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Efficient Bayesian Regularization for Graphical
Model Selection

Suprateek Kundu∗, Bani K. Mallick†, and Veera Baladandayuthapani‡

Abstract. There has been an intense development in the Bayesian graphical
model literature over the past decade; however, most of the existing methods
are restricted to moderate dimensions. We propose a novel graphical model selec-
tion approach for large dimensional settings where the dimension increases with
the sample size, by decoupling model fitting and covariance selection. First, a full
model based on a complete graph is fit under a novel class of mixtures of inverse–
Wishart priors, which induce shrinkage on the precision matrix under an equiva-
lence with Cholesky-based regularization, while enabling conjugate updates. Sub-
sequently, a post-fitting model selection step uses penalized joint credible regions
to perform model selection. This allows our methods to be computationally fea-
sible for large dimensional settings using a combination of straightforward Gibbs
samplers and efficient post-fitting inferences. Theoretical guarantees in terms of
selection consistency are also established. Simulations show that the proposed ap-
proach compares favorably with competing methods, both in terms of accuracy
metrics and computation times. We apply this approach to a cancer genomics
data example.

Keywords: covariance selection, Cholesky-based regularization, joint penalized
credible regions, shrinkage priors, selection consistency.

1 Introduction

Recent technological advances in many scientific disciplines, such as genomics, imaging
and environmental sciences, have resulted in datasets with numerous variables. A conve-
nient framework for analyzing and interpreting the relationships between the variables
is provided by graphical models, which detect a network of dependencies among a group
of p measurements obtained from n samples, denoted by xi = (xi1, . . . , xip), i = 1, . . . , n.
Here, we are concerned with Gaussian graphical models for continuous data, that are de-
signed to detect conditional dependency relationships by discovering a pattern of zeros
in the inverse covariance or precision matrix, a process typically referred to as covariance
selection (Dempster, 1972). Our goal is to propose a novel, flexible and efficient Bayesian
covariance selection strategy in large dimensional settings (we consider p in several hun-
dreds) which has theoretical guarantees and encouraging numerical performance.
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Let X = (x1, . . . ,xn)
T = (xc1, . . . ,xcp) be the n× p dimensional data matrix, with

subscript c denoting the columns. The cornerstone of Bayesian approaches for Gaussian
graphical models has been discrete mixture formulations that specify

xl | ΣG ∼ N(θ,ΣG), ΣG ∼ π(ΣG | G), G ∼ π(G), l = 1, . . . , n, (1)

where the graph G is defined using a set of nodes or vertices V ∗ = {1, . . . , p} and
an edge set E = (eij) with eij = 1 if and only if the (i, j)th entry of the precision
matrix is non-zero. The term discrete mixture comes from the fact that the prior on the
covariance in model (1) can be represented as the convex linear combination π(Σ) =∑

G∈G π(G)π(ΣG | G), with G having a discrete probability distribution. For a fixed

graph G, the support of Σ−1
G is the cone M+

G , the space of all positive definite matrices
having exact zeros for off-diagonals corresponding to absent edges. Here θ denotes the
mean which is usually set to zero after centering the measurements.

Some prominent examples of discrete mixture priors include the hyper inverse–
Wishart prior (Dawid and Lauritzen, 1993) for the covariance and the G-Wishart prior
for the precision (Diaconis and Ylvisaker, 1979; Roverato, 2000; Atay-Kayis and Mas-
sam, 2005). The implementation of most of these approaches relies on reversible jump
Markov chain Monte Carlo (MCMC) algorithms (Giudici and Green, 1999; Dellaportas
et al., 2003; Wong et al., 2003; Wang and West, 2009; Green and Thomas, 2013). For a
comparison of model fitting approaches for decomposable graphical models, refer Fitch
et al. (2014). These algorithms explore the graph space and subsequently select graphs
with high posterior probabilities Pr(G|X) or estimate a graph by including edges hav-
ing a posterior inclusion probability greater than some threshold. Jones et al. (2005)
proposed the shotgun stochastic search algorithm designed to efficiently move toward
regions of high posterior probability in the model space using a parallel computing
approach, whereas Scott and Carvalho (2008) developed a greedy approach called the
feature inclusion search algorithm for decomposable Gaussian graphical models. Re-
cently, Mohammadi and Wit (2015) proposed a trans–dimensional Markov chain Monte
Carlo approach based on a continuous–time birth-death process.

As p increases, the cardinality of the graph space increases exponentially, making
it computationally intractable if not impossible for many discrete mixture-based ap-
proaches to efficiently explore the graph space. This problem is somewhat akin to known
difficulties encountered by stochastic search variable selection approaches (George and
McCulloch, 1993) in navigating the model space for large dimensional regression settings
(Bondell and Reich, 2012; Kundu and Dunson, 2014). However, the problem is far more
severe in the context of graphical model estimation, as the graph space (having cardi-
nality 2p(p−1)/2) explodes far more quickly. As a result the usual discrete mixture-based
approaches can fail to discover models with high posterior probabilities, while estimates
of the edge-specific posterior inclusion probability are susceptible to instability under
finite runs of the Markov chain Monte Carlo, as demonstrated in our simulations. More-
over in large dimensions, the results can be sensitive to the choice of the prior on the
graph space. An additional constraint is that the optimal graph is often restricted to lie
in the class of decomposable graphs, due to the computationally demanding heuristic
approximations required for non-decomposable models (Atay-Kayis and Massam, 2005;
Lenkoski and Dobra, 2011).
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Motivated by the success of shrinkage methods in Bayesian variable selection, we
propose a shrinkage approach for estimating graphical models which bypasses the limi-
tations of discrete mixture approaches and has connections with global-local priors (Car-
valho et al., 2009, 2010; Polson and Scott, 2011) in regression settings. The proposed
approach decouples model fitting and covariance selection. We first fit the full model
based on a complete graph under a class of conjugate shrinkage priors, which is denoted
as regularized inverse–Wishart priors hereafter. Our approach is novel in assigning suit-
able priors on the scale matrix of the inverse–Wishart, which can be marginalized to
induce adaptive shrinkage on the elements of the Cholesky factor of the precision matrix,
thus leading to a Cholesky-based regularization (Pourahmadi, 1999; Smith and Kohn,
2002; Wu and Pourahmadi, 2003; Frühwirth-Schnatter and Tüchler, 2008). However,
unlike the usual Cholesky-based regularization approaches, the proposed prior is order
invariant and allows for conjugate updates of the precision matrix, leading to efficient
posterior computation.

Although shrinkage priors have elegant properties and are routinely used, they do
not immediately provide an automated procedure for model selection. While some valid
thresholding approaches are available for sparse covariance matrix estimation (Bickel
and Levina, 2008; Cai and Liu, 2012), there is a lack of systematic thresholding ap-
proaches to obtain sparse precision matrices in the Bayesian paradigm. However, there
has been an increasing interest in continuous shrinkage approaches for Bayesian vari-
able selection, which apply decision theoretic methods to reduce unimportant effect
sizes to zero for model selection purposes (Fouskakis et. al, 2009; Bondell and Reich,
2012; Hahn and Carvalho, 2015). This motivates us to propose a decision theoretic ap-
proach for graphical model estimation, that uses L0 penalized joint credible regions to
perform neighborhood selection for each node. Our work is distinct compared to the
approach in Hahn and Carvalho (2015), who used expected loss functions involving a L0

penalization as a post-processing decision theoretic step for model selection. We show
that the resulting approach achieves neighborhood selection consistency for fixed and
increasing dimensions, and also yields precision matrices which are positive definite and
asymptotically consistent for fixed dimensions.

In summary, the proposed approach overcomes several difficulties associated with
existing Bayesian alternatives: (i) it obviates having to specify prior graph probabili-
ties, which can adversely affect final inferences under mis-specification; (ii) it does not
require long runs of Markov chain Monte Carlo to search over the model space, with the
computation involving a straightforward fully Gibbs sampler; (iii) it is computationally
efficient and feasible for large dimensions; (iv) it is applicable to a broad class of mod-
els, including decomposable and non-decomposable graphs; and (v) it attains selection
consistency in fixed p and pn = o(n) settings.

