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Variational Message Passing for Elaborate
Response Regression Models

M. W. McLean∗ and M. P. Wand†

Abstract. We build on recent work concerning message passing approaches to
approximate fitting and inference for arbitrarily large regression models. The focus
is on regression models where the response variable is modeled to have an elab-
orate distribution, which is loosely defined to mean a distribution that is more
complicated than common distributions such as those in the Bernoulli, Poisson
and Normal families. Examples of elaborate response families considered here are
the Negative Binomial and t families. Variational message passing is more chal-
lenging due to some of the conjugate exponential families being non-standard and
numerical integration being needed. Nevertheless, a factor graph fragment ap-
proach means the requisite calculations only need to be done once for a particular
elaborate response distribution family. Computer code can be compartmentalized,
including that involving numerical integration. A major finding of this work is
that the modularity of variational message passing extends to elaborate response
regression models.

Keywords: Bayesian computing, factor graph, generalized additive models,
generalized linear mixed models, mean field variational Bayes, support vector
machine classification.

MSC 2010 subject classifications: Primary 62F15, 62J05; secondary 62G08.

1 Introduction

We extend the variational message passing (VMP) body of work to accommodate elab-
orate response regression models. The notion of factor graph fragments, introduced in
Wand (2017), is the vehicle for this extension. It affords a modular approach to mean
field variational Bayes fitting and inference for large regression models. The factor graph
fragment updates treated here only need to be derived and implemented once. Their
addition to the variational message passing arsenal allows for fancier models, such as
those having Negative Binomial and t responses, to be fitted.

VMP (Winn and Bishop, 2005; Minka, 2005; Minka andWinn, 2008) is a prescription
for obtaining mean field variational Bayes approximations to posterior density functions
that is amenable to modularization. The factor graph version of VMP (e.g Minka and
Winn, 2008, Appendix A) is particularly attractive in this regard. Wand (2017) uses the
notion of factor graph fragments to aid modularization for semiparametric regression
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models – a large class of regression-type models that includes, for example, general-
ized linear mixed models, generalized additive models and varying coefficient models
(e.g. Ruppert et al., 2003). However, the fragments in Wand (2017) only accommodate
Gaussian, Bernoulli and Poisson response models. If, for example, a Negative Binomial
response model is of interest then new fragment updates for this family are needed. Sec-
tion 3.1 plugs this gap. Other elaborate response families are also treated in Section 3.
Whilst we do not cover all possible families, our derivations for some elaborate families
provide blueprints for future fragment derivations.

A major difference between simple response models and elaborate response models
is that the latter involves non-standard exponential families. For the examples covered
here four exponential families, beyond those covered in Wand (2017), emerge. Two of
them seem to have little or no presence in the literature. The sufficient statistic expec-
tations, which are needed for VMP updates, are not expressible in terms of common
functions and require either evaluation of special functions, quadrature or continued
fraction approximation.

The main contributions of this article may be summarized as follows:

1. If an analyst wants to build a mean field variational Bayes inference engine for
arbitrarily large regression models then the message update formulae given in
Section 3 allow for particular elaborate response families to be included;

2. The derivations in Section S.3 of the online supplement (McLean and Wand, 2018)
show how such update formulae can be obtained for the examples given in Section
3. They also serve as a template for handling other elaborate response likelihoods
not covered here.

All of our new methodology is within the realm of deterministic variational ap-
proximate inference, with intractable integrals evaluated via quadrature. An alternative
route is to use Monte Carlo methods to approximate such integrals, known as stochastic
variational inference (e.g. Hoffman et al., 2013; Kucukelbir et al., 2017). See, for exam-
ple, Titsias and Lázaro-Gredilla (2014) on the use of stochastic variational inference for
non-conjugate circumstances similar to those arising in this article.

Some background on VMP is given in Section 2. Section 3 is the article’s centerpiece
and gives the fragment update for six elaborate response likelihoods. Illustration of their
utility is then provided in Section 4. Closing remarks are given in Section 5. Derivational
details are given in an online supplement.

2 Variational Message Passing and Factor Graph
Fragments

Variational message passing (VMP) is an approach to obtaining mean field variational
Bayes approximate posterior density functions in potentially large graphical models. It
uses the concept of message passing on a factor graph.
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Our starting point is a Bayesian statistical model with observed data D and param-
eter vector θ. The posterior density function p(θ|D) is usually analytically intractable
and a mean field variational approximation q∗(θ) to p(θ|D) is the minimizer of the
Kullback–Leibler divergence ∫

q(θ) log

{
q(θ)

p(θ|D)

}
dθ

subject to the product density restriction q(θ) =
∏M

i=1 q(θi) where {θ1, . . . ,θM} is
some partition of θ. The optimal q-density functions can be shown to satisfy

q∗(θi) ∝ Eq(θ\θi){p(θi|D,θ\θi)}, 1 ≤ i ≤ M, (1)

where θ\θi denotes the entries of θ with θi omitted. Expression (1) gives rise to an iter-
ative scheme for determination of the optimal parameters of the q∗(θi), which is known
as mean field variational Bayes. A listing of such a scheme is provided by Algorithm 1
of Ormerod and Wand (2010).

Figure 1: Factor graph representation of the dependence of the stochastic nodes
θ1, . . . ,θ9 on the factors f1, . . . , f11 for the example given by (2).

VMP arrives at the same approximation via message passing on an appropriate
factor graph. Figure 1 is an example factor graph corresponding to an M = 9 example
with

p(θ1, . . . ,θ9,D) = f1(θ1)f2(θ1,θ2,θ9)f3(θ6,θ7,θ8,θ9)f4(θ2,θ3,θ4)f5(θ5,θ9)

×f6(θ5)f7(θ3)f8(θ6)f9(θ7)f10(θ4)f11(θ8).
(2)

At least one of the fj involves the data vector D, but this dependence is suppressed.
The unshaded circles are called stochastic nodes and the shaded rectangles are the
factors. The word node is used for either a stochastic node or a factor and two nodes are
neighbors of each other if they are joined by an edge. The edges join factors to stochastic
nodes that are included in that factor. The θi indices connected to the jth factor are
denoted by neighbors(j). For example, neighbors(3) = {6, 7, 8, 9}. Fuller details are in
Sections 2.4 and 2.5 of Wand (2017).

A message passed between any two neighboring nodes is a particular function of the
stochastic node that either sends or receives the message. Rather than using (1), the
optimal q-densities are obtained from



374 Variational Message Passing for Elaborate Regression

q∗(θi) ∝
∏

j:i∈neighbors(j)

m∗
fj→θi

(θi), (3)

where the m∗
fj→θi

(θi) are the optimal messages passed to θi from each of the fac-

tors fj in p(θ,D) that involve θi. For each j, this subset of {1, . . . ,M} is denoted by
neighbors(j) due to the definition of a factor graph, in which an edge is drawn between
the θi and fj nodes if and only if fj depends on θi.

