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Bayesian Functional Linear Regression with
Sparse Step Functions

Paul-Marie Grollemund∗,†, Christophe Abraham‡, Mëıli Baragatti§, and Pierre Pudlo¶

Abstract. The functional linear regression model is a common tool to determine
the relationship between a scalar outcome and a functional predictor seen as a
function of time. This paper focuses on the Bayesian estimation of the support of
the coefficient function. To this aim we propose a parsimonious and adaptive de-
composition of the coefficient function as a step function, and a model including a
prior distribution that we name Bayesian functional Linear regression with Sparse
Step functions (Bliss). The aim of the method is to recover periods of time which
influence the most the outcome. A Bayes estimator of the support is built with a
specific loss function, as well as two Bayes estimators of the coefficient function, a
first one which is smooth and a second one which is a step function. The perfor-
mance of the proposed methodology is analysed on various synthetic datasets and
is illustrated on a black Périgord truffle dataset to study the influence of rainfall
on the production.
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1 Introduction

Consider that one wants to explain the final outcome y of a process along time (for
instance the amount of some agricultural production) thanks to what happened during
the whole history (for instance, the rainfall history, or temperature history). Among the
statistical learning methods, functional linear models (Ramsay and Silverman, 2005) aim
at predicting a scalar y based on covariates x1(t), x2(t), . . . , xq(t) lying in a functional
space, L2(T ) say, where T is an interval of R. If xq+1, . . . , xu are additional scalar
covariates, the outcome y is predicted linearly with

ŷ = μ+

∫
T
β1(t)x1(t)dt+ · · ·+

∫
T
βq(t)xq(t)dt+ βq+1xq+1 + · · ·+ βuxu, (1)

where μ is the intercept, β1(t), . . . , βq(t) the coefficient functions, and βq+1, . . . , βp the
other (scalar) coefficients. In this framework the functional covariates xj(t) and the
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unknown coefficient functions βj(t) lie in the L2(T ) functional space, thus we face a
nonparametric problem. Standard methods (Ramsay and Silverman, 2005) for estimat-
ing the βj(t)’s, 1 ≤ j ≤ q, are based on the expansion onto a given basis of L2(T )
and the minimization of a penalized criterion to avoid overfitting, see for instance Car-
dot et al. (2003). The choice of the given basis is a main feature of these approaches
and several choices have been considered as, for example, data-driven basis (see Car-
dot et al., 1999, Yuan and Cai, 2010 and Zhu et al., 2014), wavelet basis (see among
others Zhao et al., 2012) or it can be chosen in a Bayesian framework using a prior
(see Brown et al., 2001, Crainiceanu et al., 2005, Crainiceanu and Goldsmith, 2010 and
Goldsmith et al., 2011). For a comprehensive scan of the methodology, see Reiss et al.
(2016). An issue which arises naturally in many applied contexts is the detection of
periods of time which influence the final outcome y the most. Note that each integral
in (1) is a weighted average of the whole trajectory of xj(t), and does not identify any
specific impact of specific periods of the process. These time periods might vary from
one covariate to another. For instance, in agricultural science, the final outcome may
depend on the amount of rainfall during a given period (e.g., to prevent rotting), and
the temperature during another (e.g., to prevent freezing). Standard methods do not
answer the above question, namely to recover the support of the coefficient functions
βj(t) with the noticeable exception of Picheny et al. (2016).

Unlike the scalar-on-image models, we focus here on one-dimensional functional co-
variates. When T is not a one dimensional space, the problem becomes much more
complex. The functional covariates and the coefficient functions are all discretized, e.g.
via the pixels of the images, see Goldsmith et al. (2014); Li et al. (2015); Kang et al.
(2016). In these two- or three-dimensional problems, because of the curse of dimension-
ality, the points which are included in the support of the coefficient functions follow
a parametric distribution, namely an Ising model. One important problem solved by
these authors is the sensitivity of the parameter estimate of the Ising model in the
neighborhood of the phase transition.

When T is a one dimensional space, we can build nonparametric estimates. In this
vein, using the L1-penalty to achieve parsimony, the Flirti method of James et al. (2009)
obtains an estimate of the βj(t)’s assuming they are sparse functions with sparse deriva-
tives. Nevertheless Flirti is difficult to calibrate: its numerical results depend heavily on
tuning parameters. In our experience, Flirti’s estimate is so sensitive to the values of
the tuning parameters that we can miss the range of good values with cross-validation.
The authors propose to rely on cross-validation to set these tuning parameters. But, by
definition, cross-validation assesses the predictive performance of a model, see Arlot and
Celisse (2010) and the many references therein. Of course, optimizing the performance
regarding the prediction of y does not provide any guarantee regarding the support
estimate. Zhou et al. (2013) propose a two-stage method to estimate the coefficient
function. Beforehand, β(t) is expanded onto a B-spline basis to reduce the dimension
of the model. The first stage estimates the coefficients of the truncated expansion onto
the basis using a lasso method to find the null intervals. Then, the second stage refines
the estimation of the null intervals and estimates the magnitude of β(t) for the rest of
the support. Another approach to obtain parsimony is to rely on Fused lasso (Tibshi-
rani et al., 2005): if we discretize the covariate functions and the coefficient function as
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described in James et al. (2009), the penalization of Fused lasso induces parsimony in
the coefficients, but, once again the calibration of the penalization is performed using
cross-validation which targets predictive perfomance rather than the accuracy of the
support estimate.

In this paper, we propose Bayesian estimates of both the supports and the coefficient
functions βj(t). To keep the dimension of the parameter as low as possible, we stay with
the simplest and the most parsimonious shape of the coefficient function over its support.
Hence, conditionally on the support, we consider the coefficient functions βj(t) to be
step functions (piecewise constant functions can be described with a minimal number
of parameters). We can decompose any step function β(t) as follows:

β(t) =

K∑
k=1

bk
1

|Ik|
1{t ∈ Ik}, (2)

where I1, . . . , IK are intervals of T , |Ik| is the length of the interval and bk are the
coefficients of the expansion. The support is the union of all Ik if the coefficients bk are
non null. A period of time which does not influence the outcome will be outside the
support. The above model has another advantage: step functions change values abruptly
from 0 to a non null value. Hence their supports are relatively clear. On the contrary, if
we have at our disposal a smooth estimate of a coefficient function βj(t) in the model
given by (1), the support of the estimate is the whole T and we have to find regions
where the estimate is not significantly different from 0. Moreover, with a full Bayesian
procedure, we can evaluate the uncertainty of the estimates of the support and the
values of the coefficient functions.

