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Specification of Informative Prior Distributions
for Multinomial Models Using Vine Copulas

Kevin James Wilson∗

Abstract. We consider the specification of an informative prior distribution for
the probabilities in a multinomial model. We utilise vine copulas: flexible multi-
variate distributions built using bivariate copulas stacked in a tree structure. We
take advantage of a specific vine structure, called a D-vine, to separate the specifi-
cation of the multivariate prior distribution into that of marginal distributions for
the probabilities and parameter values for the bivariate copulas in the vine. We
provide guidance on each of the choices to be made in the prior specification and
each of the questions to ask the expert to specify the model parameters within the
context of an engineering application. We then give full details of the approach
for the general problem.
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1 Introduction

The specification of an informative prior distribution over multiple unknowns, for ex-
ample the probabilities in a multinomial distribution, is a challenging task. When the
unknowns are dependent in the prior beliefs of the expert, then the most flexible ap-
proaches currently used necessitate the specification of a prior covariance or correlation
matrix. The restriction of this matrix of positive definiteness adds further complexity as
it restricts the dependencies to be specified by the expert. Vine copulas offer no such re-
strictions. All correlations to be specified are algebraically free between -1 and +1. Thus,
vines offer a promising approach to the specification of informative prior distributions.

One of the first approaches to the specification of a prior distribution for multinomial
models was that of Chaloner and Duncan (1987) who proposed an extension of a method
to elicit binomial probabilities in which the specifications of the expert, in the form
of modes, were converted to the parameters of a Dirichlet distribution. While this is
conjugate to the multinomial distribution, it is a very restrictive form for the dependency
structure between the probabilities (O’Hagan et al., 2006). Dickey (1983) also proposed
the Dirichlet distribution as a prior for multinomial models, using hypothetical future
samples to specify the parameters. The method adjusted the expert’s specifications.
Other approaches based on the Dirichlet distribution and ordered Dirichlet distribution
are given in van Dorp and Mazzuchi (2003); Zapata-Vázquez et al. (2014).

Elfadaly and Garthwaite (2013, 2016) considered the Dirichlet distribution as a
prior for multinomial models and proposed two extensions: the Connor-Mosimann dis-
tribution, which is also conjugate to the multinomial distribution, and the multivariate
Gaussian copula. The Connor-Mosimann distribution has more parameters than the
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Dirichlet distribution and so provides more flexibility for prior specification. However,
some restrictive structure remains, such as forcing all of the probabilities to be nega-
tively correlated with the first probability. The Gaussian copula relaxes the restrictions
still further on the dependency structure, while still requiring a positive definite co-
variance matrix. Elfadaly and Garthwaite (2016) developed a procedure to ensure this
condition holds.

Vines offer an extension to multivariate copulas in which a multivariate distribution
can be built from the marginal distributions of the unknowns and a series of bivariate
copulas encoding dependence in a tree structure (Joe, 1996; Bedford and Cooke, 2002).
Kurowicka and Cooke (2007); Cooke et al. (2015) considered sampling from, condition-
ing in and searching through vines. Haff et al. (2010); Stöber et al. (2013) considered
simplified vines, in which conditional dependence is assumed constant. Schepsmeier
(2015); Dißmann et al. (2013) proposed methods for model selection in vines, which have
been extended to Bayesian approaches by Gruber and Czado (2015); Min and Czado
(2010b,a). Bayesian inference for D-vines has been considered by Czado and Min (2011).

Example 2 in Bedford et al. (2016) considered prior specification of a bivariate cop-
ula within a vine. All other applications to date have been concerned with fitting vines
to data. This represents a missed opportunity for vines, whose sequential specification
and completely flexible dependence structure makes them an ideal tool for prior speci-
fication. In this paper we describe how to operationalise vines as prior distributions for
multinomial models. We describe the implementation of the prior specification in detail
through an extended application, illustrating each step explicitly, indicating how each of
the various necessary choices is to be made and providing specific elicitation questions
to ask the expert. This is followed by a discussion of the general problem, providing the
mathematical details of the approach.

The context of the application is a group of engineers responsible for the safety of a
complex structure. In engineering applications such as this, interest typically lies in the
tails of the joint distributions, as this is where safety critical events will manifest. By
assuming relatively light-tailed forms for joint distributions such as the Gaussian copula,
there is a risk that the probability of safety critical events will be underestimated. By
allowing more flexibility in the specification of joint distributions, we are able to provide
more accurate, and more conservative, estimates.