Letting N denote the number of factors, for each 1 ≤ i ≤ M and 1 ≤ j ≤ N the
VMP stochastic node to factor message updates are

mθi→ fj (θi) ←−∝
∏

j′ �=j: i∈neighbors(j′)

mfj′→θi(θi) (4)

and the factor to stochastic node message updates are

mfj→θi(θi) ←−∝ exp
[
Efj→θi

{
log f j(θneighbors(j) )

}]
, (5)

where Efj→θi denotes expectation with respect to the density function∏
i′∈neighbors(j)\{i}

mfj→θi′ (θi′)mθi′→fj (θi′)

∏
i′∈neighbors(j)\{i}

∫
mfj→θi′ (θi′)mθi′→fj (θi′) dθi′

. (6)

In (4) and (5) the ←−∝ symbol means that the function of θi on the left-hand side
is updated according to the expression on the right-hand side but that multiplicative
factors not depending on θi can be ignored. If neighbors(j)\{i} = ∅ then the expectation
in (5) can be dropped and the right-hand side of (5) is proportional to f j(θneighbors(j) ).

VMP fitting involves iteration of the updates (4) and (5)–(6) over each of the fac-
tors until the changes in all messages are negligible. When convergence is reached, the
optimal q-densities of the model parameters are obtained from (3).

The algebra and coding for VMP can be compartmentalized using the notion of
factor graph fragments, or fragments for short.

Definition. A factor graph fragment, or fragment for short, is a sub-graph of a factor
graph consisting of a single factor and each of the stochastic nodes that are neighbors
of the factor.

In the context of the current article, the fragment approach means that switching
from a large regression-type model with a Gaussian likelihood to one with, say, a t
likelihood can be achieved by replacing the Gaussian likelihood fragment by t likelihood
fragments. The remainder of the model is unaffected in terms of the VMP updates.

Table 1 of Wand (2017) lists five fragments that are fundamental to semiparametric
regression analysis via VMP. As explained there, a wide range of semiparametric re-
gression models are accommodated by these five fragments but only for the Gaussian
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response case. In Section 5 of Wand (2017), additional fragments are introduced to
handle logistic, probit and Poisson regression models. The next section adds to these
response fragments.

3 Fragment Updates for Elaborate Response
Likelihoods

We now provide fragment updates that allow for six more response distributions to be
handled within the VMP framework. Most of them may be viewed as elaborations of
the likelihoods covered by Wand (2017). For example, the Negative Binomial likelihood
extends the Poisson likelihood for count response data and the t and Skew Normal
likelihoods extend the Gaussian likelihood in different ways.

Each of the elaborate response likelihoods considered in this section are re-expressed
in terms of auxiliary variables and more common distributions. This affords tractability,
but comes at the cost of less accuracy compared with the case where auxiliary variables
are not introduced. The auxiliary variables route is driven by the practical advantages
of message updates being either closed form or requiring only univariate numerical
integration. The alternative route, without auxiliary variables, is much more numerically
challenging and often impractical.

Table 1 provides details on each of the distributions used in this article. It uses the
following notation for the N(0, 1) density and cumulative distribution functions:

φ(x) ≡ (2π)−1/2 exp(−1
2 x

2) and Φ(x) ≡
∫ x

−∞
φ(t) dt.

An additional functional notation is digamma(x) ≡ d
dx log{Γ(x)}.

For a vector a and scalar function s we let s(a) denote the vector containing the
element-wise evaluations of s. Also, A�B and A/B respectively denote the element-
wise product and element-wise quotient of vectors A and B having the same sizes. If A
is a d×d matrix then vec(A) is the d2×1 vector obtained by stacking the columns of A
underneath each other in order from left to right. If a is a d2 × 1 vector then vec−1(a)
is the d× d matrix formed from listing the entries of a in column-wise fashion in order
from left to right. The d× 1 vector containing the diagonal entries of a d× d matrix A
is denoted by diagonal(A).

The d× 1 vector 1d is such that all of its entries are equal to 1. The d× 1 vector ei
is such that its ith entry is equal to 1 and all other entries are zero.

For a d × 1 vector v1 and a d2 × 1 vector v2 such that vec−1(v2) is symmetric we
define:

GVMP

([
v1

v2

]
;Q, r, s

)
≡−1

8 tr
(
Q{vec−1(v2)}−1[v1v

T
1 {vec−1(v2)}−1 − 2I]

)
−1

2r
T {vec−1(v2)}−1v1 − 1

2s.

The secondary arguments of GVMP are a d × d matrix Q, a d × 1 vector r and s ∈ R.
The genesis of the GVMP function is the fact that
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distribution density/probability function in x abbreviation

Multinomial
K∏

k=1

πxk
k ; xk = 0, 1, 1 ≤ k ≤ K;

K∑
k=1

πk = 1 Multinomial(1,π)

Poisson λx e−λ/x!; x = 0, 1, . . . ; λ > 0 Poisson(λ)

Negative
Binomial

κκΓ(x+ κ)μx

Γ(κ)(κ+ μ)Γ(x+ 1)
; x = 0, 1 . . . ; κ, μ > 0 Negative-Binomial(μ, κ)

t
Γ
(
ν+1
2

)
√
πνΓ(ν/2)[1 + {(x− μ)/σ}2/ν] ν+1

2

; σ, ν > 0 t(μ, σ, ν)

Asymmetric

Laplace τ(1−τ)
σ

exp
[
− 1

2

∣∣ x−μ
σ

∣∣+ (τ − 1
2
)
(
x−μ
σ

)]
; Asymmetric-

σ > 0, 0 < τ < 1 Laplace(μ, σ, τ)

Skew
Normal

2

σ
φ
(x− μ

σ

)
Φ

(
λ(x− μ)

σ

)
; σ > 0 Skew-Normal(μ, σ, λ)

Finite Normal

Mixture

K∑
k=1

wk

σ sk
φ

(
(x− μ)/σ −mk

sk

)
; Normal-Mixture(μ, σ,w,m, s)

wk, sk > 0,

K∑
k=1

wk = 1

Gamma
BA xA−1e−B x

Γ(A)
; x > 0, A,B > 0 Gamma(A,B)

Inverse-χ2 (λ/2)κ/2 x−(κ/2)−1e−(λ/2)/x

Γ(κ/2)
; x > 0; κ, λ > 0 Inverse-χ2(κ, λ)

Table 1: Distributions used in this article and their corresponding density/probability
functions.

Eθ{−1
2 (θ

TQθ − 2rTθ + s)} = GVMP(η;Q, r, s),

when θ is a d× 1 Multivariate Normal random vector with natural parameter vector η.
A last piece of notation is

ηf↔θ ≡ ηf→θ + ηθ→f

for any natural parameter η, factor f and stochastic node θ.

3.1 Negative Binomial Likelihood

The Negative Binomial likelihood fragments are concerned with the likelihood specifi-
cation

yi|θ, κ ind.∼ Negative-Binomial[exp{(Aθ)i}, κ], 1 ≤ i ≤ n. (7)

Introduce Gamma auxiliary random variables ai|θ, κ ind.∼ Gamma[κ, κ exp{−(Aθ)i}],
1 ≤ i ≤ n. Then standard distribution theoretical manipulations lead to (7) being
equivalent to
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yi| ai ind.∼ Poisson(ai), ai|θ, κ ind.∼ Gamma[κ, κ exp{−(Aθ)i}].