This paper is organized as follows. Section 2 presents the Bayesian modelling, includ-
ing the prior distribution in 2.2, the support estimate in 2.4 and the coefficient function
estimates in 2.5. Section 3 is devoted to the study of numerical results on synthetic data,
with comparison to other methods. Section 4 gives details of the results of Bliss on a
dataset concerning the influence of rainfall on the growth of the black Périgord truffle.

2 The Bliss Method

We present the hierarchical Bayesian model in Section 2.2 on a single functional covari-
ate, the Bayes estimate of the support in Section 2.4 and two Bayes estimates of the
coefficient function in Section 2.5. Section 2.6 describes the Bayesian model on several
functional covariates.

2.1 Reducing the Model

Assume we have observed n independent replicates yi (1 ≤ i ≤ n) of the outcome, ex-
plained with the functional covariates xij(t) (1 ≤ i ≤ n, 1 ≤ j ≤ q) and the scalar covari-
ates xij (1 ≤ i ≤ n, q+1 ≤ j ≤ u). The whole dataset will be denoted D in what follows.
Let us denote by xi = {xi1(t), . . . , xiq(t), xi,q+1, xiu} the set of all covariates for repli-
cate i, and by θ the set of all parameters, namely {β1(t), . . . , βq(t), βq+1, . . . , βu, μ, σ

2},
where σ2 is a variance parameter. We resort to the Gaussian likelihood defined as
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yi|xi, θ
ind∼ N

⎛⎝μ+

q∑
j=1

∫
T
βj(t)xij(t)dt+

u∑
j=q+1

βjxij , σ2

⎞⎠ , i = 1, . . . , n. (3)

If we set a prior on the parameter θ which includes all βj(t), βj , μ and σ2, we can
recover the full posterior from the conditional distributions βj(t), μ, σ

2 | D, β−j and
βj , μ, σ

2 | D, β−j (both theoretically and practically with a Gibbs sampler), where β−j

represents the set of β-parameters except βj or βj(t). Hence we can reduce the problem
to a single functional covariate and no scalar covariate. The model we have to study
becomes

yi|xi(t), μ, β(t), σ
2 ind∼ N

(
μ+

∫
T
β(t)xi(t)dt , σ2

)
, i = 1, . . . , n, (4)

with a single functional covariate xi(t).

2.2 Model on a Single Functional Covariate

For parsimony we seek the coefficient function β(t) in the following set of sparse step
functions

EK =

{
K∑

k=1

bk
1

|Ik|
1 {t ∈ Ik} : I1, . . . , IK intervals ⊂ T , b1, . . . , bK ∈ R

}
, (5)

where K is a hyperparameter that counts the number of intervals required to define the
function. Note that we do not make any assumptions regarding the intervals I1, . . . , IK .
First, they do not form a partition of T . As a consequence, a function β(t) in EK is
piecewise constant and null outside the union of the intervals Ik, k = 1, . . . ,K. This
union is the support of β(t), hence the model includes an explicit description of the
support. Second the intervals I1, . . . , IK can even overlap to ease the parametrization
of the intervals: we do not have to add constraints on the parametrization to remove
possible overlaps.

Now if we pick a function β(t) ∈ EK as in (2), the integral of the covariate functions
xi(t) against β(t) becomes a linear combination of partial integrals of the covariate
function over the intervals Ik and we predict yi with

ŷi = μ+

K∑
k=1

bk xi(Ik), where xi(Ik) =
1

|Ik|

∫
Ik

xi(t)dt.

Thus, given the intervals I1, . . . , IK , we face a multivariate linear model with the usual
Gaussian likelihood.

Then we set the parameters on EK and a prior distribution. Each interval Ik is set
with its center mk and its half length �k:

Ik = [mk − �k,mk + �k] . (6)

As a result, when K is fixed, the parameter of the model is

θ = (m1, . . . ,mK , �1, . . . , �K , b1, . . . , bK , μ, σ2).
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Below, we denote βθ(·) the coefficient function defined with (2) to highlight the depen-
dence on θ.

We first define the prior on the support, that is to say on the intervals Ik. The prior
of the center of each interval is uniformly distributed on the whole range of time T .
This uniform prior does not promote any particular region of T . Furthermore, the prior
of the half-length of the interval Ik is the Exponential distribution E(a). To understand
this prior and set hyperparameters a, we introduce the prior probability that a given
t ∈ T is in the support, namely

α(t) =

∫
ΘK

1{t ∈ Sθ}πK(θ)dθ, (7)

where πK is the prior distribution on the range of parameters ΘK of dimension 3K+2,
and where Sθ = Supp(βθ) is the support of βθ(t) that is to say the union of the Ik. The
value of α(t) depends on hyperparameters a. These parameters should be fixed with the
help of prior knowledge on α(t).

Given the intervals, or equivalently, given the mk and �k, the functional linear model
becomes a multivariate linear model with xi(Ik) as scalar covariates. We could have set
a standard and well-understood prior on b|σ2, (Ik)1≤k≤K , namely the g−Zellner prior,
with g = n in order to define a vaguely informative prior. More specifically, the design
matrix given the intervals is x·(I·) = {xi(Ik), 1 ≤ i ≤ n, 1 ≤ k ≤ K}. And the
g-Zellner prior, with g = n is given by

π(σ2) ∝ 1/σ2, b|σ2, (Ik)1≤k≤K ∼ NK

(
0, nσ2G−1

)
, (8)

where b = (b1, . . . , bK) and G = x·(I·)Tx·(I·) is the Gram matrix. However, depending
on the intervals Ik, the covariates xi(Ik) can be highly correlated. We recall here that the
functional covariate can have autocorrelation and that the intervals can overlap. That
is why, in this setting, the Gram matrix G can be ill-conditioned, that is to say not
numerically invertible and we cannot resort to the g−Zellner prior in practice. To solve
this problem we have to decrease the condition number of G, by applying a Tikhonov
regularization. The resulting prior is a ridge-Zellner prior (Baragatti and Pommeret,
2012) which replaces G by G + ηI in (8), where η is a scalar tuning the amount of
regularization and I is the identity matrix. Adding the ηI matrix shifts all eigenvalues
of the Gram matrix by η. In order to obtain a well-conditioned matrix, we decided to
fix η with the help of the largest eigenvalue of the Gram matrix, λmax(G) and to set
η = vλmax(G) where v is a hyperparameter of the model.