In Section 2 we provide the engineering application, detailing the specification of
vines as prior distributions for multinomial models within an example. In Section 3
we give details of the approach for the general problem of the specification of a prior
distribution for multinomial probabilities. In Section 4 we give a summary and areas
for future work.

2 Application

2.1 Background and structure

We consider a desensitised industrial case of an ageing complex engineering structure
as described in Wilson et al. (2013). The problem under consideration was to assess
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the underlying condition of the structure. There were several possible tests which could
be carried out to assess the condition, and each would give information about specific
aspects of the condition. The tests varied in their costs, use of time and resources and
invasiveness. A Bayesian network was developed to assess the potential reduction in
uncertainty which would result from the tests. It is given in Figure 1.

Figure 1: The Bayesian network representing the relationships between the condition of
the engineering structure and the possible tests.

Each condition variable, such as grout condition and pitting, was represented by a
multinomial distribution categorised by the condition of that element of the structure.
For example, grout condition was categorised into fully effective, partially effective and
not effective. In each node in the network, a prior distribution was required on the
probabilities of belonging to each category, which would be updated on observation of
results from the chosen test.

Consider the variable “capacity”. It has four possible states: original level, acceptable
reduced capacity, unacceptable reduced capacity and failed. There are a large number
of locations across the structure where we are interested in the state of the capacity.
The multinomial observation is therefore the number of locations where capacity is in
each of its states. Prior to the elicitation, full definitions of capacity and each of its
states were agreed with the expert.

We wish to define a prior distribution on (p1, p2, p3, p4)
′
, the probabilities that ca-

pacity is in each of its states, ordered as above. However, these probabilities have a unit
sum constraint,

∑4
i=1 pi = 1, and if we ask an expert about the probabilities directly,

they are likely to give us beliefs which are incoherent. Therefore, instead we choose to
elicit a prior distribution over (θ1, θ2, θ3, θ4)

′
, the probabilities that capacity is in each

of its possible states conditional on not having been in any of its previous states. We
can then recover (p1, p2, p3, p4)

′
via

p1 = θ1, p2 = θ2(1− θ1),



752 Prior Specification Using Vines

p3 = θ3(1− θ2)(1− θ1), p4 = θ4(1− θ3)(1− θ2)(1− θ1).

By asking experts about the conditional probabilities, this allows them a free choice
and ensures coherence of the resulting probability distribution. By defining the prior
distribution over the conditional probabilities, this means we only need to consider θ =
(θ1, θ2, θ3)

′
, as θ4 = 1. Thus, the ordering of the states is an important consideration.

We choose to make the original level state 1, and so failed is state 4. We could have
chosen the reverse order. However, complex engineering structures are typically very
reliable. This means that the engineers will have lots of experience of locations where
capacity is at its original level, and relatively little experience of locations where it is
failed. It is therefore more reasonable to ask them questions about the original level,
acceptable reduced level and unacceptable reduced level than the failed and two reduced
levels.

We represent the prior distribution for θ using a D-vine, and so it takes the form

f (0)(θ) = f
(0)
1 (θ1)f

(0)
2 (θ2)f

(0)
3 (θ3)c1,2(F

(0)
1 (θ1), F

(0)
2 (θ2))

×c2,3(F
(0)
2 (θ2), F

(0)
3 (θ3))c1,3(F

(0)
1|2 (θ1 | θ2), F (0)

3|2 (θ3 | θ2)), (1)

where f
(0)
i (θi), F

(0)
i (θi) are the prior Probability Density Function (PDF) and Cumula-

tive Distribution Function (CDF) of θi, ci,j(·, ·) is a bivariate copula and F
(0)
i|j (θi | θj)

is the prior conditional CDF of θi | θj . From this, we see that, to fully define the prior
distribution for θ, we need to specify the marginal distributions for θ1, θ2 and θ3 and
the dependence between θ1 and θ2, θ2 and θ3 and θ1 and θ3 conditional on θ2. The vine
structure is particularly suitable for prior specification in this case because it allows
us to consider each of the specifications in isolation, reducing the elicitation burden on
the expert. The vine, like multivariate copulas, preserves the marginal distributions of
the parameters and uses the bivariate copulas to encode the dependencies between the
parameters.

2.2 Marginal distributions

Consider the marginal distribution for θ1, the probability that capacity is in its original
state. To elicit the marginal distribution for θ1, the expert is asked three questions:

Q1, Consider the proportion of locations in the structure in which capacity is at its
original level.

(a) What is the value for which you think that the true proportion would be equally
likely to be above or below this value? Call this q0.5,1.