The relevant factor graph fragments are shown in Figure 2 and corresponds to the mean
field restriction

q(θ, κ,a) = q(θ)q(κ)

{
n∏

i=1

q(ai)

}
that was used in Luts and Wand (2015).

Figure 2: Fragments for the Negative Binomial likelihood specification with independent
Gamma auxiliary variables a1, . . . , an.

First note that

mp(a|θ, κ) → θ(θ) = exp
[
− Eq(κ)(κ)

{
1T
nAθ + Eq(a)(a)

T exp(−Aθ)
}]

, (8)

which is not conjugate with Multivariate Normal messages passed to θ from other
factors. Instead, we replace (8) with

m̃p(a| θ, κ) → θ(θ) ≡ exp

⎧⎨⎩
[

θ

vec(θθT )

]T

ηp(a| θ, κ) → θ

⎫⎬⎭ (9)

to enforce conjugacy with Multivariate Normal messages. This is an instance of non-
conjugate VMP (Knowles and Minka, 2011). We assume that each of the messages
that θ receives from factors outside of the Negative Binomial likelihood fragments are
within the Multivariate Normal family. This leads to q∗(θ) having a Multivariate Normal
distribution.

As explained in Section S.3.1 of the online supplement, the message from p(a|θ, κ)
to κ takes the form

mp(a| θ, κ) → κ(κ) = exp

⎧⎨⎩
[

κ log(κ)− log{Γ(κ)}
κ

]T

ηp(a| θ, κ) → κ

⎫⎬⎭ ,

which is proportional to the Moon Rock exponential family of density functions de-
scribed in Section S.2.4 of the online supplement. We assume messages passed to κ
from factors outside of the Negative Binomial likelihood fragments are also within the
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Algorithm 1 The inputs, updates and outputs of the Negative Binomial likelihood
fragment.

Data Inputs: y,A.

Parameter Inputs: ηp(a| θ, κ) → θ ,ηθ → p(a| θ, κ),ηp(a| θ, κ) → κ,ηκ → p(a| θ, κ).

Updates:

μq(κ) ←− (ET )MR
2

(
ηp(a| θ, κ) ↔ κ

)
ω1 ←− − 1

2
A
{
vec−1

((
ηp(a| θ) ↔ θ

)
2

)}−1(
ηp(a| θ) ↔ θ

)
1

ω2 ←− exp
(
− ω1 − 1

4
diagonal

[
A
{
vec−1

((
ηp(a| θ) ↔ θ

)
2

)}−1
AT

])
ω3 ←−

{
ω2 �

(
y + μq(κ)1n

)}/(
1n + μq(κ) ω2

)

ηp(a| θ, κ) → θ ←− μq(κ)

⎡⎣ AT
{
ω3 � (1n + ω1)− 1n

}
− 1

2
vec

(
AT diag(ω3)A

)
⎤⎦

ηp(a| θ, κ) → κ ←−

⎡⎢⎢⎢⎣
n

1T
n

{
digamma

(
μq(κ)1n + y

)
− ω1

− log
(
1n + μq(κ)ω2

)
− ω3

}
⎤⎥⎥⎥⎦

Parameter Outputs: ηp(a| θ, κ) → θ ,ηp(a| θ, κ) → κ.

Moon Rock family or at least conjugate with the Moon Rock family. For example, if the
only other factor passing messages to κ is its prior density function p(κ) then we require
that p(κ) is a Moon Rock density function or conjugate with one. Note that, for exam-
ple, Exponential density functions (Gamma(1, B) density functions in the notation of
Table 1) are conjugate with respect to the Moon Rock family but, strictly speaking, not
within the Moon Rock family since α = 0 in the notation of Section S.2.4. Hence, setting

p(κ) = B exp(−B κ), κ > 0,

for any B > 0 is permissible under the conjugacy constraint since it implies that

mp(κ) → κ(κ) = exp

⎧⎨⎩
[

κ log(κ)− log{Γ(κ)}
κ

]T [
0

−B

]⎫⎬⎭ .

which is conjugate with respect to mp(a| θ, κ) → κ(κ).

Algorithm 1 lists the inputs, updates and outputs for the Negative Binomial like-
lihood fragments. The derivations are given in Section S.3.1 of the online supplement.
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The (ET )MR
2 notation, used in the first update, is explained in Section S.2.4 of the online

supplement.

In Section 4.2 we provide illustration of Algorithm 1 in the context of additive model
analysis.

3.2 t Likelihood

The t-distribution likelihood fragments arise from the likelihood specification

yi|θ, σ, ν ind.∼ t
(
(Aθ)i, σ, ν

)
, 1 ≤ i ≤ n. (10)

This likelihood is frequently used in regression applications as a robustness mechanism

(e.g. Lange et al., 1989). If we introduce Inverse-χ2 auxiliary random variables ai
ind.∼

Inverse-χ2(ν, ν), 1 ≤ i ≤ n, then (10) is equivalent to

yi|θ, σ2, ai
ind.∼ N

(
(Aθ)i, aiσ

2
)
, ai| ν ind.∼ Inverse-χ2(ν, ν). (11)

It is common to use this representation of the t distribution for Bayesian computing. For
example, the Markov chain Monte Carlo scheme of Verdinelli and Wasserman (1991)
and the mean field variational Bayes scheme of Tipping and Lawrence (2003) each rely
upon (11).

Figure 3 shows the factor graph fragments for the auxiliary variable representation
(11) with q-density product restriction

q(θ, σ2, ν,a) = q(θ)q(σ2)q(ν)

{
n∏

i=1

q(ai)

}
.

Figure 3: Fragments for the t likelihood specification with the shape parameter prior
with independent Inverse-χ2(ν, ν) auxiliary variables a1, . . . , an.

The message from p(y|θ, σ2,a) to θ is proportional to a Multivariate Normal density
function, while that from p(y|θ, σ2,a) to σ2 is within the Inverse-χ2 family.
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The message from p(a|ν) to ν has the form

mp(a|ν) → ν(ν) = exp

⎧⎨⎩
[

(ν/2) log(ν/2)− log{Γ(ν/2)}
ν/2

]T

ηp(a| ν) → ν

⎫⎬⎭
with details given in Section S.3.2 of the online supplement. Note that mp(a|ν) → ν(ν)
is proportional to a factor of 2 rescaling of the Moon Rock exponential family of density
functions introduced in Section S.2.4 of the online supplement. The conjugacy constraint
dictates that

mν → p(a|ν)(ν) = exp

⎧⎨⎩
[

(ν/2) log(ν/2)− log{Γ(ν/2)}
ν/2

]T

ην → p(a| ν)

⎫⎬⎭ ,

which occurs if all message passed to ν from factors outside of the t likelihood fragments
are also within the same rescaled Moon Rock family, or at least conjugate with respect
to it. The (ET )MR

2 notation is defined in Section S.2.4 of the online supplement.

Algorithm 2 provides the inputs, updates and outputs for the t likelihood fragments.
The derivations are given in Section S.3.2 of the online supplement.