To sum up the above, the prior distribution on ΘK is

μ|σ2 ∼ N
(
0, v0σ

2
)
,

b|σ2,m1, . . . ,mK , �1, . . . , �K ∼NK

(
0, nσ2(G+ vλmax(G)I)−1

)
, where G=x·(I·)Tx·(I·),

π(σ2) ∝ 1/σ2, (9)

mk
i.i.d.∼ Unif (T ) , k = 1, . . . ,K,



116 Bayesian Functional Linear Regression with Sparse Step Functions

Figure 1: The full Bayesian model. The coefficient function β(t) =
∑K

k=1 bk1{t ∈
Ik}/|Ik| defines both a projection of the covariate functions xi(t) onto R

K by aver-
aging the functions over each interval Ik and a prediction ŷi which depends on the
vector b = (b1, . . . , bK) and the intercept μ.

�k
i.i.d.∼ Exp(a), k = 1, . . . ,K.

The resulting Bayesian modelling is given in Figure 1 and depends on hyperparameters
which are v0, v, a and K. We denote by πK(θ) and πK(θ|D) the prior and the posterior
distributions. We propose below default values for the hyperparameters v0, v, a; see
Section 1.1 of Supplementary Materials (Grollemund et al., 2019) for numerical results
that support this proposal.

• The parameter v0 drives the prior information we put on the intercept μ. This is
clearly not the most important hyperparameter since we expect important infor-
mation regarding μ in the likelihood. We recommend using v0 = 100× ȳ2, where
ȳ is the average of the outcome on the dataset. Even if it may look like we set the
prior with the current data, the resulting prior is vaguely non-informative.

• The parameter v is more difficult to set: it tunes the amount of regularization in
the g-Zellner prior. Our set of numerical studies indicates, see Section 3 below,
that v = 5 is a good value.
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• The parameter a sets the prior length of an interval of the support. This should
depend on the number K of intervals. We recommend the value a = 5K so that
the average length of an interval from the prior distribution is proportional to
1/K. Our numerical studies show that the choice of this constant 5 in the above
recommendation does not drastically influence the results.

2.3 Model Choice

The hyperparameter K drives the number of intervals, thus the dimension of ΘK . We
can put an extra prior distribution on K and perform Bayesian model choice either to
inferK or to aggregate posteriors coming from various values ofK. There is a ban on the
use of improper prior together with Bayesian model choice (or Bayes factor) because of
the Jeffrey–Lindley paradox (see, e.g. Robert, 2007, Section 5.2). A careful reader would
notice here the improper prior on σ2, but this does not prohibit the use of Bayesian
choice because it is a parameter common to all models (i.e., to all values of K here).

Note that the marginal of the posterior distribution on a given interval (bk,mk, �k),
k ∈ {1, . . . ,K}, is a multimodal distribution of dimension 3, with constraints on the
support. Indeed, the intervals are exchangeable both a priori and a posteriori: we face a
label switching issue. Moreover, the posterior distribution on the whole set of intervals
is correlated: when (b1,m1, �1) is around one mode, the other intervals are around the
other modes. Thus, the posterior distribution has a complex shape. Standard techniques
such as harmonic mean or importance sample (Marin and Robert, 2010) that aim at
computing the evidence of a model, namely π(D|K), or the Bayes factor, are difficult
to carry out. This problem deserves another study. Regarding bridge sampling (Gelman
and Meng, 1998), the main difficulty is that introducing a new interval in the model
increases the dimension by 3. Running this efficient algorithm is thus not trivial at all
in our context.

Nevertheless model information criteria such as AIC, BIC and DIC are much easier
to compute. In this study, we have eliminated the Akaike Information Criterion (AIC)
since it is designed to provide the model with the best predictive power. We have also
eliminated the deviance information criterion (DIC) because this last criterion makes
sense only when the posterior distribution is unimodal. (Our posterior distributions are
much more complex, see above.) We thus recommend the use of the Schwartz informa-
tion criterion (BIC) whose performance on our simulations was relatively good. But, as
expected, when the size of the dataset is rather small or when the autocorrelation within
the covariates is high, BIC trends to under-estimate the value of K, see Section 3.3 of
Supplementary Materials (Grollemund et al., 2019).

2.4 Estimation of the Support

Regarding the inference of the support, an interesting quantity is the posterior proba-
bility that a given t ∈ T is in the support. It can be defined as the prior probability in
(7), that is to say

α(t|D) =

∫
ΘK

1{t ∈ Sθ}πK(θ|D)dθ. (10)
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Both functions α(t) and α(t|D) can be easily computed with a sample from the prior
and the posterior respectively. They are also relatively easy to interpret in terms of
marginal distribution of the support: fix t ∈ T , α(t) is the prior probability that t is
in the support of the coefficient function and α(t|D) is the posterior probability of the
same event.

Now let Lγ(S, Sθ) be the loss function given by

Lγ(S, Sθ) = γ

∫ 1

0

1{t ∈ S \ Sθ}dt+ (1− γ)

∫ 1

0

1{t ∈ Sθ \ S}dt, (11)

where Sθ = Supp(βθ) is the support of βθ(t), the coefficient function as parametrized
in (2) and where γ is a tuning parameter in [0; 1]. Actually, there are two types of error
when estimating the support:

• type I error: a point t ∈ T which is really in the support Sθ has not been included
in the estimate,

• type II error: a point t ∈ T has been included in the support estimate but does
not lie inside the real support Sθ

and the tuning parameter γ allows us to set different weights on both types of error.
Note that, when γ = 1/2, the loss function is one half of the Lebesgue measure of the
symmetric difference SΔSθ.

Bayes estimates are obtained by minimizing a loss function integrated with respect
to the posterior distribution, see Robert (2007). Hence, in this situation, Bayes estimates
of the support are given by

Ŝγ(D) ∈ argmin
S⊂T

∫
ΘK

Lγ(S, Sθ)πK(θ|D)dθ. (12)

The following theorem shows the existence of the Bayes estimate and how to compute
it from α(t|D).

Theorem 1. The level set of α(t|D) defined by

Ŝγ(D) = {t ∈ T : α(t|D) ≥ γ}

is a Bayes estimate associated with the above loss Lγ(S, Sθ). Moreover, up to a set of

null Lebesgue measure, any Bayes estimate Ŝγ(D) that solves the optimisation problem
given in (12) satisfies

{t ∈ T : α(t|D) > γ} ⊂ Ŝγ(D) ⊂ {t ∈ T : α(t|D) ≥ γ}.

