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Abstract. We commend the authors for an exciting paper which provides a strong
contribution to the emerging field of probabilistic numerics. Below, we discuss as-
pects of prior modelling for differential equations which will need to be considered
thoroughly in future work.
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Introduction

The majority of probabilistic numerics (PN) solvers, including the present paper, take
a Bayesian viewpoint and hence require several modelling choices including prior spec-
ification. As with any inference problem, there exists a trade-off between representing
prior beliefs and choosing a prior which is convenient and/or readily interpretable math-
ematically. We believe that the consequences of these assumptions are often discussed
in too little detail and therefore highlight below several issues to consider.

Computational Complexity

Of interest was the discussion into reduction of the computational complexity by ex-
ploiting compactly supported covariance function. The authors note in Section 3.2 that
while such a choice will yield a method involving inversion of a sparse matrix, this is
not explored further – though this will have an effect on the rate of convergence of the
estimator. We believe that a study of the extent of this effect is of some importance, as
there is a clear trade-off here between steps desired to achieve a required tolerance, and
the computational cost of each step.
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Tractability

One issue is the intractability of the joint conditional predictive probability distribution

in Section 2.1 which depends on analytically convolving covariance functions. This is

not possible except for a few simple kernels; relying upon such construction therefore

significantly restricts the range of priors available.

With this in mind, we note that differentiating kernels is often easier than integrating

them. Unless there is a specific reason to model ut, it may therefore be more convenient

to define a kernel for u and differentiate it to obtain a kernel for ut.

Another interesting point is that this trade-off is also encountered in Bayesian

Quadrature, a PN method for integration. A table of kernels which can be integrated

analytically is provided in Briol et al. (2015) and may be of interest to users of the

present methodology.

Boundary Conditions

An important point for partial differential equations is how best to make use of boundary

information. The authors observe that, for ordinary differential equations, it is simple

to encode the initial condition in the prior, but generalising this to partial differential

equations is significantly more challenging owing to the fact that the boundaries will

now typically be a manifold of dimension larger than zero.

Significant work in this area includes that of Owhadi (2015) and Cockayne et al.

(2016) which select covariances based on Green’s functions, though the computations

involved are challenging and such closed-form conditioning is narrowly applicable as a

result. In general Owhadi and Scovel (2015) shows that conditioning over the entire

boundary is well-defined from a mathematical perspective, provided the boundary op-

erator is linear. We would be interested in whether this can be generalised in a tractable

way so that, for example, we can define a prior over those functions which satisfy the

boundary conditions exactly.

Relationship to Known Integrators

A desideratum (although not always a requirement) for a probabilistic method is that

the estimate given by some readily-calculated statistic of the posterior distribution

corresponds to the output of a classical numerical solver. The advantage here is that

the theory of such solvers is highly developed and certain properties – convergence,

stability, etc. – can potentially be inherited. This method does not, to the best of our

knowledge, satisfy this property. However, more recent work which builds on this work

includes a general construction provided by Conrad et al. (2016) and careful choice of

the kernel within a similar framework has subsequently been shown to correspond to

Runge–Kutta methods of order less than four (Schober et al., 2014) and linear multi-step

methods of arbitrary order (Teymur et al., 2016).
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Conclusion

Once again, we would like to congratulate the authors of this paper which provided
foundational work upon which many subsequent PN methods have been built. We hope
to have highlighted some of the important issues relating to the development of priors
which will hopefully influence future work in this area.
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Comment by William Weimin Yoo1

Abstract. We begin by introducing the main ideas of the paper, and we give a
brief description of the method proposed. Next, we discuss an alternative approach
based on B-spline expansion, and lastly we make some comments on the method’s
convergence rate.

Keywords: differential equation, discretization uncertainty, B-splines, tensor prod-
uct B-splines, convergence rate.