(b) What is the value for which you think it is equally likely that the true propor-
tion would be between 0 and this value and this value and q0.5,1?

(c) What is the value for which you think it is equally likely that the true propor-
tion would be between q0.5,1 and this value and this value and 1?
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We choose to ask the expert about proportions to avoid asking for probabilities of
probabilities, and to link the questions more closely to observable quantities. Part (a)
gives the expert’s median for θ1 and parts (b) and (c) give their lower and upper quartiles
respectively. For θ2 and θ3 parts (a), (b) and (c) would remain the same (using the values
given by the expert for q0.5,2 and q0.5,3 respectively) but the populations the expert was
to consider would be

Q2, Consider all of the locations where capacity is not at its original level. We are
interested in the proportion of these locations in which capacity is at a reduced
acceptable level.

Q3, Consider all of the locations where capacity is not at its original level or an accept-
able reduced level. We are interested in the proportion of these locations in which
capacity is at a reduced unacceptable level.

Suppose that the elicited quantiles for an expert are given in Table 1.

State qL,i q0.5,i qU,i

Original level 0.7 0.75 0.8
Acceptable reduced capacity 0.6 0.7 0.75
Unacceptable reduced capacity 0.2 0.25 0.3
Failed 1 1 1

Table 1: The quantiles specified by an expert for the conditional probabilities of capacity
being in its possible states.

We see that, in the beliefs of this expert, the capacity is most likely to be at its
original level. Conditional on capacity not being at its original level, it is most likely to
be at an acceptable reduced level. Of course, once we know that it is not in any of the
first three categories, it will be failed with probability one.

For each pair of quantiles, we can calculate the values of the parameters of the
equivalent beta distribution. For three quartiles, there is no exact beta distribution
which matches them in general. We choose a beta distribution which approximately
fits all three quantiles my matching the first two moments. Full details are given in
the general problem section. By fitting a two parameter distribution to three elicited
quantiles, this allows us to provide feedback to the expert as to the consistency of their
quantile specifications. If the beta distributions implied by the three pairs of quantiles
are very different, then this could imply that the expert may wish to revise one or more
of their quantiles.

From the elicited quantiles in Table 1, we find exact beta distribution parame-
ter values (ai,j , bi,j), where j = 1, 2, 3 represent the pairs of quantiles, (q0.25,i, q0.5,i),
(q0.5,i, q0.75,i) and (q0.25,i, q0.75,i) respectively, and the parameter values which approxi-
mately match all three quantiles, (ai, bi). They are given in Table 2 for θ1, θ2 and θ3.

We see that there are differences between the beta distributions resulting from the
different pairs of quantiles, though in general these are relatively small. We can also
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Probability ai,1 bi,1 ai,2 bi,2 ai,3 bi,3 ai bi
θ1 27.85 9.50 23.22 7.96 25.53 8.63 25.40 8.65
θ2 8.59 3.43 24.84 10.85 12.04 5.88 11.89 5.45
θ3 8.00 23.30 9.52 27.85 8.63 25.53 8.67 25.43

Table 2: The beta distribution parameter values resulting from the elicited quantiles
from the expert.

view the densities of the marginal beta prior distributions in each case, and these are
given in Figure 2. The colours represent (a1,i, b1,i) (black), (a2,i, b2,i) (red), (a3,i, b3,i)
(green) and (ai, bi) (blue).

Figure 2: The marginal prior beta distributions based on each pair of elicited quan-
tiles and the final distribution for (θ1, θ2, θ3). The colours represent (a1,i, b1,i) (black),
(a2,i, b2,i) (red), (a3,i, b3,i) (green) and (ai, bi) (blue).

We see that the overall densities in blue represent a reasonable aggregation of the
other densities for θ1, θ2 and θ3. For θ2, one of the elicited quantiles appears to be
inconsistent with the other two. We may wish to ask the expert to reconsider their
quantile specifications in light of this. We also see the differences in the variances of the
prior distributions, with the largest uncertainty in the value of θ2 and the smallest in
the value of θ1.

2.3 Bivariate copulas

We need to specify the dependence structure between the elements of θ. This is equiva-
lent to specifying the copulas c1,2(·, ·), c2,3(·, ·) and c1,3(·, ·). The elicitation in this stage
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asks the expert to condition on the value of one of the probabilities and provide revised
beliefs about another probability in light of this. It would be extremely cognitively chal-
lenging to ask the expert to condition on the value of a conditional probability and then
give their updated beliefs about a further conditional probability. Therefore, instead, we
return to p = (p1, p2, p3)

′
, the unconditional probabilities that capacity is at its original

level, a reduced acceptable level and a reduced unacceptable level respectively.