2 Shrinkage priors for precision matrices

2.1 The regularized inverse–Wishart prior

In this section, we propose shrinkage priors on the precision matrix characterized by
mixtures of inverse–Wishart priors on the covariance. Without loss of generality we



452 Efficient Bayesian Regularization for Graphical Model Selection

assume a zero mean model, i.e. set θ = 0 in (1), indicating the data matrix X is
appropriately centered. The general construction of the prior can be written as,

xl ∼ N(0,Σ), Σ|D ∼ Inverse Wishart(b,D), l = 1, . . . , n, (2)

where D = diag(d1, . . . , dp), and dk ∼ Gk(•), with Gk(•), k = 1, . . . , p, denoting mixing
distributions allowing for adaptive shrinkage across different scales. By setting Gk(•) to
different mixing distributions, various types of shrinkage can be obtained.

Model (2) relies on a conjugate inverse–Wishart prior on Σ = Ω−1, and varies
from the traditional discrete mixture formulation (1), in having a continuous mixture
representation for the covariance as π(Σ) =

∫
N(Σ | D)dπ(D). The traditional model

(1) constrains the support of ΩG to the cone M+
G which depends on G ∈ G, while

the continuous mixture prior in (2) has an unconstrained support M+ (the space of
all positive definite matrices). Our choice of the inverse–Wishart formulation (2) is
based on both theoretic and computational considerations: (i) it induces a Gaussian
distribution on the off-diagonals of Σ−1 (Lemma 1), which is a necessary condition in
establishing model selection consistency; and (ii) the associated conjugacy allows us to
draw posterior samples of Σ−1 in an efficient manner even for large dimensions.

Some notations we use hereafter are defined as follows. The covariance matrix is
denoted as Σ ≡ Σp = (Σp−1,11 σp,21

σp,12 σp,pp
), with Σ−1

k,11 ≡ Ωk = (Ω
k−1
11 ωk,21

ωk,12 ωk,kk
), where Σp−1,11

denotes the principal minor of dimension p − 1 derived from the first p − 1 rows and
columns of Σ, and Ωk−1

11 denotes the principal minor of dimension k−1 for Ωk. Let ωk,ij

denote the j-th element in the i-th row of Ωk.

We now state the following well-known result as a Lemma (Carvalho and Scott,
2009), which serves as a first step toward understanding the regularization properties
of the prior in (2). The Lemma captures the distribution of elements in the last row of
Σ−1 ≡ Ωp conditional on D. The corresponding result for any row can be adapted in a
straightforward manner.

Lemma 1. For Σ ∼ Inverse Wishart(b, diag(d1, . . . , dp)), we have π(ωp,pp) = Ga(ωp,pp |
b/2; dp/2), and, π(ωp,12 | ωp,pp) =

∏p−1
l=1 N(ωp,pl | 0;ωp,pp/dl).

Lemma 1 shows us that the precision off-diagonals have a scale mixture representa-
tion under a prior on d1, . . . , dp, and a careful choice of Gk(•) is likely to yield a prior on
Σ−1 with desirable shrinkage properties. We propose the following priors on d1, . . . , dp,
which achieves joint regularization for all the elements in Σ−1 (see Theorem 1)

dk ∼ Inverse Gamma((b+ 1)/2, λ2
k/2), λk ∼ Ga(aλ,k, bλ,k), k = 1, . . . , p, (3)

where b is the degrees of freedom of the inverse–Wishart prior in (2). The hyperparam-
eters λ = (λ1, . . . , λp) control the shrinkage under our approach, and one can propose
hyperpriors on λ as in (3) to achieve a hierarchical specification that lets the data
control the degree of shrinkage. We demonstrate the shrinkage properties induced by
λ in Figure 1, which plots the density of the precision off-diagonals under formulation
(2)–(3), for varying shrinkage parameters. From Figure 1, it is evident that higher val-
ues of λ/b encourage greater shrinkage. We provide an analytic justification for such a
phenomenon in Remark 3 in the next section.
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Figure 1: Prior realizations for precision off-diagonals under the regularized inverse–
Wishart prior for λ = 5 (solid), λ = 10 (dashed), and λ = 15 (dotted). Left panel has
b, p = 10, right panel has b, p = 20.

Due to its regularization properties as elaborated in the next section, we denote the
prior formulation in (2)–(3) as the regularized inverse–Wishart prior on the covariance
matrix. We note that our specification is related but different to Huang and Wand
(2013) whose focus was on covariance matrix estimation. They had a similar generic
specification as in (2), but used conjugate Gamma priors on d1, . . . , dp, which resulted in
the elements of the covariance matrix having marginally non-informative distributions
for certain hyper-parameter choices. However, such an approach is not equipped to
provide adequate regularization for precision off-diagonals, and may perform much worse
compared to the regularized inverse Wishart method in terms of graph estimation, as
demonstrated is simulations. We note that while it is also possible to use a fixed choice of
D, our hierarchical specification is motivated by global-local priors resulting in adaptive
shrinkage.

2.2 Connections to Cholesky-based regularization

Next, we explicitly establish how the regularized inverse–Wishart prior induces shrink-
age in Σ−1 through equivalence with a Cholesky-based regularization approach. Note
that model (2) allows for the following equivalent representation as a set of regressions

xk = −
k−1∑

l=1

ω−1
k,kkωk,klxl + εk, εk ∼ N(0, ω−1

k,kk), k = 1, . . . , p, (4)

with the order of equations being irrelevant to the subsequent discussion and theory. The
series of equations (4) suggests that Σ−1 = T ′V −1T , with V = diag(ω−1

p,pp, . . . , ω
−1
1,11)

and T being a lower triangular matrix that has tkl = ω−1
k,kkωk,kl, l < k and tkk = 1, k =

1, . . . , p. Equation series (4) is equivalent to a Cholesky decomposition, with the upper
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triangular matrix T ′V −1/2 being the Cholesky factor. Since Σ−1 = (T ′V −1/2)(V −1/2T ),
the regularized inverse–Wishart prior on Σ will induce corresponding priors on the
elements of the Cholesky factor consisting of the regression coefficients in (4). Theorem
1 shows that the induced prior after marginalizing out D in (2)–(3) regularizes the
elements in the Cholesky factor T ′V −1/2, and hence the off-diagonal elements in Σ−1.

Theorem 1. Under the prior defined in (2) and (3), we can marginalize out D to obtain

π(Ω|λ) ∝
∏p

k=1 λ
b
k(ωk,kk)

(b+p−1)/2 exp(−λp(ωp,pp)
1/2+

∑p−1
k=1 λk(|

∑p−k−1
l=0 ω−1

p−l,p−l,p−l×
ω2
p−l,p−l,k + ωk,kk|)1/2 ).

The proof is presented in the Supplementary Materials (Kundu et al., 2018), and

relies on the fact that trace(DΩP) = dpωp,pp+
∑p−1

k=1 dk(
∑p−k−1

l=0 ω−1
p−l,p−l,p−lω

2
p−l,p−l,k+

ωk,kk), as well as using the identity det(ΩP) =
∏p

k=1 ωk,kk. It is straightforward to see
that the resulting prior π(Ω|λ) is proper.
Remark 1. The prior in Theorem 1 is maximized with respect to λk when λk =
b(|

∑p−k−1
l=0 ω−1

p−l,p−l,p−lω
2
p−l,p−l,k + ωk,kk|)−1/2, and similar conclusions hold for any el-

ement in λ. The above can be seen by taking the logarithm of π(Ω | λ) as expressed
in Theorem 1, and then differentiating both sides with respect to λk and subsequently
equating to zero. Thus, a large value of λk/b implies shrinkage for the elements of the
Cholesky factor T ′V −1/2 and supports our earlier observation in Figure 1 that larger
values of λk, k = 1, . . . , p, encourage greater shrinkage in Σ−1.

Remark 2. Although Theorem 1 imposes shrinkage due to equivalence with Cholesky-
based regularization, it has an important difference in terms of being order invariant.

2.3 Posterior computation steps

The Markov chain Monte Carlo sampler for the regularized inverse–Wishart approach
proceeds by using a straightforward fully Gibbs approach, and employing conjugacy to
sample the precision matrices as a whole. We consider Gamma hyperpriors on λk ∼
Ga(aλ,k, bλ,k), k = 1, . . . , p, and fix b = 3 in our computations as in Jones et al. (2005).
The posterior computation steps are highlighted in the Supplementary Materials.

