ) require estimation.
For FY we consider two different non-parametric estimators. The first is an adaptive
kernel density estimator (Shimazaki and Shinomoto, 2010), and the second is a Bayesian
Dirichlet process mixture of normals estimator.1 We condition on each density estimate
F̂Y to compute zi = Φ−1

1 (F̂Y (yi)), for i = 1, . . . , n, and then use MCMC to evaluate the
posterior of the copula parameters given these values.

1To estimate the adaptive kernel estimator we use the Matlab routine ‘ssvkernel’, while for the
Bayesian non-parametric estimator we use a modified version of the routine ‘DPdensity’ in Jara et al.
(2011).
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In a second approach, we follow Grazian and Liseo (2017) and integrate out the
posterior uncertainty for FY when estimating the copula parameters using an MCMC
scheme. To do so, at each sweep of the MCMC scheme, we re-compute the pseudo data

zi = Φ−1
1 (F

[j]
Y (yi)), for i = 1, . . . , n, using the draws {F [j]

Y ; j = 1, . . . , J} of the marginal
distribution from the Bayesian non-parametric estimator.

For each copula type, we use a different MCMC sampling scheme to estimate their
parameters. For the PSC and HSC (where γ = ∅), the proposed sampler evaluates
the augmented posterior p(β,θ|x,y), while for the BVSC (where θ = ∅) the proposed
sampler evaluates the posterior p(γ|x,y). For the PSC and HSC we generate from the
conditional posterior p(β|x,θ,y) = p(β|x,θ, z), which is Gaussian with mean μβ =
ΣβB

′S−1z and covariance matrix Σβ = (B′B+P (θ))−1. The steps required to generate
from the conditional posteriors of θ and γ are outlined separately below for each of the
three implicit copulas, and more details are in Part C of the Supplementary Material.

Posterior of the PSC Parameters The conditional posteriors of τ2 and ψ are not
recognizable distributions. A Metropolis-Hastings (MH) step is used to generate υ =
log(τ2), where a normal proposal with matching mode and curvature is used. Note that:

lυ ≡ log(p(υ|x,β, ψ,y)) ∝ −υ

2
(dim(Pψ)))− 1)− 1

2 exp(υ)
β′Pψβ −

(
exp(υ)

bτ2

) 1
2

− 1

2

n∑
i=1

log(s2i )−
1

2

(
z′(SS′)−1z − 2β′B′S−1z

)
.

Approximating lυ by a second order Taylor expansion around the current state υ(c), and
taking the exponent, yields the proposal density N

(
μυ, σ

2
υ

)
with μυ = σ2

υ
∂lυ
∂υ + υ and

σ2
υ = −1/∂2lυ

∂υ2 . Analytical expressions for the derivatives are given in Supplement C.1.
Similarly, we transform ψ to the real line as ξ = g(ψ) = log ((ψ − ε)/(1− ε− ψ)), with
ε = 0.01. The log-posterior is

lξ ≡ log(p(ξ|x,β, τ2,y))

∝ log

(
∂ψ

∂ξ

)
+ log(π0(g

−1(ξ))) + log(p(z|x,β, τ2, ψ)) + log(p(β|τ2, ψ))

∝ ξ − 2 log(1 + exp(ξ)) + log(det(Δ(g−1(ξ)))

− 1

2

n∑
i=1

log(s2i )−
1

2

(
z′(SS′)−1z − 2β′B′S−1z

)
− β′P (g−1(ξ))β

2τ2
.

We generate ξ using a MH step in the same fashion as υ, but using the derivatives of
lξ which are given in Supplement C.1. Because both proposals are based on analyti-
cal derivatives, they are fast to compute. In our empirical work, the acceptance rates
of υ and ξ were between 60% and 90%. Last, we found joint updates of (τ2, ψ) had
prohibitively low acceptance rates.

Posterior of the HSC Parameters The global scale parameter τ , and each local shrink-
age parameter λj , are generated separately. MH steps with normal approximations as
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proposals are used as in the PSC case, where

log(p(log(λ2
j )|x,β,λ\j , τ, z)) ∝ −1

2

n∑
i=1

log(s2i )−
1

2
z′(SS′)−1z + β′B′S−1z

− 1

2

[
log(λ2

j ) +
β2
j

λ2
j

+ 2 log

(
1 +

λ2
j

τ2

)]

log(p(log(τ)|x,λ, z)) ∝ −(p− 1) log(τ)− log(1 + τ2)−
p∑

j=1

λ2
j

τ2
,

and λ\j ≡ {λ\λj}. The derivatives of the conditional posteriors of log(λ2
j ) and log(τ)

are given in the Supplement C.2. Similar to the sampler for the PSC, in our simulations
the acceptance rates of these steps were around 70% for log(λ2

j ) and above 90% for
log(τ).