I would like to congratulate the authors for such an interesting research. The Bayesian
method with the probabilistic solver introduced is highly innovative and practical. The
various examples presented in the paper show the wide applicability of the proposed
method. However, I do find the title a bit of a misnomer, as I initially thought that
the authors are constructing credible sets for the fixed but unknown solution u∗ of the
differential equation.

The inverse problem that the authors are trying to solve, in its most basic form is
this: Suppose you have observations Y = Au+ ε, where ε is some normal errors and u
follows ut = f(t, u, θ). Here, A is a known transformation from the state space u to the
observation space Y , ut is the first order derivative with respect to its argument t, f is
the known form of the differential equation, and θ’s are the equation’s parameters. The
method proposed consists of two steps, with one nested within the other. First, solve
for u probabilistically to obtain a discretized solution at some grid points. Then we
embed these discretized version of u in a Bayesian hierarchical framework to estimate
θ. To model discretization uncertainty associated with using only u evaluated at grid
points, the authors endow priors based on Gaussian process jointly on u and ut, where
the covariance function is constructed by convolving kernels.

There is an alternative and perhaps a conceptually easier way to achieve the same
result. We can first represent u by a B-spline series, i.e., u(t) =

∑J
j=1 ϑjBj,q(t) with

Bj,q(·) denoting the jth B-spline of order q, and we endow the coefficients ϑj ’s with
normal priors. Here, the number of basis J plays the role of 1/λ, where λ is the length-
scale parameter defined in the paper. It turns out that the first derivative of this u is

another B-spline series ut(t) =
∑J−1

j=1 ϑ
(1)
j Bj,q−1(t) where ϑ

(1)
j is some weighted first

order finite difference of the ϑj ’s ((4.23) of Schumaker (2007)). Therefore, u and ut

are jointly normal and their associated covariance matrices are banded due the support
separation property of B-splines. To enforce the given initial condition, we can condition
the joint prior (u, ut) on u∗(0).

Moreover, this approach can be generalized to the partial differential equation case,
where we take tensor product of B-splines to model both the spatial and temporal
components, i.e., u(x, t) =

∑J
j1=1

∑J
j2=1 θj1,j2Bj1,q(x)Bj2,q(t). As in the univariate case,

partial derivatives of tensor product B-splines will be another tensor-product B-splines
((3.2) of Yoo and Ghosal (2016)). Hence we will obtain the same Gaussian process prior

1Mathematical Institute, Leiden University, The Netherlands, yooweimin0203@gmail.com
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for u and all its mixed partial derivatives if we endow normal priors on the coefficients.
As before, we enjoy some simplification in computing the covariance matrices because
they are banded.

In addition, I would like to comment on the effect of grid point distribution on
the convergence rate of the proposed algorithm. Intuitively, one would expect that the
grid points should be chosen roughly uniformly across the domain [0, L]. Suppose we
choose grid points {t1, t2, . . . , tN} and we further assume that they are quasi-uniform,
i.e., h/mini(ti − ti−1) ≤ C for some constant C > 0 with h = maxi(ti − ti−1). In other
words, the max grid increment is of the same order as the min grid increment. Then
it follows that h is of the order of 1/N and by Theorem 1 of Chkrebtii et al. (2016),
the rate of convergence is O(N−1). Therefore for quasi-uniform grids (which includes
uniform discrete grids), increasing the number of grid points will result in more accurate
solution.

The paper under discussion Chkrebtii et al. (2016) makes significant contribution to
the new field of probabilistic numerics. I have learnt a great deal by reading this paper,
and I hope that there will be more papers in uncertainty quantification for differential
equation models in the future.
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Comment by Jon Cockayne1

I would like to thank the authors for their interesting and very clearly presented paper
discussing probabilistic solvers for ordinary differential equations (ODEs) and partial
differential equations (PDEs).

1 Nature of the Uncertainty Quantification

I am particularly interested in the nature of the uncertainty quantification provided
over the forward model. Considering the ODE

du

dt
(t) = f(t, u) ,

we note that Skilling (1992) advocates construction of a probabilistic model for the
vector field f(t, u), the uncertainty of which is then propagated to the solution u itself.
This is “Bayesian” in that all evaluations of f are incorporated into the estimate of u.