3.3 Asymmetric Laplace Likelihood

Now consider the Asymmetric Laplace likelihood specification

yi|θ, σ2 ind.∼ Asymmetric-Laplace
(
(Aθ)i, σ, τ

)
, 1 ≤ i ≤ n, (12)

where 0 < τ < 1 is a fixed constant. As explained in, for example, Yu and Moyeed
(2001), the likelihood specification (12) corresponds to τth-quantile regression. Yang
et al. (2016) discuss valid posterior inference for Bayesian quantile regression.

If we introduce auxiliary random variables ai
ind.∼ Inverse-χ2(2, 1), 1 ≤ i ≤ n, then

Proposition 3.2.1 of Kotz et al. (2001) implies that (12) is equivalent to

yi|θ, σ2,a
ind.∼ N

(
(Aθ)i +

( 12 − τ)σ

aiτ(1− τ)
,

σ2

aiτ(1− τ)

)
, ai

ind.∼ Inverse-χ2(2, 1). (13)

We assume that the optimal q-density admits the product restriction

q(θ, σ2,a) = q(θ)q(σ2)q(a) = q(θ)q(σ2)
n∏

i=1

q(ai).

The corresponding factor graph fragments are shown in Figure 4.

As shown in Section S.3.3 of the online supplement,

mp(y| θ, σ2,a) → θ(θ) = exp

⎧⎨⎩
[

θ

vec(θθT )

]T

ηp(y| θ, σ2,a) → θ

⎫⎬⎭ ,
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Algorithm 2 The inputs, updates and outputs of the t likelihood fragment.

Data Inputs: y,A.

Parameter Inputs: ηp(y| θ, σ2,a) → θ ,ηθ → p(y| θ, σ2,a),ηp(y| θ, σ2,a) → σ2 ,

ησ2 → p(y| θ, σ2,a),ηp(a| ν) → ν ,ην → p(a| ν).

Updates:

μq(1/σ2) ←−
{(
ηp(y| θ, σ2,a) ↔ σ2

)
1
+ 1

}/(
ηp(y| θ, σ2,a) ↔ σ2

)
2

μq(ν) ←− 2(ET )MR
2 (ηp(a| ν) ↔ ν )

ω4 ←−
[

GVMP

(
ηp(y| θ, σ2,a) ↔ θ ;A

T eie
T
i A,AT eie

T
i y, y2i

) ]
1≤ı≤n

ω5 ←−
(μq(ν) + 1)1n

μq(ν)1n − 2μq(1/σ2)ω4

ηp(y| θ, σ2,a) → θ ←− μq(1/σ2)

[
AT diag(ω5)y

− 1
2
vec

(
AT diag(ω5)A

) ]

ηp(y| θ, σ2,a) → σ2 ←−

⎡⎢⎢⎢⎣
− 1

2
n

GVMP

(
ηp(y| θ, σ2,a) ↔ θ ;A

T diag(ω5)A,

AT diag(ω5)y, yT diag(ω5)y
)

⎤⎥⎥⎥⎦

ηp(a| ν) → ν ←−

⎡⎢⎢⎢⎣
n

n digamma
(

μq(ν)+1

2

)
− 1T

n

{
log

(
1
2
μq(ν)1n − μq(1/σ2)ω4

)
+ω5

}
⎤⎥⎥⎥⎦

Parameter Outputs: ηp(y| θ, σ2,a) → θ ,ηp(y| θ, σ2,a) → σ2 ,ηp(a| ν) → ν .

which is conjugate with Multivariate Normal messages passed to θ from factors outside
of the Asymmetric Laplace likelihood fragments.

However, the message from the likelihood factor to σ2 takes the form

mp(y| θ, σ2,a) → σ2(σ2) = exp

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎣ log(σ2)

1/σ

1/σ2

⎤⎥⎦
T

ηp(y| θ, σ2,a) → σ2

⎫⎪⎪⎬⎪⎪⎭ ,

which is not within a standard exponential family. However, mp(y| θ, σ2,a) → σ2(σ2) is

proportional to the family of density functions of random variables such that their re-
ciprocal square roots are distributed according to members of a family proposed in
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Figure 4: Fragments for the Asymmetric Laplace likelihood specification with indepen-
dent Inverse-χ2(2, 1) auxiliary variables a1, . . . , an.

Nadarajah (2008). Sections S.2.2 and S.2.3 of the online supplement contain the rel-
evant details. We will assume that messages passed to σ2 from factors outside of the
Asymmetric Laplace likelihood fragments are within the Inverse Square Root Nadara-
jah family (Section S.2.3 of the online supplement). Note that messages proportional to
Inverse Chi-Squared density functions are conjugate with this family.

Algorithm 3 provides the inputs, updates and outputs for the Asymmetric Laplace
likelihood fragments with derivations deferred to Section S.3.3 of the online supplement.
Note that the second update of Algorithm 3 involves the function Rν , which is defined
in Section S.1.2 of the online supplement. Efficient and stable computation of Rν is
discussed there.

In Section 4.1 we show that Algorithm 3 facilitates quantile nonparametric regression
embellishment of ordinary nonparametric regression.

Laplace Likelihood Special Case

The case of τ = 1
2 corresponds to the special case of the Laplace likelihood, and (12)

reduces to median regression. In this special case, the second entry of ηp(y| θ, σ2,a) → σ2

is zero and messages passed to σ2 are proportional to Inverse Chi-Squared density
functions. In addition, the μq(1/σ) update in Algorithm 3 is not needed and that for
μq(1/σ2) reduces to

μq(1/σ2) ←−
{(
ηp(y| θ, σ2,a) ↔ σ2

)
1
+ 1

}/(
ηp(y| θ, σ2,a) ↔ σ2

)
2
.

where ηp(y| θ, σ2,a) ↔ σ2 is an Inverse Chi-Squared natural parameter vector.

3.4 Skew Normal Likelihood

In this section, we consider fragments involving the Skew Normal likelihood:

yi|θ, σ2, λ ∼ Skew-Normal{(Aθ)i, σ, λ}, 1 ≤ i ≤ n. (14)

Regression-type models having Skew Normal responses may be found in, for example,
Frühwirth-Schnatter and Pyne (2010) and Lachos et al. (2010).
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Algorithm 3 The inputs, updates and outputs of the Asymmetric Laplace likelihood
fragments.

Data Inputs: y,A, τ .

Parameter Inputs: ηp(y| θ, σ2,a) → θ ,ηθ → p(y| θ, σ2,a),ησ2 → p(y| θ, σ2,a),

ηp(y| θ, σ2,a) → σ2 .