3 Model selection and consistency

3.1 Model selection

We develop a post-Markov chain Monte Carlo fitting strategy for graphical model esti-
mation, which assigns exact zeros to precision off-diagonals that correspond to absent
edges, by using a decision theoretic approach incorporating joint penalized credible re-
gions. We note that the proposed decision theoretic approach is very general since (a) it
can be applied to posterior samples of Σ−1 under any prior specification; and (b) it does
not make any assumptions about the underlying graph structure, which allows for both
decomposable and non-decomposable graphs. The decision theoretic approach performs
neighborhood selection (Meinshausen and Bühlmann, 2006) for each node in the graph,
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which are then combined to obtain estimates for the entire edge set. The neighborhood
for node i ∈ V ∗ is defined as nei = {j ∈ V ∗ \ {i} : (i, j) ∈ E}, and is estimated by using
equivalent L0 minimization based approaches in regression settings. In this paper, we
adapt the approach proposed by Bondell and Reich (2012) to our context, which uses
an approximation to solve the L0 problem and is briefly summarized below.

For a n× 1 vector of responses y and n× p covariate matrix Z, Bondell and Reich
(2012) first fit the full regression model

y = Zβ + ε, εi ∼ N(0, σ2), βj ∼ N(0, σ2/τ), σ2 ∼ π(σ2), i = 1, . . . , n, j = 1, . . . , p,
(5)

and subsequently perform variable selection under a post-MCMC decision theoretic ap-
proach. First, they estimate an ordered sequence of models corresponding to a sequence
of credible regions Cα that have probability content 1 − α, with α ∈ (0, 1) indexing
the sequence. The model corresponding to a credible region Cα is obtained via a sparse
solution for β induced by minimizing the L0 norm ||β||0 which constrained to lie within
Cα. In particular, they use the following criteria

β̃ = arg minβ ||β||0, subject to β ∈ Cα = {β : (β − β̂)T Σ̂−1(β − β̂) ≤ Cα}, (6)

where Pr(β ∈ Cα) = 1−α, and β̂, Σ̂ are the posterior mean and covariance of β, based
on the full model (5). Since solving the exact L0 minimization problem (8) involves a
combinatorial search which is computationally infeasible for moderate to high dimen-
sions, they approximate the L0 criterion by a smooth homotopy between L0 and L1,
which can be solved using existing algorithms such as least angle regression (Efron et al.,
2004). Finally, an optimal value of α is chosen from the sequence, which yields a point
estimate comprising exact zero effect sizes for unimportant predictors.

Coming back to our graphical model selection context, denote βk = {βkj = −ω−1
p,kk×

ωp,kj : j �= k}, k = 1, . . . , p, which are nothing but the conditional regression coefficients
in the following equivalent representation under our original formulation (2)

xik =

p∑

j �=k,j=1

βkjxij + εik, εik ∼ N(0, ω−1
p,kk), βkj ∼ N(0, ω−1

p,kk/dj),

ωp,kk ∼ Ga(b/2, dk/2), D ∼ π(D), j �= k, j = 1, . . . , p, (7)

where the conditional normality of the regression coefficients in (7), which is necessary
for establishing model selection consistency, is guaranteed by the inverse–Wishart prior
on Σ. After convergence of the Markov chain Monte Carlo, the posterior samples of
(ωp,kk,βk) can be viewed as arising from the stationary distribution π(ωp,kk,βk|X),
implied by (7). It is worth pointing out here that although the reverse process of fit-
ting the series of p regression models in (7) may potentially result in similar edge set
estimates under suitable choices of hyper-parameters, it is not a valid joint distribu-
tion procedure, does not yield positive definite precision matrix estimates, and involves
two times the number of parameters compared to the proposed approach. Hence we
do not consider this alternate approach further in our work. Finally, we note that the
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hierarchical formulation (2) specifies a global-local prior (Polson and Scott, 2011; Car-
valho et al., 2009, 2010) on the conditional regression coefficients in (7), with ωp,kk and
d−1
j , j �= k, j = 1, . . . , p, being the global and local scale parameters under the k-th

regression. The global scale parameter controls the global shrinkage to the origin, and
the local scales allow deviations in the degree of shrinkage, which enables a sharp spike
at zero along with thick tails where necessary.

The posterior samples of Σ−1 can then be used directly to obtain posterior realiza-
tions of βk, k = 1, . . . , p. Further, we note that (7) is very similar to regression model
(5), which allows us to adapt the penalized joint credible region approach to obtain a
sparse solution of βk corresponding to level α as

β̃
α

k = arg minβk
||βk||0, subject to βk ∈ Cα = {βk : (βk − β̂k)

T Σ̂k
−1

(βk − β̂k) ≤ Cα},
(8)

where β̂k and Σ̂k are the posterior mean and covariance of βk respectively, under

the regularized inverse–Wishart approach. The solution β̃
α

k corresponds to a distinct
estimated neighborhood n̂ek,α={l ∈ V ∗ : β̃α

kl �= 0, l �= k} for node k ∈ V ∗, since

β̃α
kj = 0 implies that the (k,j)-th precision matrix element is zero under the equivalence

βkj = −ω−1
p,kkωp,kj , j �= k, k = 1, . . . , p. As in Bondell and Reich (2012), we solve an

approximate version of the L0 optimization in (8). The proposed solution is unique for
both p ≤ n and p > n settings for each regression in (7). The details of the computational
procedure for the solution can be found in Section 3.2.

Under our approach, two estimates for the edge set are possible for a given α: Êα,∧ =

{(k, l) : k ∈ n̂el,α ∧ l ∈ n̂ek,α} and Êα,∨ = {(k, l) : k ∈ n̂el,α ∨ l ∈ n̂ek,α}. Although the
two edge sets are not guaranteed to be equal for finite samples, both estimates are equal
asymptotically due the neighborhood selection consistency, as elaborated in Theorem 2.
Hereafter, we suppress the second subscript and denote the estimated edge set for level
α as Êα. The precision matrix corresponding to level α can be computed as Ω̂Êα

= Ω̂⊗
ADJα, where Ω̂ is the posterior mean of the Markov chain Monte Carlo samples under
the regularized inverse–Wishart approach, ADJα is the adjacency matrix corresponding
to the edge set Êα and ⊗ denotes the element-wise product. As demonstrated in the
next section, a careful choice of α depending on n leads to asymptotic consistency for
Ω̂Êα

for fixed p settings, which also implies asymptotic positive definiteness.

Noting that the above estimate for the precision matrix is not guaranteed to be
positive definite for finite samples, we propose an alternate estimator obtained by fixing
the off-diagonals corresponding to absent edges to be zero, while rescaling the elements
in the Cholesky factor of Ω̂ in order to ensure positive definiteness. The estimator and
the algorithm needed to obtain it, are described in Section 3.5.

3.2 Computation steps for neighborhood selection

Following Bondell and Reich (2012), who noted that solving an exact L0 minimization
problem involves a combinatorial search which is computationally infeasible for moder-
ate to high dimensions, we replace the L0 criterion in (8), by a criterion proposed by Lv
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and Fan (2009) which is a smooth homotopy between L0 and L1. Instead of optimizing
(8) under the L0 penalty, we use the modified penalty

∑p
j=1,j �=k τa(|βkj |) where

τa(|t|) = (
|t|

a+ |t| )I(|t| �= 0) + (
a

a+ |t| )|t|, a > 0. (9)

The above homotopy approximates the L0 criteria in the limiting sense as τ0(|t|) =
lima→0+ τa(|t|) = I(|t| �= 0). Thus, as an approximation to (8) in the article, the k-th
neighborhood is now obtained by minimizing

p∑

j=1,j �=k

lim
a→0+

τa(|βkj |) subject to βk ∈ Cα,k, k = 1, . . . , p. (10)

As in Bondell and Reich (2012), the above can be solved using a local linear ap-
proximation (Zou and Li, 2008) which reduces the modified optimization problem (10)
to

β̃k = arg minβk
(βk − β̂k)

T Σ̂−1
k (βk − β̂k) + Δα

p∑

j=1,j �=k

lim
a→0+

(a+ |β̂kj |)−2|βkj |,

= arg minβk
(βk − β̂k)

T Σ̂−1
k (βk − β̂k) + Δα

p∑

j=1,j �=k

β̂−2
kj |βkj |, (11)

where Δα corresponds to a penalty parameter having a one-to-one correspondence with
α. The above is a Lagrangian optimization problem and can be equivalently written as

β̃∗
k = arg minβ∗

k
(Y ∗

k −X∗
kβ

∗
k)

T (Y ∗
k −X∗

kβ
∗
k) + Δα

p∑

j=1,j �=k

|β∗
kj |, (12)

where Y ∗
k = Σ̂

−1/2
k β̂k, X∗

k = Σ̂
−1/2
k Bk, and Bk is a diagonal matrix having elements

β̂2
kj , j �= k, j = 1, . . . , p. Equation (12) is just the usual LASSO problem and can be

solved using the efficient LARS algorithm, and solution for the original quantity of
interest can simply be obtained using β̃k = Bkβ̃

∗
k . For p < n settings, the above is a

strictly convex problem with having full rank (i.e. rank(X∗
k)=p − 1), and hence has a

unique solution. For p > n, results in Tibshirani (2013) suggest that our solution is
unique with probability one, as the responses are continuous under our set-up.