Posterior of the BVSC Parameters From (11), the posterior

p(γ|x,y) ∝ p(y|x,γ)π0(γ) ∝ φn(z;0, R(x,γ))π0(γ)

∝ |R(x,γ)|−1/2 exp

{
−1

2

(
z′R(x,γ)−1z

)}
Beta(p− pγ + 1, pγ + 1) ≡ A(γi, γj).

We generate from this posterior using a Gibbs sampler, where γ is partitioned into pairs
of elements selected at random, and each pair (γi, γj) is generated conditional on the
other elements γ\(γi, γj). This involves computing A(γi, γj) for the four possible config-
urations (γi, γj) ∈ S ≡ {(0, 0), (0, 1), (1, 0), (1, 1)} for that pair of indicator values. This
can be undertaken efficiently as outlined in Supplement C.3, where direct computation

of R is avoided. We then generate from p((γi, γj)|γ\(γi, γj),x,y) = A(γi,γj)∑
(γ̃i,γ̃j)∈S A(γ̃i,γ̃j)

.

Unlike for the other two implicit copulas, β is not generated as part of the MCMC
scheme.

3.3 Function Estimation

For a new observation (Y0, x0) on the response and covariate, to estimate the regression
function f(x0) ≡ E(Y0|x0,x) we employ the posterior predictive mean

E(Y0|x0,x,y) =

∫
E(Y0|x0,x,β,θ,γ)p(β,θ,γ|x,y)d(β,θ,γ).

Note that f is different from m in (6), which is the mean function for the pseudo-
response. Let Z0 = Φ−1

1 (FY (Y0)), then the expectation in the integrand above is

E(Y0|x0,x,β,θ,γ) =

∫
F−1
Y (Φ1(z0))p(z0|x0,x,β,θ,γ)dz0

=

∫
F−1
Y (Φ1(z0))

1

s0
φ1 ((z0 − s0b

′
0β)/s0) dz0, (12)
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where b0 is the vector of basis terms evaluated at the covariate value x0, and s0 =
[1+b′0P (θ)−1b0]

−1/2 is the standardizing constant for the new observation. We employ
F̂Y for the marginal distribution function of Y0|x0, and compute the integral above
using standard univariate numerical methods. Finally, the estimator

E(Y0|x0,x,y) ≈
1

J

J∑
j=1

E
(
Y0|x0,x,β

[j],θ[j],γ[j]
)
= f̂(x0) (13)

can be computed from the output {β[j],θ[j],γ[j]; j = 1, . . . , J} of the MCMC scheme.
It can also be useful to estimate the conditional mean m(x0) ≡ E(Z0|x0,x) of the
pseudo-response at (6). For this we use the posterior predictive mean

E(Z0|x0,x,y) =

∫
E(Z0|x0,x,β,θ,γ)p(β,θ,γ|x,y)d(β,θ,γ)

=

∫
(s0b

′
0β) p(β,θ,γ|x,y)d(β,θ,γ) ≈ b′0

⎛
⎝ 1

J

J∑
j=1

s
[j]
0 β[j]

⎞
⎠ = m̂(x0),

where s
[j]
0 = [1 + b′0P (θ[j])−1b0]

−1/2.

For the BVSC, the vector β is not generated as part of the sampler in Section 3.2.
Therefore, to compute these function estimators, it is necessary to generate from the
Gaussian distribution β[j]

γ ∼ βγ |x,γ,y at the end of each sweep, and set the remaining

elements of β[j] to zero. Also, note that for this case s0 is a function of all covariate
values {x, x0}, whereas for the HSC and PSC s0 is a function of x0 only.

We compute the function estimators f̂ and m̂ over a grid of values for x0. Note that at

each sweep of the samplers f [j](x0) = E(Y0|x0,x,β
[j],θ[j],γ[j]) andm[j](x0) = s

[j]
0 b′0β

[j]

are draws from the posterior distribution of each function at point x0. Therefore, pos-
terior (100 − α)% probability intervals can be computed for f and m at point x0 by
ordering these draws and counting off α/2% of the highest and lowest values.