The proof of the above theorem is given in Section 2.1 of Supplementary Materials
(Grollemund et al., 2019). Although simple-looking, the proof requires some caution
because sets should be Borelian sets. Note that, when we try to completely avoid errors
of type I (resp. type II) by setting γ = 0 (resp. γ = 1), the support estimate is T (resp. ∅).
Additionally Theorem 1 shows how we should interpret the posterior probability α(t|D)
and that its plot may be one important output of the Bayesian analysis proposed in this
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paper: it measures the evidence that a given point is in the support of the coefficient
function.

Remark: Note that the number of intervals in the support estimate Ŝγ(D) can be, and
is often different from the value of K (because intervals can overlap). Therefore, the
choice of the hyperparameter K (the number of intervals) can be validated with regard

to the estimate Ŝγ(D).

2.5 Estimation of the Coefficient Function

The Bayesian modelling given in Section 2.2 was mainly designed to estimate the support
of the coefficient function. Nevertheless, Bayes estimators of the coefficient function can
be made and two alternatives are proposed below. The first one, given in (13) is a
smooth estimate, whereas the second estimate, given in Proposition 3, is a stepwise
estimate which is parsimonious and may be more easily interpreted.

With the default quadratic loss, a Bayes estimate is defined as

β̂L2(·) ∈ argmin
d(·)∈L2(T )

∫∫
(βθ(t)− d(t))

2
dt πK(θ|D)dθ, (13)

where βθ(t) is the coefficient function as parametrized in (2). At least heuristically β̂L2(·)
is the average of βθ(·) over the posterior distribution πK(θ|D), though the average of
functions taking values in L2(T ) under some probability distribution is hard to define
(using either Bochner or Pettis integrals). In this simple setting we can claim the follow-
ing, see Section 2.2 of Supplementary Materials (Grollemund et al., 2019) for the proof.

Proposition 2. Let ‖ · ‖ be the norm of L2(T ). If
∫
‖βθ(·)‖πK(θ|D)dθ < ∞, then the

estimate defined by

β̂L2(t) =

∫
βθ(t)πK(θ|D)dθ, t ∈ T , (14)

is in L2(T ) and solves the optimization problem (13).

Below, we call β̂L2 the L2-estimate. Averages such as (14) belong to the closure
of the convex hull of the support EK of the posterior distribution. We can prove (see
Proposition S.2.2 in Section 2.4 of Supplementary Materials, (Grollemund et al., 2019))
that the convex hull of EK is the set E = ∪∞

K=1EK of step functions on T , and the

closure of E is L2(T ). Hence the only guarantee we have on β̂L2 as defined in (14) is

that β̂L2 lies in L2(T ), a much larger space than the set of step functions. Though not
shown here, integrating the βθ(t)’s over θ with respect to the posterior distribution has

regularizing properties, and the Bayes estimate β̂L2(t) is smooth.

To obtain an estimate lying in the set of step functions, namely E , we can consider
the projection of β̂L2 onto the set EK0 for a suitable value of K0 possibly different to

K. However, due to the topological properties of L2(T ) and EK0 , the projection of β̂L2

onto the set EK0 does not always exist (see Section 2.4 of Supplementary Materials
(Grollemund et al., 2019)). To address this problem, we introduce a subset Eε

K0
of EK0 ,
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where ε > 0 is a tuning parameter. Let Fε denote the set of step functions β(t) ∈ L2(T )

which can be written as β(t) =
∑

b†k1{t ∈ Jk} where the intervals Jk are mutually
disjoint and each of the lengths are greater than ε. The set Eε

K0
is now defined as

Fε ∩ EK0 . By considering this set, we remove from EK the step functions which have
intervals of very short length, and we can prove the following.

Proposition 3. Let K0 ≥ 1 and ε > 0.

(i) The function d(·) 
→ ‖d(·)−β̂L2(·)‖2 admits a minimum on Eε
K0

. Thus a projection

of β̂L2(·) onto this set always exists and is defined by

β̂ε
K0

(·) ∈ argmin
d(·)∈Eε

K0

‖d(·)− β̂L2(·)‖2. (15)

(ii) The estimate β̂ε
K0

(·) is a true Bayes estimate with loss function

Lε
K0

(
d(·), β(·)

)
=

{
‖d(·)− β(·)‖2 =

∫
T (β(t)− d(t))

2
dt if β ∈ Eε

K0
,

+∞ otherwise.
(16)

We call β̂ε
K0

(·) the Bliss estimate given in Proposition 3. Finally one should note that
the support of the Bliss estimate given in Proposition 3 provides another estimate of the
support, which differs from the Bayes estimate introduced in Section 2.4. Obviously, real
Bayes estimates, which optimize the loss integrated over the posterior distribution, are
by construction better estimates. Another possible alternative would be the definition
of an estimate of the coefficient function whose support is given by one of the Bayes
estimates defined in Theorem 1. But such estimates do not account for the inferential
error regarding the support. Hence we believed that, when it comes to estimating the
coefficient function, the Bayes estimates proposed in this Section are better than other
candidates and achieve a tradeoff between inferential errors on its support and prediction
accuracy on new data.

2.6 Model with Several Functional Covariates

Suppose now that we have not only observed a single functional covariate but q func-
tional covariates xij(t) defined on T , for i = 1, . . . , n and j = 1 . . . , q. The model we
have to study is

yi|xi1(t), . . . , xiq(t), μ, β1(t), . . . , βq(t), σ
2 ind∼ N

⎛⎝μ+

q∑
j=1

∫
βj(t)xij(t)dt , σ2

⎞⎠ , (17)

for i = 1, . . . , n and j = 1, . . . , q. As in Section 2.2, each coefficient function βj(·) is
assumed to be a step function. In particular, for given K1, . . . ,Kq, we set βj(·) ∈ EKj

for j = 1, . . . , q. Hence we have βj(t) =
∑Kj

k=1 bkj 1{t ∈ Ikj}/|Ikj | where the Ikj are
intervals of T . Then, the outcome values yi are predicted with

ŷi = μ+

q∑
j=1

Kj∑
k=1

bkjxij(Ikj), where Ikj =
1

|Ikj |

∫
Ikj

xij(t)dt.
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Hence, for given K1, . . . ,Kq, the parameter of the model is θ = (θ1, . . . , θq, μ, σ
2), where

θj = (m1j , . . . ,mKjj , �1j , . . . , �Kjj , b1j , . . . , bKjj). Below, we denote by βθ,j(·) the jth

coefficient function defined with (2), which depends on θ. If we denote K =
∑q

j=1 Kj ,
the range of the parameter θ is denoted by ΘK of which the dimension is 3K + 2. The
prior distribution on ΘK is set in the same way as in Section 2.2:

μ|σ2 ∼ N
(
0, v0σ

2
)
,

bj |σ2,m1j , . . . ,mKjj , �1j , . . . , �Kjj ∼ NKj

(
0, nσ2(Gj + vλmax(Gj)I)

−1
)
, j=1, . . . , q,

π(σ2) ∝ 1/σ2, (18)

mkj
i.i.d.∼ Unif (T ) , k = 1, . . . ,Kj and j = 1, . . . , q,

�kj
i.i.d.∼ Exp(a), k = 1, . . . ,Kj and j = 1, . . . , q,

where bj = (b1j , . . . , bKjj) and Gj is given by x·j(I·j)Tx·j(I·j) for j = 1, . . . , q with
x·j(I·j) = {xij(Ikj), 1 ≤ i ≤ n, 1 ≤ k ≤ Kj}. Below, we denote by πK(θ) and πK(θ|D)
the prior and the posterior distributions. The estimators of the coefficient functions and
their supports are defined as in Section 2.4 and 2.5 in the case of a single functional
covariate. We denote by Sθ,j the support of βj(·) which we estimate with

Ŝγ,j(D) ∈ argmin
S⊂T

∫
ΘK

Lγ(S, Sθ,j)πK(θ|D)dθ,

where the loss function Lγ is given by (11) and for a fixed γ ∈ (0, 1). The coefficient
function βθ,j(t) is estimated by using the estimators described in Proposition 2. The
first one is

β̂L2,j(·) ∈ argmin
d(·)∈L2(T )

∫∫
(βθ,j(t)− d(t))

2
dt πK(θ|D)dθ.

The second estimator is defined in the same vein by adapting the notation of Proposi-
tion 3:

β̂ε
K0,j(·) ∈ argmin

d(·)∈L2(T )

∫
Lε
K0

(
d(·), βθ,j(·)

)
πK(θ|D)dθ.

3 Simulation Study

In this Section, the performance of univariate Bliss is evaluated using simulated datasets.
Below, Section 3.1 describes how we generate data sets with one single functional covari-
ate. Then, the performances of the support estimate of the Bliss method are described
in Section 3.2. Section 3.3 compares the coefficient function estimators of the different
methods. Next the multivariate Bliss model defined in Section 2.6 is applied twice on
simulated datasets with two uncorrelated functional covariates and then with two cor-
related functional covariates. We extend Simulation Study in Supplementary Materials
(Grollemund et al., 2019). In Section 1.1, we evaluate the sensitivity of the estimates
with respect to the model’s hyperparameters. We discuss the computational time of the
Bliss algorithm applied on the following simulated datasets in Section 3.6.
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Figure 2: Coefficient functions for numerical illustrations. The black (resp. red and blue)
curve corresponds to the shape: Step function (resp. Smooth and Spiky).

3.1 Simulation Scheme for Datasets with One Functional Covariate

First of all, we describe how we generate different datasets on which we applied and
compared the methods. The support of the covariate curves xi is T = [0, 1], observed on
a regular grid t = (t1, . . . , tp) on T , for p = 100. We simulate p-multivariate Gaussian
vectors xi, i = 1, . . . , 100, corresponding to the values of curves xi for the observation
times t. The covariance matrix Σ of these Gaussian vectors is derived from the covariance
between xi(t) and xi(t

′) given by:√
var(t) var(t′) exp

(
−ζ2(t− t′)2

)
,

where var(t) is the variance of the values xi(t) for i = 1, . . . , n and the coefficient ζ tunes
the autocorrelation of the xi(t). Three different shapes are considered for the functional
coefficient β, given in Figure 2.

The first one is a step function, the second one is smooth and is null on small intervals
of T (Smooth), the third one is non-null only on small intervals of T (Spiky).

• Step function: β(t) = 3×1{t ∈ [0.1, 0.3]}+4×1{t ∈ [0.45, 0.55]}−1{t ∈ [0.8, 0.95]}.

• Smooth: β(t) = 5× e−20(t−0.25)2 − 2× e−20(t−0.5)2 + 2× e−20(t−0.75)2 .

• Spiky: β(t) = 8× (2 + e20−100t + e100t−20)−1 − 12× (2 + e60−100t + e100t−60)−1.

The outcomes yi are calculated according to (4). The value of σ2 is fixed in such a way
that the signal to noise ratio is equal to a chosen value r. Datasets are simulated for
μ = 1, ζ ∈ {1, 1/3, 1/5} and r ∈ {1, 3, 5}. Hence, we simulate 27 datasets with different
features, that we use in Section 3.3 to compare the methods.
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Support Error Dataset
Shape r ζ Support of the stepwise

Bliss estimate
Bayes support estimate

Step function

5 1 0.242 0.152 1
5 1/3 0.384 0.202 2
5 1/5 0.242 0.293 3
3 1 0.232 0.091 4
3 1/3 0.323 0.394 5
3 1/5 0.424 0.465 6
1 1 0.283 0.162 7
1 1/3 0.404 0.333 8
1 1/5 0.439 0.394 9

Section 3.1 describes the simulation scheme of the datasets. Section 3.2 describes the
criteria: Support Error.

Table 1: Comparison of the support estimate and the support of the Bliss estimate.

3.2 Performances Regarding Support Estimates

We begin by assessing the performances of our proposal in terms of support recovery.
We focus here on the datasets simulated whose the true coefficient function is Step
function. It is the only function among the three functions we have chosen where the
real definition of the support matches with the answer a statistician would expect, see
Figure 2. The numerical results are given in Table 1, where we evaluated the error with
the Lebesgue measure of the symmetric difference between the true support S0 and the
estimated one Ŝ, that is to say 2L1/2(Ŝ, S0) with the notation of Section 2.4.

As we claim at the end of Section 2.5, the Bayes estimates defined in Theorem 1
performs much better than the support of the Bliss estimate of Proposition 3. As also
expected the accuracy of the Bayes support estimate worsens when the autocorrelation
within the functional covariate xi(t) increases. The signal to noise ratio is the second
most influent factor that explains the accuracy of the estimate.