We note that the proposed neighborhood selection method via penalized credible
regions can be interpreted as a decision theoretic approach. In particular, the solution
to the neighborhood estimation equation (11) can be approximated as the minimizer
to an expected loss function as in the following Lemma. Let D̃−k denote the posterior
mean for diagonal matrix D without the k-th diagonal entry, and let ||β||2

2,A1/2 denote

the scaled L2 norm βTAβ.

Lemma 2. The solution to equation (11) corresponding to level α can be approximated

as β̃
α

k = arg minβk
Δα||βk||0 + ||X−kβk −X−kβ̂k||22,(1/√s̃k)I

+ ||βk − β̂k||22,(1/√s̃k)D̃
1/2
−k

,

where ||β||2
2,A1/2 = βTAβ and s̃k → ω−1

0,kk.
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The proof is presented in the Supplementary Materials. In the above decision the-
oretic criteria, the first term determines the sparsity of the solution, the second term
is based on an expected scaled squared loss function under a posterior predictive dis-
tribution similar to the loss function for regression in Hahn and Carvalho (2015), and
the third term imposes an additional scaled squared loss penalty which encourages
the solution for the regression coefficients to concentrate around the posterior mean
of the regression coefficients. The scaling matrices (1/s̃k)I and (1/s̃k)D̃−k account for
the variance corresponding to the prior βk ∼ N(0, ω−1

p,kkD
−1
−k) under the regularized

inverse-Wishart prior.

3.3 Selection consistency

In this section, we establish that the proposed model selection approach leads to consis-
tent neighborhood selection under some suitable assumptions. Suppose that for a given
sample of size n, we estimate the neighborhood corresponding to level αn in the ordered
sequence, and denote the corresponding estimated neighborhood for the k-th node as
n̂ek,n. By choosing αn such that 1−αn → 1 as n → ∞, we attain neighborhood selection
consistency which is mathematically defined as P (n̂ei = ne∗i ) → 1, as n → ∞, for all
i ∈ V ∗, where n̂e and ne∗ refer to the estimated and true neighborhoods respectively. In
other words, the probability of the estimated neighborhood for each node being equal
to the true neighborhood asymptotically goes to 1 as the coverage increases with n.

For a sample size n, denote the credible region for βk with content 1−αn as Cn,k =

{βk : (βk − β̂k)
T Σ̂−1

k (βk − β̂k) ≤ Cn}. Let E0 be the true edge set corresponding to an
undirected graph and having true neighborhood nek0 for node k, k = 1, . . . , p. Consider
the following assumptions:

(A1) The true model is x ∼ N(0,Ω−1
E0

), where ΩE0 = (ω0,ij)
p
i,j=1 has exact zeros for

the off-diagonals corresponding to absent edges in E0.

(A2) ΩE0 is positive definite with c1n
−1/2 < ω−1

0,ii|ω0,ij | < c2 for finite and positive
constants c1, c2, for all {ω0,ij : (i, j) ∈ E0}.

(A3) When pn = o(n), each node has a finite number of neighbors.

Assumption (A1) states that the true model is a Gaussian graphical model with
edge set E0. Assumption (A2) implies that the true precision off-diagonal elements
corresponding to edges in E0 are sufficiently large but bounded above. Assumption
(A3) ensures that the true model is sparse under increasing dimensions. The following
Theorem establishes selection consistency.

Theorem 2. For fixed p, suppose assumptions (A1)–(A2) hold, and choose a sequence
of credible regions Cn,k such that Cn → ∞ and n−1Cn → 0. For pn = o(n), suppose
assumptions (A1)–(A3) hold, and choose Cn,k such that Cn → ∞, p−1

n Cn → ∞ and
n−1Cn → 0. Then neighborhood selection consistency is attained under the regularized
inverse–Wishart approach for both cases.
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The proof of Theorem 2 is provided in the Supplementary Materials. Let the esti-
mated generic edge set for level αn be denoted as Ên, with the corresponding estimated
precision matrix denoted as Ω̂Ên

. The following result holds for both Ên,∧ and Ên,∨ for
the case of fixed p.

Corollary 1. If neighborhood selection consistency holds, then Pr(Ên = E0) → 1 and
Pr(Ω̂Ên

= ΩE0) → 1 as n → ∞, for fixed p.

The first part of Corollary 1 follows since the conditional independence structure
of a multivariate normal can be consistently estimated by combining the neighborhood
estimates of all variables, for fixed p. The edge set estimates, Ên,∧ and Ên,∨, converge
asymptotically when the truth is a Gaussian graphical model, due to consistent selection
of the neighborhoods in Theorem 2. The proof for the second part of Corollary 1 is
in the Supplementary Materials. Since ΩE0 is positive definite by assumption, Ω̂Ên

is
asymptotically positive definite for fixed p.

The above results are based on the assumption that the scale matrix D is diagonal.
However, the next Corollary shows that consistency still holds under a non-diagonal
D ∈ M+ under the following additional assumption. The proof is presented in the
Supplementary Materials. Let D−k denote the D matrix excluding the k-th row and
column, dT

k,−j denote the k-th row of D excluding the j-th element, and Ω0,k denote the
true precision matrix of (x1, . . . , xk−1, xk+1, . . . , xp).

(A4) All elements of D are o(n) and limn→∞(1/n)Ω0,kD
−1
−kd

T
k,−j → 0pn for pn = o(n),

with 0pn denoting a zero vector with pn elements.

Corollary 2. Suppose D ∈ M+ is fixed and non-diagonal, and that assumptions (A1)–
(A4) hold. Then the neighborhood selection consistency holds as in Theorem 2.

3.4 Edge selection based on false discovery rates

Bayesian methods usually obtain point estimates of the graph by including edges that
have a posterior probability > 0.5, or reporting the graph that has the highest log
marginal likelihood. In lieu of these approaches, we propose an approach based on
controlling the false discovery rate, which includes a natural multiplicity correction and
can directly control the level of sparsity in edge selection. This approach is based on
the strategy that the edges which are strongly supported by the data will likely appear
often in the ordered sequence of neighborhoods computed via penalized credible regions,
whereas other edges with weaker evidence will likely appear less often. This approach has
similarities to the one used to compute brain network using sliding window correlations
(Monti et al., 2014).

Instead of specifying a confidence level α and then computing the corresponding
neighborhoods, the proposed strategy for edge selection instead relies on fitting a se-
ries of neighborhoods for varying sparsity levels corresponding to different values of the
penalty parameter Δα which has a one-to-one but highly non-linear relationship with α
(Bondell and Reich, 2012). After fitting a series of neighborhoods corresponding to vary-
ing sparsity levels, we select those edges as important which have pseudo-probabilities
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greater than some threshold, where these pseudo-probabilities are computed based on
the frequency of occurrence of an edge in the ordering. We adapt the approaches in Mor-
ris et al. (2008) and Baladandayuthapani et al. (2010) to determine such a threshold,
which is designed to control false discovery rates and is described below.