Evaluation of f̂(x0) using (13) requires J numerical integrations for each value of
x0. An alternative estimator that is faster to compute, is to plug in the point estimators
for the unknown quantities in (12), giving

f̃(x0) =

∫
F̂−1
Y (Φ1(z0))

1

ŝ0
φ1 ((z0 − m̂(x0))/ŝ0) dz0,

with ŝ0 = 1
J

∑J
j=1 s

[j]
0 . This involves computing only a single univariate numerical inte-

gral. Table S2 summarizes the functional relationships in the copula model, the Bayesian
posterior means and their MCMC estimators.

3.4 Predictive Densities

The predictive density p(y0|x0,x) of a new observation of the response Y0, given a new
covariate value x0, is estimated using its posterior predictive density

p(y0|x0,x,y) = p(y0|x0,x,β,θ,γ)p(β,θ,γ|x,y).
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If z0 = Φ−1
1 (FY (y0)), then

∣∣∣ dz0dy0

∣∣∣ = pY (y0)
φ1(z0)

, and by changing variables from y0 to z0,

p(y0|x0,x,β,θ,γ) =
pY (y0)

φ1(z0)
p(z0|x0,x,β,θ,γ)

=
pY (y0)

φ1

(
Φ−1

1 (FY (y0))
) 1

s0
φ1

(
Φ−1

1 (FY (y0))−m(x0)

s0

)
,

which follows from (6). We estimate the predictive regression density using the Monte
Carlo iterates and p̂Y , and denote it as:

p̂(y0|x0) =
p̂Y (y0)

φ1(Φ
−1
1 (F̂Y (y0)))

⎧⎨
⎩ 1

J

J∑
j=1

1

s
[j]
0

φ1

(
Φ−1

1 (F̂Y (y0))−m[j](x0)

s
[j]
0

)⎫⎬
⎭ . (14)

It is also possible to estimate the predictive density p(z0|x0,x) of the pseudo-response
Z0 given x0, using the posterior predictive density

p(z0|x0,x,y) =

∫
p(z0|x0,x,β,θ,γ)p(β,θ,γ|x,y)d(β,θ,γ)

=

∫
1

s0
φ1

(
z0 − s0b

′
0β

s0

)
p(β,θ,γ|x,y)d(β,θ,γ),

which is estimated using the iterates as p̂(z0|x0) =
1
J

∑J
j=1

1

s
[j]
0

φ1((z0 −m[j](x0))/s
[j]
0 ).

3.5 Empirical Illustration

To illustrate the posterior dependence structure and function estimates from the cop-
ula models, we extend the empirical illustration in Section 2.3 by simulating yi ∼
N(h3(xi), 0.5

2) using the same covariate values, and function h3 specified in Section 4.
In Figure 4, panel (a) gives a (normalized) histogram of the data y1, . . . , yn, along
with the kernel (labeled as ‘KDE’) and Bayesian (labeled as ‘DPhat’) non-parametric
estimates of FY , which are very similar. Panel (b) contains a plot of the data and
function h3.

Using the kernel density estimate of FY , we generate draws from the posteriors of
(θ,γ) for the same four copula/basis combinations employed previously. We compute
the surface of Spearman correlations ρsπ, integrating out the copula parameters using
these draws. The surfaces are plotted on the right-hand side of Figure 3 to enable
comparison with those evaluated previously using draws from the priors π0. We stress
that each point on these surfaces is a pairwise Spearman correlation between (Y0,1, Y0,2)
arising from Cπ(u

+|x+), as discussed in Section 2.3.

The general features of the prior dependence structures discussed in Section 2.3
transfer to the posteriors, although there are some notable differences, and we make
four observations. First, the posterior dependence structure of the PSC/B-spline in
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Figure 4: Data summary and function estimates for the empirical illustration in Sec-
tions 2.4 and 3.5. Panel (a) plots the (normalized) histogram of y1, . . . , yn, plus the
kernel and Bayesian density estimates. Panel (b) plots the function h3 as a red line and
a scatterplot of the data. Panel (c) plots function estimates from three copula/basis
combinations: (i) BVSC/Regression spline, (ii) HSC/B-spline and (iii) HSC/Fourier
basis. Panel (d) plots the function estimates for the PSC/B-spline copula model using
three different approaches to marginal estimation: ‘KDE’ is using the kernel density
estimator, ‘DPhat’ is using the Bayesian density estimator, and ‘DP’ is for the copula
estimator that integrates out marginal density uncertainty.