Updates:

μq(1/σ) ←− (ET )ISRN
2

(
ηp(y| θ, σ2,a) ↔ σ2

)

μq(1/σ2) ←− (ET )ISRN
3

(
ηp(y| θ, σ2,a) ↔ σ2

)

ω7 ←−
[

GVMP

(
ηp(y| θ, σ2,a) ↔ θ ;A

T eie
T
i A,AT eie

T
i y, y2i

) ]
1≤ı≤n

ω8 ←−
{
− 8 τ2(1− τ)2 μq(1/σ2) ω7

}−1/2

ηp(y| θ, σ2,a) → θ ←− τ(1− τ)μq(1/σ2)

[
AT diag(ω8)y

− 1
2
vec

(
AT diag(ω8)A

) ]

+ (τ − 1
2
)μq(1/σ)

[
AT 1n

0

]

ηp(y| θ, σ2,a) → σ2 ←−

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−n/2

( 1
2
− τ)

[
y + 1

2
A
{
vec−1

((
ηp(y| θ, σ2,a) ↔ θ

)
2

)}−1

×
(
ηp(y| θ, σ2,a) ↔ θ

)
1

]T
1n

τ(1− τ)GVMP

(
ηp(y| θ, σ2,a) ↔ θ ;A

T diag(ω8)A,

AT diag(ω8)y, yT diag(ω8)y
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Parameter Outputs: ηp(y| θ, σ2,a) → θ ,ηp(y| θ, σ2,a) → σ2 .

If we introduce auxiliary random variables ai
ind.∼ N(0, 1), 1 ≤ i ≤ n, then Proposi-

tion 3 of Azzalini and Dalla Valle (1996) implies that (14) is equivalent to

yi|θ, σ2, λ, ai
ind.∼ N

(
(Aθ)i +

σλ|ai|√
1 + λ2

,
σ2

1 + λ2

)
, ai

ind.∼ N(0, 1). (15)

We assume the optimal q-density admits the product restriction

q(θ, σ2, λ,a) = q(θ)q(σ2)q(λ)q(a) = q(θ)q(σ2)q(λ)
n∏

i=1

q(ai).
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Figure 5: Fragments for the Skew Normal likelihood specification with independent
N(0, 1) auxiliary variables a1, . . . , an.

The corresponding factor graph fragments are shown in Figure 5.

The messages passed from the likelihood factor to θ and σ2 take the forms

mp(y| θ, σ2, λ,a) → θ(θ) = exp

⎧⎨⎩
[

θ

vec(θθT )

]T

ηp(y| θ, σ2, λ,a) → θ

⎫⎬⎭
and

mp(y| θ, σ2, λ,a) → σ2(σ2) = exp

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎣ log(σ2)

1/σ

1/σ2

⎤⎥⎦
T

ηp(y| θ, σ2, λ,a) → σ2

⎫⎪⎪⎬⎪⎪⎭ .

As for the Asymmetric Laplace likelihood fragments, the latter is within the Inverse
Square Root Nadarajah family. The imposition of conjugacy means that we assume
that all messages passed to σ2 from factors outside of the Skew Normal likelihood
fragments are also proportional to Inverse Square Root Nadarajah density functions.

The message from the likelihood factor to λ has the exponential family form

mp(y| θ, σ2, λ,a) → λ(λ) = exp

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎣ log(1 + λ2)

λ2

λ
√
1 + λ2

⎤⎥⎦
T

ηp(y| θ, σ2, λ,a) → λ

⎫⎪⎪⎬⎪⎪⎭ .

We have not been able to find any mention of this family in the literature. In Section
S.2.5 of the online supplement we dub it the Sea Sponge family. We assume that each
of the messages that λ receives from factors outside of the Skew Normal likelihood
fragments are also proportional to Sea Sponge density functions. As an example, suppose
that the only other factor that sends a message to λ is the prior density function p(λ).
Then, mp(λ) → λ(λ) = p(λ) and, under conjugacy, p(λ) must be of the form

p(λ) ∝ exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎣

log(1 + λ2)

λ2

λ
√
1 + λ2

⎤⎥⎥⎦
T

ηλ

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (16)



M. W. McLean and M. P. Wand 385

for some 3×1 vector ηλ. Priors of the form λ ∼ N(0, σ2
λ) are allowable under conjugacy

constraints since these are a special case of (16) with ηλ = [0 − 1/(2σ2
λ) 0]T .

The message natural parameter updates depend on the first derivative of

ζ(x) ≡ log{2Φ(x)} which leads to ζ ′(x) ≡ φ(x)

Φ(x)
.

Software such as the function zeta() within the package sn (Azzalini, 2017) of the R
computing environment (R Core Team, 2017) supports stable computation of ζ ′.

Algorithm 4 provides the inputs, updates and outputs for the Skew Normal likelihood
fragments. The (ET )SS

2 and (ET )SS
3 notation is explained in Section S.2.5 of the online

supplement.

Justification for Algorithm 4 is given in Section S.3.4 of the online supplement.

3.5 Finite Normal Mixture Likelihood

The Finite Normal Mixture likelihood fragments involve the likelihood

yi|θ, σ2 ind.∼ Normal-Mixture
(
(Aθ)i, σ,w,m, s

)
, 1 ≤ i ≤ n, (17)

where w,m and s are each constant K × 1 vectors. Finite Normal Mixture approx-
imation of difficult response density functions can be a “last resort” for development
of tractable Bayesian inference algorithms. See, for example, Frühwirth-Schnatter and
Wagner (2006) and Frühwirth-Schnatter et al. (2009). In the variational inference con-
text, Wand et al. (2011) showed how Finite Normal Mixture approximation benefits
variational inference for Generalized Extreme Value response models.

If we introduce auxiliary random variables ai ≡ (ai1, . . . , aiK)T such that

ai
ind.∼ Multinomial(1,w), 1 ≤ i ≤ n,

then we can re-express (17) as

p(y|θ, σ2,a1, . . . ,an) =

n∏
i=1

K∏
k=1

[
σ−1(2πs2k)

−1/2 exp

{
− 1

2s2k

(
(y −Aθ)i

σ
−mk

)2
}]aik

,

ai
ind.∼ Multinomial(1,w).

(18)

Even though the ai are vectors, we will use the abbreviation a ≡ a1, . . . ,an from now
onwards. The q-density product form we consider is

q(θ, σ2,a) = q(θ)q(σ2)q(a) = q(θ)q(σ2)
n∏

i=1

q(ai).
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Algorithm 4 The inputs, updates and outputs of the Skew Normal likelihood frag-
ments.

Data Inputs: y,A.

Parameter Inputs: ηp(y| θ, σ2, λ,a) → θ ,ηθ → p(y| θ, σ2, λ,a),ηp(y| θ, σ2, λ,a) → σ2 ,

ησ2 → p(y| θ, λ, σ2,a),ηp(y| θ, σ2, λ,a) → λ,ηλ → p(y| θ, σ2, λ,a).