We first compute a pseudo posterior inclusion probability matrix P = (Pij) by
computing the proportion of times each edge is included in the ordering of graphs
based on the sequence of credible regions having probability content {(1 − αm)}Rm=1,
where R is the chosen number of credible regions in the sequence. Then 1 − Pij can
be considered akin to Bayesian q-values, or estimates of the “local false discovery rate”
(Newton et al., 2004), as they measure the probability of a false positive if the (i,j)-th
edge is called a ‘discovery’ or is significant. Given a desired global false discovery rate
bound η ∈ (0, 1), one can determine a threshold cη that flags the set of important edges

as Êη = {(i, j) : Pij ≥ cη}. This yields a point estimate of the graph.

The threshold cη can be chosen in the following manner. Let vec(P ) be the vector-
ized upper triangular matrix of P excluding diagonals, containing the pseudo posterior
inclusion probabilities of the edges stacked column–wise. We first sort vec(P ) in de-
scending order to yield the sorted vector vec(P̃ )={P̃k, k = 1, . . . , p(p− 1)/2}. Then we

can estimate cη as the ζ-th entry of vec(P̃ ), where ζ = max{j∗ : 1
j∗

∑j∗

k=1 P̃k ≤ η}, and
a lower value of cη leads to sparser graphs, while simultaneously controlling the FDR
at a pre-specified level. However, we would note that this FDR is based on pseudo-
probabilities which may not reflect the true posterior edge inclusion probabilities, and
hence these FDR values and associated pseudo-probabilities need to be interpreted with
care. Finally, if the upper limit of Δα is increased drastically, or alternately, if all the
Δα values lie within a very small neighborhood of zero, then the resulting estimated
graph may be somewhat sensitive to such choices. However, by choosing the threshold
cη appropriately, one can mitigate the sensitivity to the grid values to a large extent
and obtain similar graphs with comparable false discovery rates.

3.5 Algorithm for estimating positive definite precision matrix

We propose an algorithm for estimating the precision matrix which rescales the elements
of the Cholesky factor of the posterior mean of Ω given a set of zero entries under
the estimated graph, in a manner that ensures positive definiteness. This algorithm
is derived based on the results in Chan and Jeliazkov (2009), who propose a Markov
chain Monte Carlo sampling approach for restricted covariance matrices. Our algorithm
is different from their approach, and focuses on the inverse covariance matrix while
requiring only a series of post-Markov chain Monte Carlo deterministic steps, instead
of having to sample restricted precision matrices at each Markov chain Monte Carlo
iteration. The resulting approach is thus computationally efficient even for large p. The
algorithm takes in the positive definite posterior mean Ω̂ and the estimated edge set
Ê as inputs, and outputs another positive definite estimate Ω∗ which has exact zeros
corresponding to absent edges in Ê.

Using the form of the Cholesky factor in the proof of Theorem 1 and similar to eqn
(18) in Chan and Jeliazkov (2009), it is straightforward to see that setting ωkl = 0
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leads to an adjustment in the Cholesky factor matrix as ω̃k,kl = −ω−1
l,ll

∑l−1
h=1 ωk,khωl,lh,

where ω̃k,kl is the modified value for the (k,l)-th element in the Cholesky factor which
maintains positive definiteness of the precision matrix under the restriction ωkl = 0. It
is understood that the right hand side of the equation is zero when summing over the
empty set (i.e. ω̃k,k1 = 0). We propose the following post-Markov chain Monte Carlo

algorithm which takes as inputs the estimated graph Ĝ having edge set Ê, and the
posterior mean of the precision matrix Ω̂, and outputs a positive definite matrix with
exact zeros for absent edges.

Algorithm 1. Step 1: Accept Ω̂ = (T ∗)F (T ∗)T , the posterior mean of Ω as the input,
along with the estimated edge set Ê, where T ∗ = (tij) is a lower triangular matrix and
F = diag(f1, . . . , fp).

Step 2: For increasing k = 2, . . . , p, and l = 2, . . . , k− 1, if edge (k, l) is absent in Ê,

modify the (k, l)-th element in T ∗ as −(1/fl)
∑l−1

h=1 tkhtlhfh. It is understood that the
(k, l)-th element is updated before the (k, l′)-th element in T ∗, for 1 ≤ l < l′ ≤ k − 1.
Note that this step implies that we fix the (k, 1)-th element in the Cholesky factor T ∗

as zero if edge (k, 1) is missing from Ê.

Step 3: The final estimated precision matrix is given as Ω∗ = LF (L)T , where L now
denotes the modified lower triangular matrix obtained by rescaling all elements in T ∗

corresponding to absent edges in Ê, and F is unchanged.

This estimate Ω∗ is guaranteed to be positive definite, and the number of steps
required to compute Ω∗ is equal to the number of absent edges. For greater clarity,
we present a toy numerical example of the proposed positive definite estimator in the
Supplementary Materials.

3.6 A related approach

We note that the idea of fitting a posterior distribution and then performing a post-
MCMC decision theoretic step was also proposed recently in Hahn and Carvalho (2015).
They primarily focused on variable selection in the context of a Bayesian linear re-
gression model and extend the approach to graphical models, using a post-processing
decision theoretic step which involved minimizing the expected loss E(L(Ỹ ,γ)). For
graphical model selection, the Hahn and Carvalho (2015) approach reduces to minimiz-
ing the expected loss function

arg min ΩE[λ||Ω||0 − log(det(Ω))− n−1tr(X̃X̃TΩ)]

= arg min Ω{λ||Ω||0 − log(det(Ω))− n−1tr(Σ̄Ω)}, (13)

where Ω represents the inverse covariance matrix, Σ̄ denotes the posterior mean of the
covariance matrix, and the expectation is taken with respect to the posterior predictive
distribution of X̃. The authors propose to solve a surrogate problem by replacing the
L0 penalty in (13) with the L1 penalty, which can be solved using a graphical lasso
(Friedman et al., 2008) algorithm.
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Although both approaches operate by fitting a Bayesian model, and then performing
a post-processing step involving a L0 penalization to estimate the model, there are im-
portant differences. Firstly, the proposed approach is based on neighborhood selection
via penalized joint credible regions, whereas the Hahn and Carvalho (2015) relies on
sparse precision matrix estimation. Second, our article develops a novel prior on the co-
variance matrix, which induces shrinkage on the precision matrix off-diagonals, whereas
the Hahn and Carvalho (2015) article did not focus on developing novel priors. Third, the
two approaches choose the tuning parameters (Δα and λ) in a completely different man-
ner – the Hahn and Carvalho (2015) method uses the full posterior distribution, while the
proposed approach fits a series of models under a sequence of tuning parameter values,
and then selects the optimal graph using a criteria designed to control for false positive
rates. Moreover, the proposed approach has attractive theoretical properties in terms of
graphical model selection consistency, even when the number of nodes grows with the
sample size, whereas the theoretical properties of the graphical modeling approach in
Hahn and Carvalho (2015) have not been vetted, to our knowledge. The two approaches
also perform differently in numerical studies, as elaborated in the simulation section.

4 Simulation studies

4.1 Description

We present several simulation scenarios comparing our approach to (a) frequentist
graphical lasso (Friedman et al., 2008); (b) neighborhood selection approach by Mein-
shausen and Bühlmann (2006); (c) the hyper inverse–Wishart approach employing re-
versible jump Markov chain Monte Carlo (Giudici and Green, 1999); (d) shrinkage
approaches such as the Bayesian graphical lasso and Bayesian adaptive graphical lasso
(Wang, 2012); and (e) the unregularized inverse–Wishart prior which has the same for-
mulation as (2), but with D = dIp and d ∼ Ga(1, 1), which resembles the prior in Huang
and Wand (2013). The Matlab code for the Bayesian lasso and adaptive lasso were ob-
tained from the supplementary materials of Wang (2012), while the frequentist graphical
lasso and the method by Meinshausen and Bühlmann (2006) were implemented using the
‘glasso’ package in R. We wrote the code for implementing the reversible jump Markov
chain Monte Carlo under the model xi ∼ N(0,ΣG),ΣG | G ∼ HIW (b,D), i = 1, . . . , n,
with G ∼ π(G) is restricted to the class of decomposable graphs, and π(G) defined by
independent Bernoulli(p∗) priors on the edge inclusion indicators. Here p∗ ∼ U(0, 1) and
HIW refers to the hyper inverse–Wishart prior. For the shrinkage procedures, 15000
MCMC iterations with a burn in of 5000 was used, while 100000 iterations with burn
in of 10000 was used for the discrete mixture approach (c), with the initial adjacency
matrix corresponding to a null graph.