panel (b) is sharper than its prior in panel (a). Second, the posterior dependence struc-
ture of the HSC/B-spline in panel (d) is asymmetric along the line x0,1 = x0,2, with
higher smoothing for covariate values around 0.1 and close to 1. This local variation
in smoothing is evident when integrating over the posterior, but not the prior, of the
horseshoe copula parameters. Third, when the HSC is combined with the augmented
Fourier basis in panel (f), smoothing is non-monotonic in |x0,1 − x0,2| because the ba-
sis terms are also. Last, the BVSC with a regression spline basis in panel (h) has a
posterior level of smoothing that is higher than that of the prior in panel (g). Yet the
level of smoothing varies greatly with the value of the covariate, with more smoothing
for values greater than 0.5, and less for values around 0.3, reflecting the distribution
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of the covariate in Figure 2. Last, Figure S1 in the Supplementary Material presents a
movie that plots the density of the sub-copula of Cπ(u

+|x+) in elements (u0,1, u0,2) for
a range of values of (x0,1, x0,2). It does so for the BVSC with a regression spline basis,
further visualizing its dependence structure.

Figure 4(c) compares the posterior function estimates for three of the copula/basis

combinations, using the same kernel density estimate of FY . The estimator f̂ was used
for the HSC, and f̃ for the BVSC. All function estimates track the data well, although
those from the HSC models under-smooth on the right-hand side. In contrast, the
BVSC produces a smoother estimate, which is because Bayesian variable selection is
known to be a highly locally adaptive regularization method (Smith and Kohn, 1996).
Figure 4(d) compares the impact of different approaches to estimating the marginal FY

on the function estimates. Three estimates f̂ are computed and plotted for the PSC
with a B-spline basis. The first (labeled ‘KDE’) and second (labeled ‘DPhat’) use the
kernel and Bayesian non-parametric estimators for the marginal, respectively. The third
(labeled ‘DP’) employs the draws for FY from the Bayesian estimator to integrate out
uncertainty in the margin when estimating the copula parameters. All three function
estimates are very similar, and are insensitive to the choice of marginal estimator.

Undertaking 1,000 sweeps of the MCMC schemes for estimating the copula pa-
rameters took approximately 13, 27 and 3.5 seconds for the HSC, PSC and BVSC,
respectively, when implemented in serial using Matlab on a standard desktop.

4 Univariate Simulation

To illustrate the effectiveness of the copula smoother we undertake a simulation study.
The PSC and B-spline basis is used with a non-parametric margin FY , estimated in
the same three ways as in Section 3.5 and labeled as ‘PSC/KDE’, ‘PSC/DPhat’ and
‘PSC/DP’. The benchmark model is a Bayesian P-spline with the same basis and Gaus-
sian disturbances (labeled as ‘PS’).

4.1 Simulation Design

We consider the three univariate test functions: h1(x) = 2x− 1, h2(x) = sin(10πx) and

h3(x) =
1

4

[
1

0.05
φ1((x− 0.15)/0.05) +

1

0.2
φ1((x− 0.6)/0.2)

]
.

For each function j = 1, 2, 3, we generate n = 100 observations from three distributions:

Case 1, Normal: Y1j = hj(x) + ε1, where ε1 ∼ iidN(0, 0.52)

Case 2, Log-normal: Y2j = hj(x) + ε2 − E(ε2), where ε2 ∼ iid LN(−2.89, 1.52)

Case 3, Implicit Copula: Y3j = F−1
Gam (Φ (zj) ; 3, 2) , zj = hj(x) + ε3,

where ε3 ∼ iidN(0, r2j ).

Here, FGam is a Gamma distribution function and LN is the lognormal distribution.
The distributions of Ylj are defined conditional on the covariate x, which we generate
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independently from a uniform on (0, 1). Note that the distribution in Case 1 matches
that of the Gaussian P-spline, while that in Case 3 matches that of the implicit copula
model with a Gamma margin. The distribution in Case 2 matches neither model.