To specify the two unconditional copulas in the vine, we ask the expert questions
about p2 | p1 and p3 | p2 respectively. In particular, we choose to condition on the
probabilities taking their prior median values. We could condition on any value of the
probabilities, but by choosing the median we ensure that the expert is considering values
that are not inconsistent with their prior beliefs. The questions we ask the expert to
elicit c1,2(·, ·) are

Q4, In Q1, you identified that you think that the proportion of locations where capacity
is at its original level is equally likely to be above or below 0.75. Suppose that this
is correct. In light of this information:

(a) Are you still comfortable that it is equally likely that the proportion of locations
where the capacity is at an acceptable reduced level is above or below 0.175?
If so,

(b) What is the value for which you think it is equally likely that the true propor-
tion is between 0 and this value and this value and 0.175?

(c) What is the value for which you think it is equally likely that the true propor-
tion is between 0.175 and this value and this value and 1?

This provides (q
′

0.25,2, q
′

0.5,2, q
′

0.75,2), the lower quartile, median and upper quartile of
p2 | p1. The same three quantiles of p3 | p2 can be elicited via:

Q5, In Q2, you identified that you think that the proportion of locations where capacity
is at an acceptable reduced level is equally likely to be above or below 0.175.
Suppose that this is correct. In light of this information:

(a) Are you still comfortable that it is equally likely that the proportion of loca-
tions where the capacity is at an unacceptable reduced level is above or below
0.01875? If so,

(b) What is the value for which you think it is equally likely that the true propor-
tion is between 0 and this value and this value and 0.01875?

(c) What is the value for which you think it is equally likely that the true propor-
tion is between 0.01875 and this value and this value and 1?

We notice a strength of vines which makes them an ideal structure for the prior distribu-
tion here. Vines are not symmetric in the sense that they do not treat the relationships
between all of the variables equally, as opposed to a Gaussian copula for example. The
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only unconditional relationships to be specified in the vine are between adjacent nodes.
Similarly, in this application, the multinomial categories have a specific structure. They
are ordered. Thus by choosing the ordering as in (1), we can elicit both of the depen-
dencies in the first tree of the vine by only conditioning on adjacent categories. It would
be a much more cognitively challenging task for an expert to revise their quartiles for
one category on observation of a non-adjacent category only. The vine structure allows
us to avoid this.

Returning to the example, we saw in Q4, that the prior median for p1 was 0.75.
Suppose that, in Q4, the expert chooses to accept the conditional median of p2 | p1 =
0.75 and gives revised quartiles of q

′

0.25,2 = 0.165 and q
′

0.75,2 = 0.185. This compares to

unconditional quartiles of q#0.25,2 = 0.15 and q#0.75,2 = 0.188. We can transform these to
quartiles of θ2 | θ1, i.e., q∗0.25,2 = 0.66 and q∗0.75,2 = 0.74 using

q∗0.25,2 =
q

′

0.25,2

1− q#0.5,1
, q∗0.75,2 =

q
′

0.75,2

1− q#0.5,1
.

We see that the upper and lower quartiles reflect reduced uncertainty in light of the
extra information. The expert further identifies that they would expect the dependence
to be positive.

We need to use the three revised quantiles for θ2 | θ1 to specify the bivariate copula
c1,2(·, ·). We could do so by fitting a non-parametric copula which exactly matches
the quantiles, for example using minimum information methods (Bedford et al., 2016).
This in general would be under-constrained. Alternatively, we could impose a specific
parametric copula, for example the Gaussian copula, for each bivariate copula in the
vine and choose the parameter values to most closely match the elicited quantiles. This
is more restrictive, but offers a more convenient form for inference.

Instead, for each bivariate copula we will consider a number of parametric copulas
suitable for representing dependence: Gaussian, Frank, Clayton, Gumbel and t-, fit each
to the three quantiles given by the expert using least squares and then choose the copula
which provides the best fit of these, again using least squares. This approach offers more
flexibility than assuming a single form for all copulas in the vine and the resulting vine
is less complex than that when using non-parametric copulas. An alternative approach
would be to choose the copula based on the expert’s knowledge of the dependencies
and how this relates to properties of different copulas. We will assess the impact of this
approach compared to assuming a Gaussian copula for all bivariate relationships in the
next section.