The third interval of the true support, namely [0.8, 0.95], is the most difficult to
recover because the true value of the coefficient function over this interval is relatively
low (−1) compared to the other values (4 and 3) of the coefficient function. Figure 3 gives
two examples of the posterior probability function α(t|D) defined in (10) where we have
highlighted (in red) the Bayes support estimate with γ = 1/2. Of these two examples,
Figure 3 shows that the third interval is recovered only when there is low autocorrelation
in xi(t) (i.e. Dataset 1). Figure 3 shows that the support estimate of Dataset 1 (low
autocorrelation within the covariate) is more trustworthy than the support estimate of
Dataset 3 (high autocorrelation within the covariate).

For more complex coefficient functions, see Figure 2, we cannot compare the Bayes
support estimate directly with the true support of the coefficient function that generated
the data. Nevertheless, in the next section, we will compare the coefficient estimate with
the true coefficient function.
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Figure 3: Prior (in gray) and posterior (in black) probabilities of being in the support
computed on Datasets 1 and 2. Bayes estimate of support using Theorem 1 with γ = 1/2
are given in red.

3.3 Performances Regarding the Coefficient Function

We compare Bliss to three competitors: the Bayesian Functional Data Analysis method
(BFDA) (Crainiceanu and Goldsmith, 2010), Fused lasso (Tibshirani et al., 2005) and
Flirti (James et al., 2009) using simulated datasets.

• The BFDA method aims to fit a Bayesian penalized B-splines model. The BFDA
estimate minimizes the posterior expected L2-loss, computed by using an ap-
proximation from a Markov chain Monte Carlo (MCMC) sample. Moreover, in
order to compare this Bayesian approach to Bliss, we compute a representation of
the marginal posterior distributions (see Section 1.2 of Supplementary Materials,
(Grollemund et al., 2019)) from the BFDA’s MCMC sample.

• Fused Lasso is an approach based on minimizing a penalized likelihood in order
to induce parsimony on the values β(t) and on the differences β(t)− β(t′) when t
and t′ are close.

• Flirti proceeds in the same vein by introducing a penalization term which promotes
parsimony on the coefficient function and its derivatives. Below, we apply Flirti by
using a penalization term in such a way that its first derivate is sparsely estimated.
Hence, the Flirti estimate should theoretically be a step function as the stepwise-
Bliss estimate. Moreover, the authors propose to compute confidence bands by
using a bootstrap procedure.

In order to compare the methods for the estimation of the coefficient function, we
use the L2-error, namely ∫ 1

0

(β̂(t)− β0(t))
2dt, (19)
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L2-error Dataset
Shape r ζ Bliss estimate L2-estimate Fused lasso Flirti BFDA

Step function

5 1 1.126 0.740 0.666 1.288 0.672 1
5 1/3 2.221 1.415 1.947 1.781 105 2
5 1/5 2.585 1.656 1.777 3.848 105 3
3 1 1.283 0.821 0.984 103 0.752 4
3 1/3 1.531 1.331 1.936 104 106 5
3 1/5 2.266 2.989 2.036 1.772 105 6
1 1 1.589 0.747 0.995 3.848 0.877 7
1 1/3 2.229 1.817 2.214 104 106 8
1 1/5 1.945 2.364 2.028 3.848 104 9

Smooth

5 1 0.510 0.134 0.601 0.166 0.553 10
5 1/3 0.807 0.609 0.442 2.068 5.283 11
5 1/5 1.484 1.352 2.325 2.068 104 12
3 1 0.776 0.416 0.320 0.263 0.512 13
3 1/3 0.855 0.954 6.790 2.068 4.782 14
3 1/5 1.291 1.162 1.742 1.328 103 15
1 1 0.932 0.641 0.652 2.335 0.577 16
1 1/3 0.719 0.283 0.613 104 103 17
1 1/5 1.536 1.006 4.680 5.430 103 18

Spiky

5 1 0.099 0.013 0.059 0.035 0.213 19
5 1/3 0.208 0.144 0.260 0.271 0.501 20
5 1/5 0.285 0.251 0.181 0.226 1.882 21
3 1 0.187 0.023 0.638 0.136 0.207 22
3 1/3 0.257 0.202 0.159 0.277 0.473 23
3 1/5 0.269 0.260 0.459 0.276 5.416 24
1 1 0.144 0.087 0.123 0.166 0.217 25
1 1/3 0.242 0.223 0.260 102 0.675 26
1 1/5 0.273 0.279 0.221 0.301 3.208 27

Section 3.1 describes the simulation scheme of the datasets. The stepwise Bliss estimate
is the estimate defined in Proposition 3, while the L2-estimate is the smooth estimate
defined in Proposition 2.

Table 2: Numerical results of Bliss, Flirti, Fused lasso and BFDA on the Simulated
Datasets.

where β̂(t) is an estimate we compare to the true coefficient function β0(t). Table 2

presents the numerical results. It appears that the numerical results of the three meth-

ods have the same order of magnitude although the three methods may have differ-

ent accuracy, depending on the shape of the coefficient function that generated the

dataset. The L2-estimate frequently overperforms the other methods which is not sur-

prising because it has been defined to optimize the L2-error integrated over the pos-

terior distribution. Furthermore, the stepwise Bliss estimate is not the best either at

estimating the support or at approximating the coefficient function, but provides a

tradeoff.
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Figure 4: Estimates of the coefficient function on Dataset 4 (r = 3, ζ = 1). For each
plot, the black dotted line is the true coefficient function (Step function, in this case)
and the solid black lines are the estimates of each method. Concerning the Flirti plot,
the orange dotted lines correspond to the confidence bands of the estimate. For the
Bayesian methods (BFDA and Bliss), the marginal posterior distributions of β(t) are
represented using heat maps, as described in Section 1.2 of Supplementary Materials
(Grollemund et al., 2019). Red (resp. white) colour is used to represent high (resp. low)
posterior densities. For the Bliss plot, the solid black line is the L2-estimate and the
light blue line is the stepwise Bliss estimate.

Figure 4 shows the graphical results for Dataset 4. This example illustrate the behav-
ior of each method. Flirti did not manage to tune its own parameters in such a way that
the estimate is irrelevant. Fused Lasso provides a nice estimate and the BFDA estimate
is too smooth to match the true coefficient function. For more details and interpreta-
tions, see Section 3.1 and 3.2 of Supplementary Materials (Grollemund et al., 2019).



P.-M. Grollemund, C. Abraham, M. Baragatti, and P. Pudlo 127

Figure 5: The coefficient functions β1(t) and β2(t) used to generate datasets in Sec-
tion 3.4. The dark (resp. red) line represents β1(t) (resp. β2(t)).