We considered several cases for data-generation, with each case having 50 repli-
cates. We fit a slightly modified model (2) for p > n settings, by specifying D ∼
Wishart(bD, Ip), where D ∈ M+ is no longer constrained to be diagonal.

Case I. Data is generate from a Gaussian distribution with the covariance matrix being
a fractional Gaussian noise process having elements
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σij =
1

2

[
||i− j|+ 1|2H − 2|i− j|2H + ||i− j| − 1|2H

]
,

where H ∈ [0.5, 1] is the Hurst parameter, and chosen to be H = 0.7.

Case II. We generate data emulating a real data application, using mRNA expression
levels for 49 genes that are available from The Cancer Genome Atlas portal. The full
details and the corresponding results are available in the Supplementary materials.

Case III. We generate data from a two component mixture of Gaussians, i.e. xi ∼
πN(−1p,Σ) + (1 − π)N(1p,Σ), where 1p denotes a p-vector of ones, Σ is defined as in
Case I, and π ∈ (0, 1) is the mixing proportion. This case corresponds to a non-Gaussian
truth, violating the Gaussian assumption inherent in our formulation.

Case IV. We generate data from a Gaussian graphical model as in Peng et al. (2009),
where the edges were generated randomly with probability 0.002, and the precision
matrix off-diagonals were set to zero for absent edges and were generated from a
U(−1, 1) distribution otherwise, with the k-th diagonal then being computed as ωkk =
1 +

∑
l �=k |ωkl|, to maintain diagonal dominance. This case corresponds to a sparse

graphical model.

In addition to the above cases, we also look at another simulation scenario based
on a genomics example, the results for which are presented in the Supplementary sec-
tion. Since Cases I and III considered here correspond to non-sparse precision matrices
having few exact zero entries, we adopt a slightly different notion to define the true
edge set. In particular, the true edge set includes all edges corresponding to absolute
partial correlations greater than a certain threshold cm. We examine point estimates
corresponding to true edge sets ES025 and ES005, obtained by choosing cm = 0.025,
and cm = 0.005 respectively. The edge set ES005/ES025 essentially treats all edges
corresponding to an absolute partial correlation > 0.005/0.025 as important and other
edges as unimportant.

For our approach, the point estimate is obtained under a false discovery rate of 0.2,
whereas the estimates for the frequentist approaches were obtained by minimizing a
Bayesian Information Criteria or BIC, as in Yuan and Lin (2007). The point estimate of
the graph under the discrete mixture approach corresponds to all edges having posterior
inclusion probability ≥ 0.5, while the heuristic thresholding method of Wang (2012) is
adopted for Bayesian graphical lasso.

4.2 Results

For comparing results, we look at the area under the curve as well as the sensitivity and
specificity levels under the point estimate for the graph. We also report the sensitivity
corresponding to a specificity of 90% for p > n cases. The results are presented in
Tables 1–2, and the ROC curves for Case I are illustrated in Figure 2. In addition, we
examined if the reported metrics are significantly better under one particular method
compared to others using a permutation test. We note that it was not feasible to obtain
results for competing Bayesian approaches under p > n settings due to an unrealistic
computational burden.
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Case I (p < n)
(n, p) 300,100 400,200 500,100 500,200

ROC005 ROC025 ROC005 ROC025 ROC005 ROC025 ROC005 ROC025

RIW 66 90 66 90 66 90 68 91
GL 61 84 64 85 64 87 63 85
MB 58 75 60 78 60 79 60 79
IW 58 82 61 86 58 85 60 83
BGLA 55 69 57 72 52 72 59 71
BGAD 58 71 56 75 56 76 60 75
HIW 53 67 57 60 51 65 58 62
HC 67 90 68 91 67 89 68 92
(n, p) 300,100 400,200

SP005 SE005 SP025 SE025 SP005 SE005 SP025 SE025

RIW 95 25 91 61 98 18 98 55
GL 99 07 99 23 99 07 99 28
MB 100 0 100 0 100 0 100 0
IW 97 14 95 51 94 19 97 49
BGLA 80 34 80 61 87 28 88 47
BGAD 94 19 94 43 95 19 95 41
HIW 99 07 99 19 99 06 99 08
HC 100 11 100 35 100 12 99 37
(n, p) 500,100 500,200

SP005 SE005 SP025 SE025 SP005 SE005 SP025 SE025

RIW 92 33 90 75 98 24 91 78
GL 99 07 99 33 99 07 99 28
MB 100 0 100 0 100 0 100 0
IW 98 14 93 71 98 11 98 69
BGLA 74 47 72 72 85 33 84 60
BGAD 95 23 93 47 95 21 95 45
HIW 99 08 99 22 99 07 99 11
HC 100 12 99 38 100 12 100 37

Table 1: Area under the curve for true edge sets ES005 (ROC005) and ES025 (ROC025)
under Case I for p < n, along with the sensitivity and specificity under the point esti-
mate. The largest squared standard errors across rows corresponding to the area under
the curve are 0.01, 0.008, 0.01, 0.01, 0.01, 0.008, 0.07 and 0.03 for p < n. The reported
estimates are inflated by 100. RIW, IW, BGLA, BGAD, HIW, GL, MB, and HC, refer to
regularized inverse-Wishart, inverse-Wishart, Bayesian graphical lasso, Bayesian adap-
tive graphical lasso, hyper inverse-Wishart, frequentist graphical lasso, Meinshausen and
Bühlmann (2006) method, and the approach by Hahn and Carvalho (2015), respectively.
Results based on 50 replicates.
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Case I
(n, p) 200,300 200,400 200,300 200,400
Method ROC005 ROC025 ROC005 ROC025 SE005∗ SE025∗ SE005∗ SE025∗

RIW 66 83 64 83 32 63 33 64
GLASSO 61 77 60 77 31 63 31 64
MB 56 71 56 70 25 54 24 53
HC 64 81 64 81 33 63 34 65
(n, p) 200,300 200,300 200,400 200,400
Method SP005 SE005 SP025 SE025 SP005 SE005 SP025 SE025
RIW 99 10 99 27 99 10 99 25
GLASSO 99 04 99 17 84 18 91 18
MB 99 10 99 30 99 10 99 31
HC 100 05 100 22 99 03 99 21

Case III
(n, p) 200,300 200,400 200,300 200,400
Method ROC005 ROC025 ROC005 ROC025 SE005∗ SE025∗ SE005∗ SE025∗

RIW 65 83 65 83 33 65 32 64
GLASSO 61 77 61 76 33 66 32 64
MB 57 72 56 72 24 54 24 54
HC 64 81 64 81 33 63 34 65
(n, p) 200,300 200,300 200,400 200,400
Method SP005 SE005 SP025 SE025 SP005 SE005 SP025 SE025
RIW 99 09 99 27 99 08 99 25
GLASSO 99 05 99 15 86 15 90 16
MB 99 09 99 30 99 09 99 30
HC 100 07 100 21 100 05 99 23

Case IV
(n, p) 200,300 200,400 200,300 200,400
Method ROC005 ROC025 ROC005 ROC025 SE005∗ SE025∗ SE005∗ SE025∗

RIW 65 83 65 83 33 65 32 64
GLASSO 61 77 61 76 33 66 32 64
MB 57 72 56 72 24 54 24 54
HC 53 56 52 57 20 33 18 32
(n, p) 200,300 200,300 200,400 200,400
Method SP005 SE005 SP025 SE025 SP005 SE005 SP025 SE025
RIW 99 09 99 27 99 08 99 25
GLASSO 99 05 99 15 86 15 90 16
MB 99 09 99 30 99 09 99 30
HC 99 06 99 06 99 07 99 06

Table 2: Results for p > n cases under Cases I, III, and IV. ROC005 and ROC025
correspond to the area under the curve for true edge sets ES005 and ES025, obtained
by including all edges corresponding to |ρ| > 0.005 and |ρ| > 0.025 respectively. SE005∗

and SE025∗ refer to the sensitivity controlling for a specificity of 0.9, for true edge
sets ES005 and ES025. SP005, SP025, refer to specificity, while SE005, SE025, refer to
sensitivity corresponding to true edge sets ES005 and ES025. The reported estimates
are inflated by a factor of 100.
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Figure 2: ROC curves for true edge set corresponding to absolute partial correlation
threshold of 0.025, for p < n settings under Case I. Thick solid line is the regularized
inverse–Wishart, dashes is frequentist graphical Lasso, dots is Bayesian graphical lasso,
dots & dashes are Bayesian adaptive graphical lasso, long dashes is hyper inverse–
Wishart, thin black line corresponds to Meinshausen and Bühlmann (2006).