In Table 3 we provide the parameter values which most closely match the revised
quantiles and the fit, in terms of the sum of squared differences, for each of the candidate
copulas for θ2 | θ1.

From the table, we see that the Clayton copula is providing the best fit to the elicited
judgements of the expert, though the Frank, Gaussian and t-copula also appear to fit
the quantiles well. The parameter value chosen for the Clayton copula is λ = 3.61 and
so we see positive dependence between θ1 and θ2.
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Copula λ Fit
Gaussian 0.85 0.00019
Frank 7.48 0.00019
Clayton 3.61 0.000057
Gumbel 2.98 0.00048

t- (0.76,2.1) 0.00019

Table 3: A comparison of each of the candidate copulas for the prior dependence between
(θ1, θ2).

We can see the differences between the fitted copulas, and the fits of the copulas to
the elicited quantiles, in Figure 3, which plots the conditional CDF of θ2 | θ1 = 0.75
for the Gaussian copula (black), Frank copula (red), Clayton copula (green), Gumbel
copula (light blue) and t-copula (pink), as well as the three elicited quantiles (dark
blue).

Figure 3: The conditional CDF of θ2 given θ1 = q0.5,1 for the Gaussian copula (black),
Frank copula (red), Clayton copula (green), Gumbel copula (light blue) and t-copula
(pink), as well as the three elicited quartiles (dark blue).

We see from the figure that most of the copulas produce relatively similar conditional
distributions, with all except the Gumbel and Clayton copulas appearing very similar.
The Clayton copula provides a conditional distribution closest to the median and upper
quartile. We choose the Clayton copula to represent the dependence between θ1 and θ2.
This gives a Kendall’s Tau value of τ = 0.64, which indicates moderate correlation.

For the copula between θ2 and θ3, based on the quantiles elicited in Q5, we can use
the same approach. In this case, the Clayton copula again provides the best fit with
λ = 3.06 and a value of Kendall’s Tau of τ = 0.61.

In the second tree of the vine, we require the copula between θ1 and θ3 conditional
on θ2. We again choose to ask questions concerning p as they are cognitively simpler
for the expert. In this case, we condition on p1 and p2 both taking their prior median
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values q#0.5,1 = 0.75 and q#0.5,2 = 0.175, and ask the expert for revised quantiles for p3.
The specific questions are:

Q6, Suppose that the proportions of locations where capacity is at its original level
and at an acceptable reduced level are 0.75 and 0.175 respectively. In light of this
information:

(a) Are you still comfortable that it is equally likely that the proportion of loca-
tions where the capacity is at an unacceptable reduced level is above or below
0.01875? If so,

(b) What is the value for which you think it is equally likely that the true propor-
tion is between 0 and this value and this value and 0.01875?

(c) What is the value for which you think it is equally likely that the true propor-
tion is between 0.01875 and this value and this value and 1?

This provides revised quantiles for p3 | p1, p2 which we convert to revised quantiles
of θ3 | θ1, θ2 using the same approach as the unconditional copulas. This provides

information about F
(0)
3|1,2(θ3 | θ1, θ2) which, together with F

(0)
1|2 (θ1 | θ2) and F

(0)
3|2 (θ3 | θ2),

which we obtain using the copulas in the first tree of the vine, allows us to specify
c1,3(·, ·). Full details are given in the general problem section.

Suppose that the quantiles resulting from Q6, are (q
′

0.25,3, q
′

0.5,3, q
′

0.75,3) = (0.018,
0.01875, 0.0195). The revised quantiles for θ3 | θ1, θ2 are then (0.24, 0.25, 0.26). Fitting
each of the candidate copulas to these three quantiles results in the Frank copula provid-
ing the best fit. The parameter value which most closely matches the quantiles specified
by the expert is λ = 0.98 and the Kendall’s Tau value is τ = 0.11. We see that the
correlation between θ1 and θ3 conditional on θ2 is weaker than either of those in the
first tree of the vine. This is partly as a result of θ1 and θ3 representing non-adjacent
categories, i.e., original level and unacceptable reduced level. Thus, it is more suitable
to consider this relationship in the second tree of the vine. This fully defines the prior
distribution.