Updates:

μq(1/σ) ←− (ET )ISRN
2

(
ηp(y| θ, σ2,a) ↔ σ2

)
μq(1/σ2) ←− (ET )ISRN

3

(
ηp(y| θ, σ2,a) ↔ σ2

)
μq(λ2) ←− (ET )SS

2

(
ηp(y| θ, σ2, λ,a) ↔ λ

)
μ
q(λ

√
1+λ2)

←− (ET )SS
3

(
ηp(y| θ, σ2, λ,a) ↔ λ

)
ω10 ←− y + 1

2
A
{
vec−1

((
ηp(y| θ, σ2, λ,a) ↔ θ

)
2

)}−1(
ηp(y| θ, σ2, λ,a) ↔ θ

)
1

ω11 ←− GVMP

(
ηp(y| θ, σ2, λ,a) ↔ θ ;A

TA,AT y, yT y
)

ω12 ←−
μq(1/σ) μq(λ

√
1+λ2)

ω10√
1 + μq(λ2)

; ω13 ←− ω12 + ζ′(ω12)√
1 + μq(λ2)

ηp(y| θ, σ2, λ,a) → θ ←− {1 + μq(λ2)}μq(1/σ2)

[
AT y

− 1
2
vec

(
ATA

) ]

−μ
q(λ

√
λ2+1)

μq(1/σ)

[
ATω13

0

]

ηp(y| θ, σ2, λ,a) → σ2 ←−

⎡⎢⎢⎢⎣
−n/2

μ
q(λ

√
1+λ2)

ωT
10ω13{

1 + μq(λ2)

}
ω11

⎤⎥⎥⎥⎦

ηp(y| θ, σ2, λ,a) → λ ←−

⎡⎢⎢⎢⎢⎣
n/2

μq(1/σ2)ω11 − n+ 1T
n [ω12 � {ω12 + ζ′(ω12)}]

2{1 + μq(λ2)}
μq(1/σ) ω

T
10ω13

⎤⎥⎥⎥⎥⎦
Parameter Outputs: ηp(y| θ, σ2, λ,a) → θ ,ηp(y| θ, σ2, λ,a) → σ2 ,ηp(y| θ, σ2, λ,a) → λ

The factor graph fragments for the Finite Normal Mixture likelihood are shown in
Figure 6.

As in Sections 3.3 and 3.4, the conjugate distribution for σ2 is the Inverse Square
Root Nadarajah distribution (Section S.2.3 of the online supplement).
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Figure 6: Fragments for the Finite Normal Mixture likelihood specification with inde-
pendent Multinomial(1,w) auxiliary variables a1, . . . ,an.

The inputs, updates and outputs for the Finite Normal Mixture likelihood fragments
are listed in Algorithm 5, and justifications are in Section S.3.5 of the online supplement.

3.6 Support Vector Machine Pseudo-likelihood

Luts and Ormerod (2014) derived mean field variational Bayes algorithms for support
vector machine classification using the auxiliary variable representation of the hinge
loss psuedo-likelihood of Polson and Scott (2011). The approach is founded upon the
following result:∫ ∞

0

(2π a)−1/2 exp

{
− (1 + a− x)2

2a

}
da = exp{−2(1− x)+}, (19)

where u+ ≡ max(0, u) for any u ∈ R. Letting I(P) be the indicator of whether the
proposition P is true, note that (19) can be re-expressed as follows:

if p(x|a) is the N(a+ 1, a) density function in x and p̌(a) = I(a > 0) then

p̌(x) ≡
∫∞
−∞ p(x|a)p̌(a) da = exp{−2(1− x)+}.

(20)

In (20) the pseudo-density function p̌(x) is represented as a mixture of a particular
Normal density function and the auxiliary variable pseudo-density function p̌(a). As we
will see, such a representation is amenable to the VMP updating equations with pseudo-
density functions treated as ordinary density functions. As explained in Polson and Scott
(2011), the hinge loss pseudo-density function could be replaced by an ordinary density
function via normalization. However, the pseudo-density function version leads to the
traditional support vector machine classifier.

The Support Vector Machine pseudo-likelihood fragments are concerned with the
pseudo-likelihood specification

p̌(y|θ) =
n∏

i=1

exp[−2{1− (2yi − 1)(Aθ)i}+], (21)
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Algorithm 5 The inputs, updates and outputs of the Finite Normal Mixture likelihood
fragments.

Data Inputs: y,A,K,w,m, s.

Parameter Inputs: ηp(y| θ, σ2,a) → θ ,ηθ → p(y| θ, σ2,a),ηp(y| θ, σ2,a) → σ2 ,

ησ2 → p(y| θ, σ2,a).

Updates:

μq(1/σ) ←− (ET )ISRN
2

(
ηp(y| θ, σ2,a) ↔ σ2

)
; μq(1/σ2) ←− (ET )ISRN

3

(
ηp(y| θ, σ2,a) ↔ σ2

)

ω15 ←− y + 1
2
A
{
vec−1

((
ηp(y| θ, σ2,a) ↔ θ

)
2

)}−1(
ηp(y| θ, σ2,a) ↔ θ

)
1

ω16 ←−
[

GVMP

(
ηp(y| θ, σ2,a) ↔ θ ;A

T eie
T
i A,AT eie

T
i y, y2i

) ]
1≤ı≤n

Ω17 ←− μq(1/σ)ω15(m/s2
)T

+ μq(1/σ2)ω16

(
1K/s2

)T
+ 1n

{
log(w/s)− (m2)/(2s2)

}T

Ω18 ←− exp(Ω17)/{exp(Ω17)1K1T
K} ; ω19 ←− Ω18(1K/s2)

ηp(y| θ, σ2,a) → θ ←− μq(1/σ2)

[
AT diag(ω19)y

− 1
2
vec

(
AT diag(ω19)A

)] − μq(1/σ)

[
ATΩ18(m/s2)

0

]

ηp(y| θ, σ2,a) → σ2 ←−

⎡⎢⎢⎢⎢⎢⎣
−n/2

ωT
15Ω18(m/s2)

GVMP

(
ηp(y| θ, σ2,a) ↔ θ ;A

T diag(ω19)A,

AT diag(ω19)y, yT diag(ω19)y
)

⎤⎥⎥⎥⎥⎥⎦
Parameter Outputs: ηp(y| θ, σ2,a) → θ ,ηp(y| θ, σ2,a) → σ2 .

where the yi ∈ {0, 1} are indicators of class membership in a two-class classification
setting. If we now introduce an auxiliary variable vector a = (a1, . . . , an) with entries
ai, 1 ≤ i ≤ n, with each independently having the pseudo-density function p̌(ai) =
I(ai > 0) then, using (20), (21) is equivalent to

p̌(y|a,θ) =
n∏

i=1

(2π ai)
−1/2 exp

[
−{1 + ai − (2yi − 1)(Aθ)i}2

2ai

]
,

p̌(a) =

n∏
i=1

I(ai > 0).

(22)

The corresponding factor graph fragments are shown in Figure 7.

Under the assumption that all messages passed to θ are Multivariate Normal, Al-
gorithm 6 provides updates for the natural parameter vector passed from p̌(y|θ,a)
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Figure 7: Fragments for the Support Vector Machine pseudo-likelihood specification
with independent auxiliary variables a = (a1, . . . , an) having psuedo-density function
p̌(a) =

∏n
i=1 I(ai > 0).

Algorithm 6 The inputs, updates and outputs of the Support Vector Machine pseudo-
likelihood fragments.

Data Inputs: y,A.