The true regression and noise functions are fj(x) ≡ E(Ylj |x) and vlj(x) ≡ Var(Ylj |x),
and in each case the signal-to-noise ratio is SNRlj ≡ range(fj(x))/(

∫
vlj(x)dx)

1/2 =
4 over the domain of the covariate 0 ≤ x ≤ 1. In Cases 1 and 2 (l = 1, 2), it is
straightforward to see that fj = hj , vlj(x) = Var(εj) is a constant and that SNRlj = 4.
However, in Case 3, fj and vlj are more complex functions of hj , with

fj(x) =

∫
yjp(yj |x)dyj =

∫
F−1
Gam(Φ1(zj); 3, 2)

1

rj
φ1 ((zj −hj(x))/rj) dzj ,

vlj(x) = E(Y 2
j |x)− fj(x)

2 =

∫
[F−1

Gam(Φ1(zj); 3, 2)]
2 1

rj
φ1 ((zj −hj(x))/rj) dzj − fj(x)

2,

where the integrals are computed numerically. Setting SNR3j = 4 over 0 ≤ x ≤ 1, it is
possible to solve the nonlinear optimization problem with respect to rj to get r1 = 0.48,
r2 = 0.47 and r3 = 0.58 for the three functions. For each of the nine combinations of
Case l and function hj we simulated 100 replicates, leading to a total of 900 datasets.

For both the PSC and the PS the same cubic B-spline basis is employed with equally
spaced knots and dim(β) = 32. As outlined in Section 3.2, the precision matrix of an
AR(1) is used for constructing the PSC implicit copula. For the PS the popular first
order random walk prior (Lang and Brezger, 2004) is used, although the results are
almost identical when the precision matrix of an AR(1) model is employed.

4.2 Measures of Performance

We consider three measures of the quality of the fitted statistical models. The first is a
measure of the accuracy of the point estimate of the regression function, and is the root
mean square error RMSE(f, f̂) = ( 1n

∑n
i=1(f̂(xi)− f(xi))

2)1/2 computed over the data
points. For the PSC model the regression function estimator is given at (13), whereas

for the PS it is f̂(xi) = b′iE(β|y), which we compute using the BayesX software (Belitz
et al., 2015).

The second measure is based on the Kullback-Leibler Divergence (KLD) between
the density p(y|x) of the data generating process, and its estimate p̂(y|x), given by

KLDx(p||p̂) =
∫

p(y|x) log
(
p(y|x)
p̂(y|x)

)
dy.

To compute the KLD, note that for Cases 1 and 2 the density p(y|x) is a normal and
log-normal distribution, respectively. For Case 3, the density is

p(y|x) = pGam(y; 3, 2)

φ1(Φ
−1
1 (FGam(y; 3, 2)))rj

φ1

(
Φ−1

1 (FGam(y; 3, 2))− hj(x)

rj

)
,

where pGam is a Gamma density function.
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For the PSC, the density estimator is given at (14). For the regular PS, p̂(y0|x0) =

(1/σ̂)φ1((y0 − f̂(x0))/σ̂), with point estimators σ̂ and f̂ . The integral can be com-
puted analytically for the Case 1/PS combination and numerically for the other five
combinations of estimator and Case; see Table S3. Finally, we report the mean KLD
over an equally-spaced partition 0 = x̃1 < . . . < x̃N = 1 of the covariate, giving
MKLD(p||p̂) = 1

N

∑N
i=1 KLDx̃i(p||p̂), where we set N = 100. This metric measures the

accuracy of p̂(·|x0).

The third and final measure is of predictive performance. This is the mean logarith-
mic score computed by ten-fold cross-validation. For a given dataset, we compute this
by partitioning the data into ten sub-samples, denoted as {(yi,k, xi,k); i = 1, . . . , nk} for
k = 1, . . . , 10. For sub-sample k, we compute the density estimator using the remaining
9 sub-samples as the training data, and denote these as p̂k(y|x). The ten-fold mean

logarithmic score is then MLS = 1
10

∑10
k=1

1
nk

∑nk

i=1 log p̂k(yi,k|xi,k). Here n = 100, so
that we set nk = 10, giving sub-samples of equal size.

4.3 Results

Figure S2 compares the accuracy of the three copula estimators and the benchmark PS
estimator of the regression functions using the RMSE metric. There are nine panels:
one for each combination of Cases 1, 2, 3 and test functions h1, h2, h3. The accuracy
of the function estimators is similar, even in Case 1 where the PS estimator is the
correct model. This is reassuring because the Bayesian P-spline is known to be a highly
competitive regression function estimator (Lang and Brezger, 2004; Scheipl et al., 2012).
To illustrate, Figure S4 plots the true regression function fj and the PSC/KDE and PS
estimates for a single replicate of data in each case, along with a scatterplot of the data.
The function estimates are similar and track the data well. However, the PSC and PS
density estimators differ substantially. Figure 5 presents boxplots of the MKLD metric.
The PS is slightly more accurate than the three copula estimators in Case 1, which
is because the PS matches the data generating process. But in the two non-Gaussian
cases—including Case 2 where neither model is correct—the PSC density estimator
is substantially more accurate. The same conclusions are drawn from Figure S3, which
presents equivalent boxplots for the MLS metric. Thus, using the copula model increases
the accuracy of the predictive distributions for the non-Gaussian data substantially
here. Last, when comparing the different approaches to estimating FY , integrating out
uncertainty in its estimate does not increase the accuracy of the function or density
estimates, nor the predictive distributions. This is consistent with observations in the
broader copula literature, where two stage estimators are widely used (Joe, 2005).