2.4 Impact of using a range of copulas

Let us suppose that there are safety implications for the structure if more than a quarter
of the locations have a capacity in the unacceptable reduced or failed states. Then the
engineers are interested in Pr(p3∪p4 > 0.25). We simulate from our prior distribution to

obtain samples θ(j) = (θ
(j)
1 , θ

(j)
2 , θ

(j)
3 , θ

(j)
4 )

′
, for j = 1, . . . , 100, 000 and transform these

to samples from p(j) = (p
(j)
1 , p

(j)
2 , p

(j)
3 , p

(j)
4 )

′
via

p
(j)
1 = θ

(j)
1 ,

p
(j)
2 = θ

(j)
2 (1− θ

(j)
1 ),

p
(j)
3 = θ

(j)
3 (1− θ

(j)
2 )(1− θ

(j)
1 ),

p
(j)
4 = θ

(j)
4 (1− θ

(j)
3 )(1− θ

(j)
2 )(1− θ

(j)
1 ).
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Figure 4: The prior marginal densities of p1, p2, p3 and p4.

We plot the resulting densities for p in Figure 4.

We calculate the proportion of samples in which p3 + p4 > 0.25, which provides our
estimate of Pr(p3 ∪ p4 > 0.25). We obtain 0.0123.

We can also fit a vine to the specifications of the expert in which we make each
bivariate copula a Gaussian copula. If we do so, then the correlation parameter ρ takes
the values 0.85, 0.79 and 0.04 for c1,2(·, ·), c2,3(·, ·) and c1,3(·, ·) respectively. Under
this copula, Pr(p3 ∪ p4 > 0.25) = 0.0102. Thus, by allowing flexibility in the choice of
copulas in the vine, and fitting the parametric copula which most closely matches the
expert’s specifications, the probability of safety implications for the structure increases
by 21%. This demonstrates the value of taking the extra effort to investigate each of
the candidate copulas.

We can see the differences between the joint densities under the flexible choice of
copulas and the vine built only using the Gaussian copula in Figure 5, where we have
plotted the joint prior density between p3 and p4 from the simulations.

In particular, we see stark differences in the tail behaviour under the two vines.

3 General problem

3.1 D-vine prior distribution structure

Suppose that we have counts in (m + 1) categories, Y = (Y1, . . . , Ym+1)
′
and, con-

ditional on the probabilities of each of the categories, (p1, . . . , pm+1)
′
, they follow a

multinomial distribution Y | (p1, . . . , pm+1)
′ ∼MN(N, (p1, . . . , pm+1)), for some num-

ber of observations N . The probabilities are constrained to sum to one and so we set
p = (p1, . . . , pm)

′
and then pm+1 = 1−

∑m
i=1 pi. To perform inference we require a prior

distribution f (0)(p) representing the beliefs of an expert. It will typically be the case
that pi �⊥⊥ pj for i �= j. We wish to define a flexible prior distribution with this property.



760 Prior Specification Using Vines

Figure 5: The prior joint density between p3 and p4 using the best fitting parametric
bivariate copulas (left) and using only Gaussian copulas (right).

We will use a D-vine to construct such a distribution. A background on copulas and
vines is given in the Supplementary Material (Wilson, 2017).

As a result of the unit sum constraint on (p1, . . . , pm+1)
′
, we propose the transfor-

mation (Elfadaly and Garthwaite, 2016),

θi =
pi

1−
∑i−1

j=1 pj
,

for i = 2, . . . ,m + 1, where θ1 = p1. We then specify a prior distribution for θ =
(θ1, . . . , θm)

′
, where θi is the conditional probability that an observation falls into cat-

egory i given that it did not fall into categories 1, . . . , i − 1. We can recover p using
the inverse transformation pi = θi

∏i−1
j=1(1− θj), for i = 2, . . . ,m+ 1, where θm+1 = 1.

Elicitation of conditional probabilities has been successfully carried out in practice (e.g.
Quigley and Walls (2010)).

We will use a D-vine to represent the prior distribution f (0)(θ). The vine is fully
defined by the ordering of the variables in the first tree of the vine. Suppose this ordering
is θ̃ = (θ̃1, . . . , θ̃m)

′
. Then the structure of the vine is given in Figure 6.

In some cases, there will be a natural ordering of the categories which should be
maintained in θ̃. This was the case in the application and will always be the case if the
multinomial variable represents the partitioning of a continuous univariate variable. If
there is no natural ordering, the ordering θ̃ should be chosen to assess the strongest
dependencies in the first tree of the vine. This is consistent with advice in Aas et al.
(2009); Min and Czado (2011).

The prior distribution is given by the vine distribution representing the D-vine in
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Figure 6: The structure of a general D-vine in m dimensions.