Parameter Inputs: ηp̌(y| θ,a) → θ ,ηθ → p̌(y| θ,a)

Updates:

ω20 ←− − 1
2
A
{
vec−1

((
ηp̌(y| θ,a) ↔ θ

)
2

)}−1(
ηp̌(y| θ,a) ↔ θ

)
1

]

ω21 ←− − 1
2
diagonal

[
A
{
vec−1

((
ηp̌(y| θ,a) ↔ θ

)
2

)}−1
AT

]
ω22 ←−

[
{(2y − 1n)� ω20 − 1n}2 + ω21

]−1/2

ηp̌(y| θ,a) → θ ←−

⎡⎣ AT {(1n + ω22)� (2y − 1)}

− 1
2
vec

(
AT diag(ω22)A

)
⎤⎦

Parameter Outputs: ηp̌(y| θ,a) → θ

to θ. An attractive feature of the Support Vector Machine pseudo-likelihood fragment

updates is that each of them are simple closed form operations.

4 Illustrations

We now provide some illustrations of how the fragment updates of Section 3 can be

used to move from one variational inference analysis to another, without having to start

from scratch.



390 Variational Message Passing for Elaborate Regression

4.1 Ordinary to Quantile Nonparametric Regression

First consider ordinary nonparametric regression via the Bayesian mixed model-based
penalized spline model used in Section 3.2.1 of Wand (2017). We quickly recap the
details here. The data are the predictor/response pairs (xi, yi), 1 ≤ i ≤ n, and the
nonparametric regression model is:

yi|f, σ2
ε

ind.∼ N
(
f(xi), σ

2
ε

)
,

where the model for the mean function f takes the form

f(x) = β0 + β1 x+

K∑
k=1

uk zk(x) with uk|σ2
u

ind.∼ N(0, σ2
u) (23)

and {zk : 1 ≤ k ≤ K} is a suitable spline basis. The full model used in Wand (2017) is

y|β,u, σ2
ε ∼ N(Xβ +Zu, σ2

ε I),

[
β
u

] ∣∣∣∣∣σ2
u ∼ N

([
μβ

0

]
,

[
Σβ 0
0 σ2

u I

])
,

σ2
u|au ∼ Inverse-χ2(1, 1/au), au ∼ Inverse-χ2(1, 1/A2

u),

σ2
ε | aε ∼ Inverse-χ2(1, 1/aε), aε ∼ Inverse-χ2(1, 1/A2

ε)
(24)

where

X ≡

⎡⎢⎣ 1 x1

...
...

1 xn

⎤⎥⎦ and Z ≡

⎡⎢⎣ z1(x1) · · · zK(x1)
...

. . .
...

z1(xn) · · · zK(xn)

⎤⎥⎦ .

The 2 × 1 vector μβ, 2 × 2 symmetric positive definite matrix Σβ and the positive
numbers Au and Aε are user-specified hyperparameters. Note that

σ2
u|au ∼ Inverse-χ2(1, 1/au), au ∼ Inverse-χ2(1, 1/A2

u)

is equivalent to σu having a Half Cauchy prior with scale parameter Au, but this aux-
iliary variable representation has advantages for VMP fitting. The final choice is the
form of the zk and the value of K. In the upcoming example we used canonical cubic
O’Sullivan splines (Wand and Ormerod, 2008) with K = 27.

The joint posterior density function is approximated according to the following prod-
uct restriction

p(β,u, σ2
u, au, σ

2
ε , aε|y) ≈ q(β,u)q(σ2

u)q(au) q(σ
2
ε)q(aε). (25)

VMP fitting of (24) can be accomplished by using the natural parameter updates
for each of the fragments described in Section 4.1 of Wand (2017). The relevant factor
graph is in the left panel of Figure 8 with the Gaussian likelihood fragment shown in
red. We applied the VMP fitting procedure to data on 4,847 Zambian children from a
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Figure 8: Left panel: Factor graph for the ordinary nonparametric regression model.
The Gaussian likelihood fragment is shown in red. Right panel: Factor graph for the
quantile nonparametric regression model. The Asymmetric Laplace likelihood fragments
are shown in green.

1992 demographic and health survey. These data are part of the data frame Zambia in
the R package INLA (Rue et al., 2016). The predictor and response data are

xi = age of the ith child in months,

and yi = undernutrition score of the ith child, 1 ≤ i ≤ 4, 847.
(26)

All data were standardized and the hyperparameters we set at μβ = 0, Σβ = 1010I and
Au = Aε = 105. The fits were back-transformed to the original units for plotting. The
estimated nonparametric regression function and corresponding pointwise 95% credible
set are shown in the left panel of Figure 9. The estimate shows mean undernutrition
falling during the infancy period of the children before levelling off at about 2 years of
age.

Now suppose that 100τ% quantile nonparametric regression for the same data is of
interest. This involves replacement of

y|β,u, σ2
ε ∼ N(Xβ +Zu, σ2

ε I)

by

yi|β,u, σ2,a
ind.∼ N

(
(Xβ +Zu)i +

( 12 − τ)σ

aiτ(1− τ)
,

σ2

aiτ(1− τ)

)
, ai

ind.∼ Inverse-χ2(2, 1)

in model (24). In terms of factor graphs it involves replacement of the Gaussian likeli-
hood fragment by the Asymmetric Laplace likelihood fragments of Figure 4. The new
fragments are shown in green in the right panel of Figure 8. The VMP updates corre-
sponding to messages away from the likelihood are identical for both models. Algorithm
3 is used for the quantile nonparametric regression fitting and inference.

As a check, the same models were fit to the data using Markov chain Monte Carlo.
The nonparametric regression and quantile regression curves are very close to their
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Figure 9: Left panel: VMP nonparametric regression fit to the variables on Zambian
children given by (26). The curve is the approximate posterior mean and the shaded
region corresponds to pointwise approximate 95% credible sets. The estimates are based
on VMP applied to model (24) according to product restriction (25). The relevant factor
graph is shown in the left panel of Figure 8. Right panel: VMP quantile nonparametric
regression fits to the same data. The curves and shaded regions have the same definitions
as for the left panel.

VMP counterparts. However, the 95% credible set bands are narrower for VMP. This is
a consequence of the loss of inferential accuracy incurred by variational approximations
involving auxiliary variables (see e.g. Wand et al., 2011).