5 Extension to Multiple Covariates

The implicit copula (and the resulting copula smoother) can be extended to account for
multiple covariates in two ways. The first is by constructing the implicit copula of an
additive model for the pseudo-response, and the second is by employing a radial basis.
We explain the first approach below, and the second in the Supplementary Materials.
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Figure 5: Comparison of density estimate accuracy from the simulation study. Each
panel corresponds to a different combination of test function and case. The three
columns correspond to Cases 1, 2 and 3, while the three rows correspond to functions
h1, h2 and h3. Each boxplot is of the 100 values of the MKLD(p||p̂) metric from the
simulation replicates. Lower values correspond to increased accuracy. The estimators are
the benchmark PS model and the three copulas models PSC/KDE, PSC/DPhat and
PSC/DP, as discussed in the text. Analogous boxplots of the two other performance
metrics—RMSE and MLS—are given by Figures S2 and S3 in the Supplementary Ma-
terials.

5.1 Implicit Copula

Consider replacing (2) with the additive regression

Z̃i =

L∑
l=1

m̃l(xil) + εi, for i = 1, . . . , n (15)

for L smooth functions of covariates x1, . . . , xL. As before, each function is modeled as a
linear combination of basis functions m̃l(xl) =

∑pl

j blj(xl)βlj , with corresponding design
matrix Bl and coefficient vector βl = (βl1, . . . , βlpl

)′. Then the additive regression can

be written as the linear model at (3), but where B = [B1| · · · |BL] is an (n ×
∑L

l=1 pl)
concatenated design matrix and β′ = (β′

1, . . . ,β
′
L). Our objective here is to construct

the implicit copula of this additive model for the pseudo-response.

A global intercept parameter is not included in (15) because it is unidentified in its
implicit copula. To ensure identifiability of β, we centre all but one m̃l around zero,
so that 1′m̃l(xl) = 1′Blβl = 0, for l = 1, . . . , L − 1, with 1 an n-vector of ones. To
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regularize each vector βl, we assume the same shrinkage prior at (4), but with these
constraints, so that

p(βl|x,θl,γl) ∝
{

φpl
(βl;0, P (θ)−1)I(1′Blβl = 0) if l = 1, . . . , L− 1

φpl
(βl;0, P (θ)−1) if l = L

,

where each prior is strictly proper. Setting P (θ) = bdiag(P (θ1), . . . , P (θL)) as a block
diagonal matrix and xl = (x1l, . . . , xnl)

′, β can be integrated out as a linearly con-
strained normal, giving

Z̃|x1, . . . ,xL,θ,γ ∼ N(0, (I +BP (θ)−1B′)),

as in Section 2.1. Standardization of Z̃ and formation of the implicit copula then pro-
ceeds as in the univariate case, but where bi = (b′i1, . . . , b

′
iL)

′, bil = (bl1(xil), . . . ,
blpl

(xil))
′,

si = (1 + b′iP (θ)−1bi)
−1/2 =

(
1 +

L∑
l=1

b′ilP (θl)
−1bil

)−1/2

, and

Ω−1 = bdiag (B′
1B1 + P (θ1), . . . , B

′
LBL + P (θL)) ,

with ‘bdiag’ a block diagonal matrix operator. The posterior can be evaluated using the
MCMC schemes outlined in the univariate case, with one change. When generating β, we
generate each sub-vector βl conditional on the other elements of β. For l = 1, . . . , L− 1
this involves generating from a constrained normal using the fast algorithm in Rue and
Held (2005, Algorithm 2.6). Further details on how to implement the MCMC scheme
for the PSC are given in Supplement D.

5.2 Function Estimation and Partial Residuals

For a new observation (Y0, x01, . . . , x0L) on the response and covariates, the regression
surface is f(x01, . . . , x0L) ≡ E(Y0|x01, . . . , x0L). It can be estimated in the same manner
as in Section 3.3, but where

m(x01, . . . , x0L) = s0b
′
0β = s0

L∑
l=1

b′0lβl =

L∑
l=1

ml(x0l),

with s0 as defined above and ml(x0l) = s0b
′
0lβl.