Figure 6. This is

f (0)(θ̃) =

m∏
i=1

[
f
(0)
i (θ̃i)

]
×

m−1∏
i=1

[
ci,i+1

(
F

(0)
i (θ̃i), F

(0)
i+1(θ̃i+1)

)]

×
m−2∏
i=1

m∏
j=i+2

[
ci,j

(
F

(0)
i|i+1,...,j−1(θ̃i | θ̃i+1), F

(0)
j|i+1,...,j−1(θ̃j | θ̃i+1, . . . , θ̃j−1)

)]
,

where f
(0)
i (θ̃i) is the marginal prior PDF of θ̃i, ci,j(·, ·) is a bivariate copula PDF,

F
(0)
i (θ̃i) is the marginal prior CDF of θ̃i and F

(0)
i|i+1,...,j−1(θ̃i | θ̃i+1 . . . , θ̃j−1) is the prior

conditional CDF of θ̃i | θ̃i+1, . . . , θ̃j−1. In order to write the prior density in this form
we have made the assumption of a simplified vine. Full details of this are given in the
Supplementary Material (Wilson, 2017).

In order to fully specify the D-vine we need to specify the marginal distributions

of each of the probabilities, f
(0)
i (θ̃i), the unconditional copulas in the first tree of the

vine, ci,i+1(·, ·), and the conditional copulas in trees 2 to m− 1 of the vine, ci,j(·, ·). We

do not need to specify the prior conditional distributions F
(0)
i|i+1,...,j−1(· | ·), as they can

be calculated from the other specifications. For example, if we require F
(0)
i|i+1(θ̃i | θ̃i+1)

then we can find

f
(0)
i|i+1(θ̃i | θ̃i+1) = ci,i+1

(
F

(0)
i (θ̃i), F

(0)
i+1(θ̃i+1)

)
f
(0)
i (θ̃i),

and integrate over θ̃i. These prior conditional distributions from the second tree of the
vine can then be used to calculate the prior conditional distributions in the third tree

of the vine, for example F
(0)
i|i+1,i+2(θ̃i | θ̃i+1, θ̃i+2) via
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f
(0)
i|i+1,i+2(θ̃i | θ̃i+1, θ̃i+2) = ci,i+2

(
F

(0)
i|i+1(θ̃i | θ̃i+1), F

(0)
i+2|i+1(θ̃i+2 | θ̃i+1)

)

×ci,i+1

(
F

(0)
i (θ̃i), F

(0)
i+1(θ̃i+1)

)
f
(0)
i (θ̃i),

and so on.

3.2 Elicitation and specification

For each conditional probability θ̃i, we require a marginal prior distribution with support
on [0, 1]. A flexible and much used prior distribution is the beta distribution. We define
θ̃i ∼beta(ai, bi), i = 1, . . . ,m, and so we need to elicit information to specify (ai, bi).

We choose to elicit three quantiles to specify these two parameters, which provides a
consistency check on the quantiles (Garthwaite et al., 2005). We elicit the median q0.5,i,
a quantile below the median, qL,i and a quantile above the median, qU,i. In the example
we chose to elicit the lower and upper quartiles, q0.25,i and q0.75,i, which allowed us to
use the bisection method. Other common choices are (q0.33,i, q0.67,i) and (q0.05,i, q0.95,i).
There are no exact values for (ai, bi) in general which match all three quantiles. We can,
however, find exact beta parameter values for each pair of quantile specifications from
the expert.

Suppose that the exact parameter values are (qL,i, q0.5,i) ⇒ (ai,1, bi,1), (q0.5,i, qU,i) ⇒
(ai,2, bi,2) and (qL,i, qU,i) ⇒ (ai,3, bi,3). We can find the means and variances of each of
these beta distributions, μi,j = ai,j/(ai,j + bi,j) and σ2

i,j = ai,jbi,j/[(ai,j + bi,j)
2(ai,j +

bi,j + 1)]. We specify the prior distribution for θ̃i by setting its mean and variance to
be weighted averages of (μi,j , σ

2
i,j), j = 1, 2, 3:

μi = wi,1μi,1 + wi,2μi,2 + wi,3μi,3

σ2
i =

1

wi

(
w2

i,1σ
2
i,1 + w2

i,2σ
2
i,2 + w2

i,3σ
2
i,3

)
,

where
∑3

j=1 wi,j = 1 and wi =
∑3

j=1 w
2
i,j . The beta distribution parameters which

satisfy this mean and variance are ai = μi[{μi(1−μi)}/σ2
i −1] and bi = (1−μi)[{μi(1−

μi)}/σ2
i − 1].