3.4 Simulation Study for Two Functional Covariates

Simulation Scheme for Datasets with Two Functional Covariates

We describe how we generate datasets with two functional covariates. The curves xi1

are generated on a regular grid t1 = (t11, . . . , t
1
p1
) on T , for p1 = 50 and the curves

xi2 are generated on a regular grid t2 = (t21, . . . , t
2
p2
) on T , for p2 = 100. We simulate

zi a (p1 + p2)-multivariate Gaussian vectors for i = 1, . . . , n (with n = 200). The first
p1 coordinates of zi define the values of the curve xi1 for the observation times in t1.
The last p2 coordinates define the values of the curve x2i for the observation times in
t2. Hence, zi = (xi1(t

1
1), . . . , xi1(t

1
p1
), xi2(t

2
1), . . . , xi2(t

2
p2
)) for each i = 1, . . . , n. The

covariance matrix Σ of the entire Gaussian vectors z = (z1, . . . , zn) is defined so that

1. for t and t′ in tj , the covariance between xij(t) and xij(t
′), for j = 1, 2, is√

varj(t) varj(t′) exp
(
−ζ2(t− t′)2

)
, (20)

2. for t ∈ t1, t′ ∈ t2 and a given c ∈ [−1, 1], the covariance between xi1(t) and xi2(t
′)

is
c×

√
var1(t) var2(t′) exp

(
−ζ2(t− t′)2

)
, (21)

where varj(t) is the variance of the (xij(t))i=1,...,n. The tuning parameter ζ in (20) drives
the autocorrelation of curves xij(·) and below ζ is fixed to be 1. The tuning parameter
c in (21) drives the cross-covariance between the curves xi1(·) and xi2(·). For c = 0,
the curves xi1(·) and xi2(·) are uncorrelated and for |c| close to 1 the curves are highly
correlated.

The outcome values yi are calculated according to (17) where β1(·) and β2(·) are
the coefficient functions shown in Figure 5, μ = 1 and σ2 is fixed so that the signal
to noise ratio r is equal to 5. Four datasets are generated for c = 0, 0.3, 0.6 and 0.9 in
order to illustrate how the estimates behave when the correlation between the functional
covariates increases.
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Figure 6: Prior (in gray) and posterior (in black) probabilities of being in the support
for c = 0 and c = 0.9. Bayes estimate of support using Theorem 1 with γ = 1/2 are
given in red.

Below, we apply the model described in Section 2.6 with the default values for the
hyperparameters: K1 = K2 = 3, a = 5K and v = 5, as prescribed in Section 2.2. The
results of the support estimate are given with Figure 6 and the results of the coefficient
function estimates are given in Section 3.4 of Supplementary Materials (Grollemund
et al., 2019).

Performances Regarding Support Estimates

Figure 6 shows the support estimates of β1(·) and β2(·) for uncorrelated covariates
(c = 0) and for highly correlated covariates (c = 0.9). For c = 0 (Plots (a) and (b)),
we notice that the support estimates approximately find the two positive intervals but
do not find the third interval, for the first covariate as for the second one. For c = 0.9
(Plots (c) and (d)), the β2(·) support estimate fails to detect the second one. We suspect
that this is due to the high correlation between the two covariates.

4 Application to the Black Périgord Truffle Dataset

We apply the Bliss method on a dataset to predict the amount of production of black
truffles given the rainfall curves. The black Périgord truffle (Tuber Melanosporum Vitt.)
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is one of the most famous and valuable edible mushrooms, because of its excellent aro-
matic and gustatory qualities. It is the fruiting body of a hypogeous Ascomycete fungus,
which grows in ectomycorrhizal symbiosis with oak species or hazelnut trees in Mediter-
ranean conditions. Modern truffle cultivation involves the plantation of orchards with
tree seedlings inoculated with Tuber Melanosporum. The planted orchards could then be
viewed as ecosystems that should be managed in order to favour the formation and the
growth of truffles. The formation begins in late winter with the germination of haploid
spores released by mature ascocarps. Tree roots are then colonised by haploid mycelium
to form ectomycorrhizal symbiotic associations. Induction of the fructification (sexual
reproduction) occurs in May or June (the smallest truffles have been observed in mid-
June). Then the young truffles grow during summer months and are mature between
the middle of November and the middle of March (harvest season). The production of
truffles should thus be sensitive to climatic conditions throughout the entire year (Le
Tacon et al., 2014). However, to our knowledge few studies focus on the influence of
rainfall or irrigation during the entire year (Demerson and Demerson, 2014; Le Tacon
et al., 2014). Our aim is therefore to investigate the influence of rainfall throughout
the entire year on the production of black truffles. Knowing this influence could lead to
better management of the orchards, to a better understanding of the sexual reproduc-
tion, and to a better understanding of the effects of climate change. Indeed, concerning
sexual reproduction, Le Tacon et al. (2014, 2016) made the assumption that climatic
conditions could be critical for the initiation of sexual reproduction throughout the
development of the mitospores expected to occur in late winter or spring. Concerning
climate change, its consequences on the geographic distribution of truffles is of interest
(see Splivallo et al., 2012 or Büntgen et al., 2011, among others).

The Functional Covariate The analyzed data were provided by J. Demerson. They
consist of the rainfall records for an orchard near Uzès (France) between 1985 and 1999,
and of the production of black truffles in this orchard between 1985 and 1999. In practice,
to explain the production of the year n, we take into account the rainfall between the
1st of January of the year n− 1 and the 31st of March of the year n. Indeed, we want
to take into account the whole life cycle, from the formation of new ectomycorrhizas
following acospore germination during the winter preceding the harvest (year n − 1)
to the harvest of the year n. The cumulative rainfall is measured every 10 days, hence
between the 1st of January of the year n − 1 and the 31st of March of the year n we
have the rainfall associated with 45 ten-day periods, see Figure 7. This dataset can be
considered as reliable, as the rainfall records have been kept precisely for the orchard,
and the orchard was not irrigated.

Biological Assumptions at Stake From the literature we can spotlight the following
periods of time which might influence the growth of truffles.

Period #1: Late spring and summer of year n− 1. This is the (only) period for which
all experts are unanimous in saying it has a particular effect. Büntgen et al.
(2012), Demerson and Demerson (2014) or Le Tacon et al. (2014) all confirm
the importance of the negative effect of summer hydric deficit on truffle
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Figure 7: Rainfall of the Truffle datsaset. Left: Plot shows the rainfall for each year,
colour-coded by their truffle yield. Right: Autocorrelation of the 13 observed rainfall
covariates, with lag in number of ten-day periods.

production: they found it to be the most important factor influencing the
production. Indeed, in summer the truffles need water to survive the high
temperatures and to grow. Otherwise they can dry out and die.