Even though the relationship at (15) is additive in the covariates, the regression
surface f is not. This means that partial residuals—a popular diagnostic for additive
models (Hastie and Tibshirani, 1990)—cannot be easily defined for y. However, they
can be for the values of the standardized pseudo-response z1, . . . , zn as follows.

Definition 1. For the i-th observation and j-th effect of the additive basis copula,
i = 1, . . . , n and j = 1, . . . , L, we define the j-th partial residual εi,j as

εi,j = zi −
∑
l �=j

ml(xi) = zi − si
∑
l �=j

b′ilβl,

where si is defined above.
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Figure 6: Histogram of PRICE (in $1,000) in the Boston housing dataset. Also shown
in red is the adaptive kernel density estimate (KDE).

If the model is correct, then from (6), the partial residual εi,j is a realization from a
N(mj(xi), si) distribution.

5.3 Example: Boston Housing Data

To illustrate we employ the Boston housing data (Harrison and Rubinfeld, 1978). The
data comprise observations on the median value (PRICE) of residential homes in n =
506 Boston census tracts. Also recorded are five continuous hedonic variables (NOX,
RM, DIS, LSTAT and TAX) defined in Table IV of Harrison and Rubinfeld (1978). The
dataset is a common test for flexible regression methods with PRICE as the response.
Figure 6 plots the histogram of PRICE, which is far from Gaussian, and regressions
with normal errors produce poor estimates of the functional relationships. For example,
in their analysis Smith and Kohn (1996) estimate a Box-Cox transform of PRICE and
model the errors as a mixture of two normals.

We model PRICE using the PSC smoother with the five continuous variables as
covariates. We employ the KDE of PRICE in Figure 6 for the estimate of FY . For
each covariate, a cubic B-spline basis with equally spaced knots and dim(βl) = 22
is employed. Figure 7 presents summaries of the functional relationships from the
fitted copula smoother. The left-hand panels (a, c, e, g, i) plot ‘slices’ of f̂ against
each of the five covariates, where in each panel the other four covariates are fixed to
their values for the observation with the median PRICE. Also plotted are the equiv-
alent slices of the 95% posterior probability interval for f . For comparison, we es-
timate an additive P-spline with the same basis (PS) using BayesX software. Pan-
els (a, c, e, g, i) depict the equivalent function estimates from this additive model,
and they differ from those of the copula model. The right-hand panels (b, d, f, h,
j) show the posterior mean of ml(x0l) = s0b

′
0lβl, along with 95% posterior probabil-

ity intervals for ml(x0l), for l = 1, . . . , 5. The scatterplots are of the partial residuals
{ε1,l, . . . , εn,l}.
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Figure 7: Summary of the copula smoother with an additive PSC fitted to the Boston
housing data. The left panels plot slices of the estimated regression surface f̂ for each
of (a) NOX, (c) RM, (e) DIS, (g) TAX, and (e) LSTAT, fixing the other four covariate
values to those of the median priced house. Estimates are given for both the copula
smoother (bold line) and additive PS (dashed line) for comparison. The 95% credible
intervals are also given for the copula smoother. The right panels plot m̂l and the partial
residuals {ε1,l, . . . , εn,l} for (b) NOX (l = 1), (d) RM (l = 2), (f) DIS (l = 3), (h) TAX
(l = 4), and (j) LSTAT (l = 5).
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Figure 8: Predictive densities p̂(y|x) for six houses in the Boston housing data. Each
corresponds to the house at the qth quantile of the observed prices, for (a) q = 0.025,
(b) q = 0.2, (c) q = 0.4, (d) q = 0.6, (e) q = 0.8 and (f) q = 0.975. In each panel the
predictive density is plotted for the copula smoother (red line), the Gaussian P-spline
(yellow line) and the heteroscedastic log-normal model (violet line), while the observed
price is marked with a blue vertical line.

To compare the models, we compute the mean logarithmic score for a ten-fold
cross validation as in Section 4. For the copula model MLS = −2.47, compared to
MLS = −2.86 for the additive P-spline, indicating that the copula model has more ac-
curate predictive densities. As a second benchmark, we also estimated a distributional
regression model (Klein et al., 2015) under a log-normal assumption for PRICE with
the same basis for both distributional parameters using the BayesX software. For this
estimator MLS = −2.78, again indicating lower accuracy than the copula model.