Under Case I, we find that both the proposed approach and the HC2015 method
have a significantly higher area under the curve compared to other approaches. Moreover
the proposed approach has a significantly higher sensitivity compared to all approaches
except the Bayesian graphical lasso in some cases, with the latter reporting denser
graphs having low specificity levels. On the other hand, the proposed method has slightly
lower specificity levels compared to some of the other approaches which report much
sparser graphs. For p > n settings, the sensitivity corresponding to a specificity of
90% is very similar under the proposed method, HC2015, and graphical lasso, but it is
significantly lower under the penalized neighborhood selection approach (MB). Similar
conclusions hold when the data is generated under Case III, from a bimodal distribution.

For Case IV involving sparse true graphs, the proposed approach performs signifi-
cantly better compared to all other approaches in terms of area under the curve, whereas
both GL and the proposed approach have equivalent sensitivity levels for a specificity
of 90%, which is significantly higher than the MB method as well as the Hahn and Car-
valho (2015) approach. Under Case IV, it is evident that the Hahn and Carvalho (2015)
approach has the least favorable performance in terms of the area under the curve and
sensitivity levels corresponding to 90% specificity.

In addition, the limitations of the discrete mixture approaches are evident from
significantly lower areas under the curve and low sensitivity levels in Case I, in spite of
the true graph being decomposable. Moreover, the results are highly sensitive to different
choices of the initial adjacency matrices, and somewhat unstable for higher dimensions
under finite runs of the Markov chain Monte Carlo. We note that a similar unstable
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behavior was reported by Scott and Carvalho (2008) for Metropolis-based approaches
under discrete mixture priors.

Finally, we note that the proposed approach is several orders of magnitude faster
compared to other Bayesian graphical modeling approaches. As noted above, we have
difficulty implementing the competing Bayesian approaches for large dimensions due
to an unrealistically large net computation time. More details, including the computa-
tion times for Bayesian approaches under Case I are presented in the Supplementary
Materials.

4.3 Comments

From the simulation results, it is clear that the proposed approach (i) compares favor-
ably to, and often dominates, competing Bayesian approaches in terms of true graph
recovery in large dimensions; (ii) has a higher area under the curve compared to pe-
nalized approaches in several cases, and a similar performance in other scenarios; and
(iii) has demonstrably better computational efficiency compared to other Bayesian ap-
proaches, with the latter approaches quickly becoming computationally infeasible for
increasing p.

5 Application to cancer genomics

We consider the problem of inferring the association networks between microRNAs, or
miRNAs, and the corresponding target genes or messenger RNAs, or mRNAs. MiRNAs
are small non-coding RNA molecules, which regulate gene expression levels by silencing
the target mRNAs. Our motivating dataset is derived from The Cancer Genome Atlas
based study of glioblastoma multiforme, a rapidly growing malignant brain tumor that
is the most common in adults. mRNAs and miRNAs play complementary roles in the
development and disease progression of this tumor (Tang et al., 2013). The main sci-
entific question of interest is to find major miRNA regulators of mRNA expression in
individuals with tumors, by jointly analyzing mRNA and miRNA data. For our analy-
ses, we focus on a set of 49 genes mapped to core pathways implicated in glioblastoma
multiforme such as the receptor tyrosine kinase, phosphatidylinositol-3-OH kinase and
etinoblastoma pathways (Cancer Genome Atlas Research Network, 2008).

For inferring the gene regulatory network, we chose the top 200 prognostic miRNAs
from a list of 538 candidate miRNAs, in addition to the 49 mRNAs, with the measure-
ments being obtained from n = 280 samples. We fit the regularized inverse–Wishart
model to the combined mRNA and miRNA measurements having dimension p = 249.
We use η = 0.2 in our false discovery rate based approach for edge selection. In Table
6, we provide a ranked list of important miRNAs having negative partial correlations
with their target mRNAs, along with the magnitude and 99% credible intervals of the
partial correlation. We omit those mRNAs not having negative associations with any
miRNA. In biological terms, the partial correlation between a miRNA and its target
mRNA measures the association between the two, after accounting for the remaining
mRNAs and miRNAs, with negative associations implying a down-regulation of target
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mRNAs. The credible intervals for the partial correlation provide a measure of uncer-
tainty for the ranking of important miRNAs, with overlapping credible intervals for
two miRNAs implying a potential change in rankings under different experimental and
biological conditions for a particular target mRNA.

Figure 3 plots the negative partial correlations between important miRNAs and
target mRNAs, along with 99% credible intervals. It is evident that several impor-
tant miRNAs have overlapping credible intervals, thus pointing to uncertainty in the
rankings. Several miRNAs identified by our approach are known to downregulate miR-
NAs, as suggested by the algorithm TargetScan of Lewis et al. (2005)- in particu-
lar, hsa-mir-143,hsa-mir-28, for kras, hsa-mir-125a for cdkn2B, hsa-let-7g,hsa-
mir-142-5p,hsa-mir-144,hsa-mir-15b,hsa-mir-187,hsa-mir-24,hsa-mir-492, for
cdk6. In addition, we find that kshv-k12-9 down-regulates several mRNA expressions,
and this miRNA is known to be associated with glioblastoma (Delfino et al., 2011).

We also identify several hub genes based on mRNA expressions, efgr, raf1, nf1,
spry2, cdkn2A, and pik3c2G, with such nodes having greater than 8 neighbors. Some
of the highly connected genes such as pi3kc2g, egfr and cdkn2a, with 14, 9 and 9
connections respectively, have been previously shown to be associated with glioblastoma
(Dong et al., 2010; Wong et al., 1992). We further explored the biological implications of
our results using Ingenuity Pathway Analysis (IPA version 16542223) which identified a
number of enriched pathways including; glioma, gbm, pten signaling and other cancer
related molecular mechanisms. Most of these genes encode proteins critical to cellular
functions such as DNA recombination, and repair, cellular development, cell cycle and
connective tissue development which may be attributed to their highly connected nature.
The estimated graph is shown in Figure 4.

The estimated miRNA graph had 9 hub nodes each having greater than 10 neigh-
bors, while 107 nodes did not have any neighbors. These hub nodes were ebv-mir-bart7,
hsa-mir-106a, hsa-mir-142-3p, hsa-mir-17-5p, hsa-mir-let7, hsa-mir-181c, hsa-mir-184,
hsa-mir-19a, and hsa-mir-20a. Analogous to gene expression a similar analysis of the
miRNA with at least 4 neighbors (based on partial correlations) using IPA suggest they
are critical for various cellular processes in cancer progression. The selected molecules
modulate important transcription factors and signaling molecules including genes such
as MYC, CCLE1 and CLDND1 which have been shown to be associated with cancer,
inflammatory response and connective tissue disorders. These findings concur with stud-
ies that have indicated associations between GBM and significant modulation of listed
miRs such as miR-106 (26 connections), miR-184 (15 connections) and miR-let-7a (26
connections), as in Lee et al. (2011).