Period #2: Late winter of year n − 1, as shown by Demerson and Demerson (2014)
and Le Tacon et al. (2014). Indeed, as explained in Le Tacon et al. (2014),
consistent water availability in late winter could support the formation of
new mycorrhizae, thus allowing a new cycle. Moreover, from results obtained
by Healy et al. (2013) they made the assumption that rainfall is critical
for the initiation of sexual reproduction throughout the development of
mitospores, which is expected to occur in late winter or spring of the year
n− 1. This is an assumption as the factors influencing the occurrence and
the initiation of sexual reproduction are largely unknown, see Murat et al.
(2013) or Le Tacon et al. (2016).

Period #3: November and December of year n − 1, as claimed by Demerson and De-
merson (2014) and Le Tacon et al. (2014). Le Tacon et al. explained that
rainfall in autumn allows the growth of young truffles which have survived
the summer.

Period #4: September of year n − 1, as claimed by Demerson and Demerson (2014).
Excess water in this period could be harmful to truffles. The assumption
made was that in September the soil temperature is still high, so micro-
organisms responsible for rot are quite active, while a wet truffle has its
respiratory system disturbed and can not defend itself against these micro-
organisms.

The challenge is to confirm some of these periods with Bliss, despite the small size
of the dataset.
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Figure 8: Sensitivity of Bliss to the value of K on the truffle dataset. Left: Boxplot of
the posterior distribution of the variance of the error, σ2, compared to the variance of
the output y (red dashed line). Right: Posterior probability α(t|D) for different values
of K.

Running Bliss As explained above (in Section 3.2), part of the difficulty of the in-
ference problem comes from autocorrelation within the covariate. Figure 7 shows that
the autocorrelation can be considered as null when the lag is 3 or more in number of
ten-day periods. In other words the rainfall background presents autocorrelation within
a period of time of about a month (keeping in mind that the whole history we consider
lasts 15 months).

The first and maybe most important hyperparameter isK, the number of intervals in
the coefficient functions from the prior. Because of the discretization of the rainfall, and
the number of observations, the value of K should stay small to remain parsimonious.
Because of the size of the dataset, we have set the hyperparameter a to obtain a prior
probability of being in the support of about 0.5. The results are given in Figure 8. As
can be seen on the left of this Figure, the error variance σ2 decreases when K increases,
because models of higher dimension can more easily fit the data. The main question is
when do they overfit the data? In this case, the Bayesian Information Criterion selects
the model with K = 2 intervals, see Section 3.5 of Supplementary Materials (Grolle-
mund et al., 2019). Given the small number of observations (n = 25), the values of
BIC have to be carefully interpreted. Otherwise, looking at the right panel of Figure 8,
we can consider how the posterior probability α(t|D) depends on the value of K and
choose a reasonable value. First, for K = 1 or 2, the posterior probability is high during
a first long period of time until August of year n−1 and falls to much lower values after
that. Thus, these small values of K provide a rough picture of dependency. Secondly,
for K = 4, 5 or 6, the posterior probability α(t|D) varies between 0.2 and 0.7 and shows
doubtful variations after November of year n − 1 and other strong variations during
the summer of year n − 1 that are also doubtful. Hence we decided to rely on K = 3
although this choice is rather subjective.

Conclusions on the Truffle Dataset We begin by noting that about half of the variance
of the output (the amount of production of truffles) is explained by the rainfall given the
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posterior distribution of σ2 in the left panel of Figure 8. The support estimate Ŝ0.5(D)
withK = 3 is composed of two disjoint intervals: a first one from May of year n−1 to the

second ten-day period of August with the highest posterior probability, and a second one

from the third ten-day period of February of year n−1 to the end of March of year n−1

with a smaller posterior probability. Therefore, as far as we can tell from this analysis,

Periods #1 and #2 are validated by the data. Period #3 cannot be validated although

the posterior probability α(t|D) presents small bumps around these periods of time for
the highest values of K. For K = 3, the value of α(t|D) stays around 0.3 on Period #3.

Finally, regarding Period #4, we can see a small bump on the curve α(t|D) around this

period of time even for K = 3, but the highest value of the posterior probability on this

period is about 0.4. Hence we choose to remain undecided on Period #4.

5 Conclusion

In this paper, we have provided a full Bayesian methodology to analyse linear models

with time-dependent functional covariates. The main purpose of our study was to es-

timate the support of the coefficient function to search for the periods of time which

influence the outcome the most. We rely on piecewise constant coefficient functions

to set the prior, which has four benefits. The first benefit is parsimony of the Bliss
model, which turns two thirds of the parameter dimension to the estimation of the

support. The second benefit with our Bayesian setting that begins by defining the sup-

port is that we can rely on the ridge-Zellner prior to handle the autocorrelation within

the functional covariate. This fact sets Bliss apart from Bayesian methods relying on

spike-and-slab prior to handle sparsity. The third benefit is avoiding cross-validation to

tune the internal parameters of the method. Indeed, cross-validation methods optimize

the performance regarding the model’s predictive power, and not the accuracy of the
support estimate. Last but not least, the fourth benefit is the ability to compute the

posterior probability that a given date is in the support, α(t|D), whose value gives a

clear hint on the reliability of the support estimate. Nevertheless a serious limitation

of our Bayesian model is that it becomes difficult to handle d-dimensional functional

covariate, for d > 1. Indeed the shape of the support of a function of more than one

variable is much more complex than a union of intervals and cannot be easily modelled

in a nonparametric, but parsimonious manner.

We have provided numerical results regarding the power of Bliss on a bunch of

synthetic datasets as well as a dataset studying the black Périgord truffle. We have

shown by presenting some of these examples in detail how we can interpret the results

of Bliss, in particular how we can rely on the posterior probabilities α(t|D) or the

heatmap of posterior distribution of the coefficient function to assess the reliability

of our estimates. Bliss provides two main outputs: first an estimate of the support of

the coefficient function without targeting the coefficient function, and second a trade-
off between support estimate and coefficient function estimate through the stepwise

estimate of Proposition 3. Moreover our prior can straightforwardly be encompassed

into a linear model with other functional or scalar covariates.
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Supplementary Material

Supplementary Materials: Bayesian Functional Linear Regression with Sparse Step
Functions (DOI: 10.1214/18-BA1095SUPP; .pdf). The code of the method is available
as an R package at http://github.com/pmgrollemund/bliss.
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