4.2 Poisson to Negative Binomial Additive Model Analysis

Our second illustration involves additive model analysis when the response variable is a
count. First we carried out a Poisson additive model analysis similar to those described
in Section 12.3 of Ruppert et al. (2003). The data involve daily ragweed pollen counts
in Kalamazoo, U.S.A., during the 1991–1994 ragweed seasons. The model is of the form

yi
ind.∼ Poisson

{
exp

(
β0 + β1 x1i + β2 x2i + β3 x3i + fzi(x4i)

)}
, 1 ≤ i ≤ n, (27)

where n = 334 is the total number of days when ragweed pollen was in season during
1991–1994. The variables appearing in (27) are ragweed pollen count on the ith day (yi),
temperature residual on the ith day (x1i), indicator of significant rain on the ith day
(x2i), wind speed in knots on the ith day (x3i), day number of ragweed pollen season
for the current year on which yi was recorded (x4i) and a categorical variable for the
year in which yi was recorded (one of 1991, 1992, 1993 or 1994) (zi). Here temperature
residuals are the residuals from fitting penalized splines, each having 5 effective degrees
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of freedom, to temperature (in degrees Fahrenheit) versus day number for each annual
ragweed pollen season. Note that (27) is not an additive model in the usual sense
since fzi(x4i) represents an interaction between year and day in ragweed pollen season.
Mixed model-based penalized splines analogous to (23) are used for modelling the fz,
z ∈ {1992, 1992, 1993, 1994}. Let σ2

u�, 1 ≤ � ≤ 4, denote the variance parameters used
to penalize each of the four penalized splines. The full model is

y|β,u ∼ Poisson
{
exp(Xβ +Zu)

}
,

[
β
u

] ∣∣∣∣∣σ2
u1, σ

2
u2, σ

2
u3, σ

2
u4 ∼ N

⎛⎜⎝
⎡⎣ μβ

0

⎤⎦ ,

⎡⎢⎣ Σβ 0

0 blockdiag
1≤�≤4

(σ2
u�I)

⎤⎥⎦
⎞⎟⎠ ,

σ2
u�|au� ∼ Inverse-χ2(1, 1/au�), au� ∼ Inverse-χ2(1, 1/A2

u�), 1 ≤ � ≤ 4.

(28)

Here

X =

⎡⎢⎣1 x11 · · · x41 I(z1=1992) x41I(z1=1992) · · · I(z1=1994) x41I(z1=1994)
...

...
...

...
...

...
...

...
...

1 x1n · · · x4n I(zn=1992) x4nI(zn=1992) · · · I(zn=1994) x4nI(zn=1994)

⎤⎥⎦
and Z = [Z1991 Z1992 Z1993 Z1994] where Z1991 is an n × K matrix with (i, k) entry
equal to I(zi = 1991)zk(x4i) and Z1992, . . . ,Z1994 are defined analogously. The β and
u vectors contain the coefficients to match the columns of X and Z respectively.

Despite the simplicity of Poisson response regression models, it is often the case that
the Poisson likelihood is inadequate for modeling count response data that typically
arises in practice. The crux of this inadequacy is the Poisson distribution restriction
of the variance equalling the mean. It is common for the variability of count responses
to be much higher than that imposed by the Poisson likelihood. If such overdispersion
is ignored then standard errors are underestimated and valid statistical inference is
compromised. The Negative Binomial family is an extension of the Poisson family that
allows for the variance to exceed the mean. The move from this Poisson additive model
to a Negative Binomial additive model involves replacement of

y|β,u ∼ Poisson
{
exp(Xβ +Zu)

}
by

yi| ai ind.∼ Poisson(ai), ai|β,u, κ ind.∼ Gamma[κ, κ exp{−(Xβ +Zu)i}],

which corresponds to the likelihood specification

yi|β,u, κ ind.∼ Negative-Binomial[exp{−(Xβ +Zu)i}, κ].

Figure 10 shows the old and the new factor graphs according to this replacement.
Almost all of the fragments in these factor graphs are covered by Wand (2017) and Al-
gorithm 1. The exception is the fragment containing the factor p(κ), which corresponds
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Figure 10: Left panel: Factor graph for the Poisson additive regression model. The
Poisson likelihood fragment is shown in red. Right panel: Factor graph for the Negative
Binomial additive model. The Negative Binomial likelihood fragments are shown in
green.

to placing a prior distribution on κ. In the ragweed data analysis we used the prior
p(κ) = 0.01 exp(−0.01κ), κ > 0, which implies that the message sent from p(κ) to κ is

mp(κ) → κ(κ) = exp

⎧⎨⎩
[

κ log(κ)− log{Γ(κ)}
κ

]T [
0

−0.01

]⎫⎬⎭ .

This prior and message simply correspond to the Exponential distribution with rate
parameter 0.01. We use the Moon Rock-type representation since it is conjugate with
messages passed from p(a|β,u, κ) to κ.

Figure 11 provides some visual summaries of the model fits. The first row shows
posterior density functions for the coefficients of the predictors that enter the models
linearly, and the Negative Binomial shape parameter. The posterior density functions
for the Poisson model are considerably narrower than those for the Negative Binomial
model, which is indicative of overdispersion being ignored in the former model. In the
same vein, the posterior density function of κ has most of its support between 1.4 and
2.2. Such low κ values indicate superiority of the Negative Binomial model since the
Poisson model corresponds to the κ → ∞ limiting case.

The lower four panels of Figure 11 show the estimates of f1991, . . . , f1994 for the
Poisson and Negative Binomial models. The solid curves correspond to the posterior
mean for each day in season value, while the dashed curves are pointwise 95% credible
sets according to the VMP approximation. The estimates are similar for each model,
but the credible set bands are narrower for the Poisson model, in keeping with their
ignorance of overdispersion.

Computing times for the Poisson and Negative Binomial additive models were also
compared. All computing was performed using version 3.4.1 of the R language (R Core
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Figure 11: First three panels: VMP-approximate posterior density functions of the co-
efficients of temperature residual, indicator of rain and wind speed for both the Poisson
additive model (28) and the Negative Binomial additive model for the ragweed data
example. Fourth panel: VMP-approximate posterior density function of the κ parame-
ter for the Negative Binomial additive model. Lower four panels: VMP-based estimates
of f1992, . . . , f1994 according to each model. The solid curves are posterior means and
the dashed curves are pointwise 95% credible intervals based on VMP approximate
inference.

Team, 2017) on a desktop personal computer with 8 gigabytes of random access memory
and a 3.2 gigahertz processor. Firstly, we determined that 250 iterations were sufficient
for convergence of VMP for each model. The elapsed times were 5.5 seconds for the
Poisson model and 6.9 seconds for the Negative Binomial model.

We also compared the VMP-approximate posterior density functions and additive
model components with those obtained using Markov chain Monte Carlo. Excellent
agreement was observed in almost all cases. An exception concerned the posterior den-
sity function for κ, with VMP under-approximating the posterior standard deviation.
This phenomenon was also observed in Luts and Wand (2015).



396 Variational Message Passing for Elaborate Regression

5 Closing Remarks

As exemplified in Section 4, the algorithms presented in Section 3 concerning fragments

updates for elaborate likelihoods greatly enhances the utility of VMP for semiparamet-

ric regression analyses. In addition to the primitives for VMP-based semiparametric

regression laid down in Wand (2017) we have identified a small set of new primitives,

corresponding to sufficient statistic expectations of the Inverse Square Root Nadarajah,

Moon Rock and Sea Sponge distributions. Once their computation is established in a

suite of computer programmes, a much richer class of models can be handled via the

VMP paradigm.

Supplementary Material

Supplement for: Variational Message Passing for Elaborate Response Regression Models

(DOI: 10.1214/18-BA1098SUPP; .pdf).
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Frühwirth-Schnatter, S. and Pyne, S. (2010). “Bayesian inference for finite mixtures of

univariate and multivariate skew-normal and skew-t distributions.” Biostatistics, 11:

317–336. 382
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