We also need to specify each of the bivariate copulas in the vine, which represent the
dependencies between the probabilities. To do so, we condition on the values of some
of the probabilities and ask for revised quantiles for a further probability. For this to
be a manageable task for the expert, we choose to elicit quantiles of the elements of p̃,
the ordered unconditional probabilities, then convert them to quantiles of the elements
of θ̃.

Initially, we consider the specification of the copulas involving θ̃1. Consider the copula
c1,j(·, ·). To specify this, we ask the expert to suppose that we have observed the values

of p̃1, . . . , p̃j−1 at their prior medians, p̃i = q#0.5,i, calculated approximately (Elfadaly

and Garthwaite, 2016) from the marginal specifications as q#0.5,i = q0.5,i
∏i−1

k=1(1−q0.5,k).

We then elicit (q
′

L,j , q
′

U,j), the revised quantiles below and above the median of p̃j | p̃1 =
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q#0.5,1, . . . , p̃j−1 = q#0.5,j−1. These are converted to quantiles from θ̃j | θ̃1, . . . , θ̃j−1 via

q∗L,j =
q

′

L,j

1−
∑j−1

k=1 q
#
0.5,k

, q∗U,j =
q

′

U,j

1−
∑j−1

k=1 q
#
0.5,k

.

These are quantiles of F
(0)
j|1,...,j−1(θ̃j | θ̃1, . . . , θ̃j−1). We can evaluate these quantiles for

any given bivariate copula with given parameter values using the relationship

F
(0)
j|1,...,j−1(θ̃j | θ̃1, . . . , θ̃j−1)

=
∂C1,j

(
F

(0)
1|2,...,j−1(θ̃1 | θ̃2, . . . , θ̃j−1), F

(0)
j|2,...,j−1(θ̃j | θ̃2, . . . , θ̃j−1)

)

∂F
(0)
1|2,...,j−1(θ̃1 | θ̃2, . . . , θ̃j−1)

.

This allows us to evaluate the same quantiles, for any bivariate copula with any pa-
rameter values, as those specified by the expert. Suppose, for a copula with parameter
values λ ∈ Λ, they are given by (qλL,j , q

λ
0.5,j , q

λ
U,j). Then we can fit the copula to the

expert’s revised quantiles using least squares by choosing λ to satisfy

λ̂ = min
λ∈Λ

{
(qλL,j − q∗L,j)

2 + (qλ0.5,j − q∗0.5,j)
2 + (qλU,j − q∗U,j)

2
}
.

There are many different parametric bivariate copulas which could be used as c1,j(·, ·).
We advocate choosing the bivariate copula which minimises the sum of squares overall
with the expert’s revised quantiles out of a number of candidates. Suitable candidates
for both positive and negative dependence are the Gaussian, t- and Frank copulas,
for positive dependence only are the Clayton and Gumbel copulas and for negative
dependence only are the rotated Clayton and rotated Gumbel copulas. Details of each
of these copulas are given in the Supplementary Material (Wilson, 2017).

This procedure will specify each of the bivariate copulas on the very left of each
tree of the vine. To specify the subsequent copulas in each tree, for example the k’th
copulas, we ask the expert to suppose that an observation hasn’t fallen into the first
(k − 1) categories. This redefines the remaining unconditional probabilities as

p̃k = θ̃k

p̃k+� = θ̃k+�

k+�−1∏
r=k

(1− θ̃r).

The method above will then specify all copulas of the form ck,j(·, ·), for j > k.

4 Summary

In this paper we have considered the problem of specifying a prior distribution for
probabilities in a multinomial model. We have proposed a method which is based on a
structure called a D-vine in which the specification of the multivariate prior distribution
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reduces to that of the marginal distributions, the ordering of the probabilities and
the conditional and unconditional bivariate copulas. This provides a flexible structure
and avoids issues of underparameterisation associated with conjugate priors such as
the Dirichlet distribution and the direct specification of a positive definite correlation
matrix.

While this paper focuses on multinomial models, there is much scope to utilise this
approach to specify informative prior distributions more generally. The vine structure
separates the marginal and dependency specifications and allows the Bayesian statis-
tician to relate questions on observable quantities for elicitation to the parameters in
the vine. With the recent advances in Bayesian inferential techniques for vines, the use
of vines as a structure for multivariate prior distributions incorporating dependency is
now very appealing.

Supplementary Material

Supplementary Material to: Specification of informative prior distributions for multino-
mial models using vine copulas (DOI: 10.1214/17-BA1068SUPP; .pdf).
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