6 Discussion

In summary, we propose a novel graphical model estimation approach which fits a con-
jugate model to the inverse covariance matrix that shrinks the off-diagonal elements
corresponding to absent edges to zero, and subsequently uses a post-processing decision
theoretic step involving neighborhood selection which infers absent edges based on pe-
nalized credible regions. By decoupling model fitting and selection, the proposed method
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Figure 3: Parent miRNAs depicted with the strength of negative partial correlations
along with 99% credible intervals for important mRNA–miRNA associations. The mR-
NAs are labeled on the horizontal axis, while the miRNAs are labeled on the vertical.
Refer Table 5 in main article.
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Figure 4: Estimated graph for mRNA–miRNA. Black nodes represent mRNA, and green
nodes are miRNA. The edges reflect connections between pairs of miRNAs and pairs
of mRNAs, and also miRNA-mRNA connections corresponding to negative partial cor-
relations. In biological terms, the partial correlation between a miRNA and its target
mRNA measures the association between the two, after accounting for the remaining
mRNAs and miRNAs, with negative associations implying a down-regulation of target
mRNAs. Our analysis identified several hub genes based on mRNA expressions, EFGR,
RAF1, NF1, SPRY2, CDKN2A, and PIK3C2G, with such nodes having greater than 8
neighbors. In addition, there were 9 hub miRNAs each having greater than 10 neighbors,
while 107 miRNAs did not have any neighbors. These hub nodes were ebv-mir-bart7,
hsa-mir-106a, hsa-mir-142-3p, hsa-mir-17-5p, hsa-mir-let7, hsa-mir-181c, hsa-mir-184,
hsa-mir-19a, and hsa-mir-20a. Such hub nodes are known to modulate important tran-
scription factors and signaling molecules including genes such as MYC, CCLE1 and
CLDND1 which have been shown to be associated with cancer, inflammatory response
and connective tissue disorders.

overcomes several difficulties for existing Bayesian graphical modeling approaches such
as sensitivity to the prior on the model space, assumptions on the underlying graphical
structure, and mixing issues associated with discrete mixture approaches. In addition,
it has attractive theoretical properties and is scalable to high dimensional settings. Our
work makes a timely and important contribution to the sparse but appealing body of
work involving systematic decision theoretic Bayesian approaches for efficient graphical
model computation.

We demonstrate the numerical advantages of the proposed approach over commonly
used Bayesian and penalized approaches using extensive simulation studies. The method
is applied to an important problem of target prediction using genomic data, where main
scientific question of interest is to find major miRNA regulators of mRNA expression
in individuals with tumors and characterize uncertainty of the resulting estimators,
by jointly analyzing mRNA and miRNA data. Our inferential methodology gives a
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mRNA miRNA ρ ρL ρU mRNA miRNA ρ ρL ρU

CDKN2C hsa-mir-136 -0.53 -0.64 -0.41 CDKN2B ebv-mir-bart9 -0.63 -0.72 -0.53
CDKN2C hsa-mir-143 -0.53 -0.63 -0.40 CDKN2B hsa-mir-125a -0.63 -0.71 -0.52
CDKN2C hsa-mir-185 -0.50 -0.61 -0.37 CDKN2B hsa-mir-20b -0.57 -0.67 -0.47
CDKN2C hsa-mir-21 -0.45 -0.57 -0.32 CDKN2B hsa-mir-103 -0.44 -0.56 -0.30
CDKN2C hsa-mir-15a -0.41 -0.53 -0.27 CDKN2B hsa-mir-208 -0.37 -0.49 -0.22
CDKN2C kshv-mir-k12-9 -0.12 -0.27 0.032 CDKN2B kshv-mir-k12-9 -0.02 -0.17 0.13
RB1 hsa-mir-10a -0.65 -0.74 0.60 KRAS hsa-mir-144 -0.64 -0.71 -0.53
RB1 hsa-mir-137 -0.59 -0.69 -0.48 KRAS hsa-mir-10a -0.60 -0.69 0.57
RB1 hsa-mir-135a -0.56 -0.66 -0.44 KRAS hsa-mir-149 -0.55 -0.64 -0.43
RB1 hsa-mir-148b -0.51 -0.62 -0.39 KRAS hsa-mir-28 -0.40 -0.52 -0.27
RB1 ebv-mir-bart18 -0.51 -0.61 -0.38 PIK3C2G hsa-mir-127 -0.53 -0.63 -0.41
RB1 hsa-mir-193a -0.51 -0.62 -0.38 PIK3C2G ebv-mir-bart12 -0.52 -0.62 -0.40
RB1 hsa-mir-149 -0.49 -0.61 -0.37 PIK3C2G hsa-mir-185 -0.47 -0.58 -0.34
CDK6 hsa-mir-142-5p -0.67 -0.75 -0.58 PIK3C2G hsa-mir-135a -0.45 -0.56 -0.32
CDK6 hsa-mir-193a -0.62 -0.71 -0.52 PIK3C2G kshv-mir-k12-9 -0.05 -0.20 0.10
CDK6 hsa-mir-144 -0.56 -0.66 -0.44 MDM2 hsa-mir-142-5p -0.66 -0.74 -0.57
CDK6 hsa-mir-149 -0.55 -0.65 -0.44 MDM2 hsa-mir-15b -0.55 -0.65 -0.43
CDK6 hsa-mir-15b -0.53 -0.64 -0.41 MDM2 hsa-mir-127 -0.53 -0.63 -0.40
CDK6 hsa-mir-181d -0.53 -0.63 -0.41 MDM2 hsa-mir-144 -0.53 -0.64 -0.41
CDK6 ebv-mir-bart18 -0.47 -0.58 -0.34 MDM2 hsa-mir-181d -0.52 -0.62 -0.40
CDK6 hsa-mir-24 -0.47 -0.58 -0.33 MDM2 hsa-mir-185 -0.51 -0.61 -0.39
CDK6 hsa-mir-143 -0.47 -0.57 -0.33 MDM2 hsa-mir-136 -0.50 -0.60 -0.37
CDK6 hsa-let-7g -0.47 -0.60 -0.35 MDM2 hsa-mir-143 -0.50 -0.60 -0.37
CDK6 hsa-mir-185 -0.43 -0.55 -0.29 MDM2 ebv-mir-bart12 -0.48 -0.59 -0.35
CDK6 ebv-mir-bart12 -0.38 -0.51 -0.24 MDM2 hsa-mir-193a -0.48 -0.60 -0.36
CDK6 hsa-mir-127 -0.39 -0.52 -0.25 MDM2 ebv-mir-bart18 -0.47 -0.59 -0.34
CDK6 hsa-mir-187 -0.37 -0.49 -0.23 MDM2 hsa-mir-24 -0.42 -0.53 -0.28
CDK6 hsa-mir-338 -0.35 -0.47 -0.20 MDM2 hsa-mir-328 -0.37 -0.49 -0.23
CDK6 hsa-mir-492 -0.34 -0.47 -0.20 MDM2 hsa-mir-149 -0.37 -0.50 -0.23
CDK6 kshv-mir-k12-9 -0.02 -0.17 0.13 MDM2 hsa-mir-181c -0.37 -0.48 -0.21
PIK3C2B ebv-mir-bart12 -0.55 -0.65 -0.43 PIK3C2B hsa-mir-142-5p -0.55 -0.65 -0.43
PIK3C2B hsa-let-7c -0.47 -0.58 -0.34 PIK3C2B hsa-mir-181d -0.53 -0.63 -0.41
PIK3C2B hsa-let-7g -0.35 -0.47 -0.20 PIK3C2B kshv-mir-k12-9 -0.06 -0.22 0.09

Table 3: Analysis of gene regulatory network showing important miRNAs and target
mRNAs having negative partial correlations (ρ), along with point-wise 99% credible
intervals (ρL, ρU ). For a particular mRNA, the miRNAs are ranked in order of the
magnitude of its regulatory effects.

holistic systems-level view of the mRNA-miRNA regulatory mechanisms using graphical

modeling by detecting miRNA targets conditional on other miRNAs and mRNAs in

the relevant biological pathways. In addition our framework provides a probabilistic

quantification of potential targets that can be used for miRNA target ranking and

subsequent biological and experimental validation.



472 Efficient Bayesian Regularization for Graphical Model Selection

While the approach provides an efficient computational method for graphical model
selection, there are some potential limitations. For example, it does not immediately
yield a positive definite precision matrix with exact zeros corresponding to absent edges,
and it is only possible to obtain such an estimate after implementing an additional
post-processing algorithm. Moreover the current method is limited to high dimensions
involving several hundred nodes, but may not be scalable to extremely high dimensions
involving tens of thousands of nodes which is encountered in genome-wide association
studies. In future work, our goal is to extend the methodology, computation, and theory
to p >> n settings. In addition we would like to generalize the regularized inverse
shrinkage prior to more general class of priors which induce different types of shrinkage
marginally on the elements of inverse covariance matrix.

Supplementary Material

Supplementary Materials for “Efficient Bayesian Regularization for Graphical Model
Selection” (DOI: 10.1214/17-BA1086SUPP; .pdf).
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