To highlight why the copula model predictions are more accurate, Figure 8 plots the
predictive densities p̂(y0|x0) from the three fitted models for six representative obser-
vations. These are the observations at quantiles q = 0.025, 0.2, 0.4, 0.6, 0.8, 0.975 of the
PRICE distribution. The predictive distributions from the copula model are generally
tighter (i.e. more ‘sharp’), and feature a high degree of asymmetry throughout. The
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predictive density in panel (f) has a spike at PRICE=$50,000, which is caused by a few
high-valued observations that are unexplained by the covariates. Earlier analysis (Smith
and Kohn, 1996) treats these as outliers, but in the copula model they are captured
by the estimated marginal F̂Y in Figure 6. In contrast, these observations are not well
modelled using either the P-spline or distributional regression in panel (f).

6 Discussion

The paper presents a general approach to construct the implicit copula of regularized
regression smoothers with Gaussian disturbances. Three diverse shrinkage priors are
considered in detail, although the approach can also be employed with other conjugate
priors. A Gaussian copula is first constructed by integrating out β, but conditioning
on the regularization parameters (θ,γ). The implicit copula is then formed by mix-
ing over their prior or posterior distributions. This conditioning trick greatly simplifies
the computation of the implicit copula, which is much harder to compute via inver-
sion of the distribution Z̃|x directly. We stress here that the implicit copula is not a
Gaussian copula, and can have a very different dependence structure as illustrated in
Figure 3.

The implicit copulas of elliptical (Fang et al., 2002) and skew-elliptical (Demarta
and McNeil, 2005; Smith et al., 2012) distributions are employed widely. More recently,
interest has grown in computing the implicit copulas of pseudo-response values of more
complex statistical models. Examples include implicit copulas of Gaussian vector au-
toregressions (Smith and Vahey, 2016), factor models (Murray et al., 2013; Oh and
Patton, 2017) and state space models (Smith and Maneesoonthorn, 2018). However, as
far as we are aware, ours is the first paper to consider constructing the implicit cop-
ula of the regularized regression smoothing models of the type considered here. Acar
et al. (2011) and Craiu and Sabeti (2012) consider copulas with dependence parame-
ters that are functions of one or more covariates. However, these are low-dimensional
copulas capturing the dependence between two or more response variables, and are
very different from those considered here. In contrast, our implicit copulas capture
the dependence between multiple values of a single response variable as a function of
the covariates, with the dependence structure inherited from the regularized regression
smoother.

In the machine learning literature Gaussian process-based regression smoothers—
such as support or relevance vector machines (Tipping, 2001)—are a popular alternative
to regularized smoothers of the type considered here. While a number of authors extend
Gaussian processes by constructing their implicit copulas (Wilson and Ghahramani,
2010; Wauthier and Jordan, 2010), we are unaware of any work constructing the implicit
copula of vector machines. Moreover, these copulas are Gaussian copulas, whereas the
implicit copulas constructed here are not. Gaussian processes have also been used as
building blocks along with conditional copulas to model non-Gaussian regression or
time series data (Wauthier and Jordan, 2010; Levi and Craiu, 2016). However, these
approaches employ low-dimensional closed form parametric copulas. In contrast, the
implicit copulas proposed here are high-dimensional and unavailable in closed form,
and are very different.
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We finish by mentioning promising directions for extension of our proposed ap-
proach. First, the implicit copulas for other popular conjugate priors for regulariza-
tion (Liang et al., 2008; Scheipl et al., 2012) may be constructed. Second, regression
smoothers with elliptical error distributions beyond the Gaussian can be considered.
When combined with conjugate priors, application of the conditioning trick will result
in the implicit copula being a mixture over the corresponding elliptical copula. Third,
while we use the copula smoother to model non-Gaussian continuous data, the cop-
ula can also be employed for modeling discrete-valued or mixed data. For these cases,
new ways to evaluate the posterior distribution of the regularization parameters are
required.

Supplementary Material

Supplementary Material for “Implicit Copulas from Bayesian Regularized Regression
Smoothers” (DOI: 10.1214/18-BA1138SUPPA; .pdf). This contains extensive additional
material organized into five Parts A–F. It includes implementation details, proofs, ad-
ditional examples, and tables and figures referred to throughout the text.

MATLAB code for “Implicit Copulas from Bayesian Regularized Regression Smoothers”
(DOI: 10.1214/18-BA1138SUPPB; .zip). This contains MATLAB files to implement the
Bayesian regularized regression smoothers outlined in the paper.
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