Conversely in this work it seems that there is an inconsistency in the posterior
distributions obtained. To consider a simply toy example, suppose we wish to solve the
linear ODE

du

dt
(t) = f(t),

where f is independent of u, and the problem is thus linear. For a Bayesian treatment of
this problem, we endow u with a prior and update it based on evaluations of the vector

field f(t) at different ti, i = 1, . . . , N , where ti > ti−1. If we suppose u1
d
= u|(t1, f(t1))

and u2
d
= u|(t1, f(t1)), (t2, f(t2)) then we do not expect u1(t1) is equal in distribution

to u2(t1), as a result of having obtained more information about the vector field in u2

which would have an impact on our belief about the distribution u2(t1).

However in the present work, it is impossible for u1 to depend upon f(t2); that is,
our new beliefs about f at tn cannot have any impact on the distribution of um for
m < n. Thus we appear to have imposed a filtration on the σ-algebra of the probability
space which is not inherent to the problem. As a result the posterior distributions
cannot be regarded as a full Bayesian update, which I believe this casts some doubt on
the “Bayesian” nature of the uncertainty quantification provided in the Skilling (1992)
sense, as well as on the information efficiency of the method.

The work is similar to the recently published work of Kersting and Hennig (2016)
and Schober et al. (2016), in that the uncertainty is generated by a methodology similar
to “filtering” in the data assimilation literature; the full Bayesian posterior would be

1Department of Statistics, University of Warwick, Coventry, CV4 7AL, j.cockayne@warwick.ac.uk
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given by solution of the correspond “smoothing” problem. I would be interested to see
whether this can be incorporated into the present work.

2 Treatment of Partial Differential Equations

The treatment of evolutionary PDEs is also of interest, in light of recent developments of
probabilistic meshless methods (PMM) for PDEs (Cockayne et al., 2016). In Section 5.3
I was interested to see the reduction of the Navier Stokes PDE to a large system of
ODEs. It is an interesting point for probabilistic numerics, that many problems can
be formulated by multiple equivalent numerical schemes; one wonders how the solution
obtained by solving this system of ODEs would compare to direct solution of a PDE
system, and how consistent the posterior measures generated would be.

Similarly, in Section 5.4 the authors have solved the heat equation by a “forward
in time, continuous in space” formulation; if I understand this correctly, we treat the
spatial component by a Gaussian process model and discretise the temporal component
using the methods of this paper. In light of my comments on the provided uncertainty
quantification and considering that this evolutionary system is linear, I wonder how this
solution would compare to the fully Bayesian solution provided by the PMM.
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Comment by Michael Schober1 and Philipp Hennig2

Abstract. We welcome the paper by Chkrebtii et al. which provides a thorough
analysis of Gaussian process ordinary differential equation (ODE) solvers and
their applications in inverse problems. We present some remarks on the interaction
between modelling requirements and computational cost.

1 Introduction

An increasing number of manuscripts on probabilistic numerics in general and proba-
bilistic ODE solvers in particular highlight the rising interest and importance in this
area of research. The manuscript by Chkrebtii et al. (2016) presents a principled ap-
proach to solve a variety of problems related to numerical approximation of differential
equations. Their level of detail combined with the open access to all code should be a
standard for all researchers working on practical methods.

2 On Sufficient Kernel Conditions

One of the paper’s main contribution is a set of sufficient conditions for O(h) conver-
gence. Among those requirements is that the covariance function has to decay with the
step size, λ = O(h). As the authors point out, this has the side-effect that the resulting
Gram matrices are sparse, essentially banded matrices; and this structure could be used
to achieve low computational cost through approximations.

It is interesting in this context to consider the structure of classic methods for the
solution of initial value problems. They are constructed “the other way round”, with ex-
plicitly linear algorithmic structure, which is then designed to achieve high convergence
order. Recall the two main families of numerical methods for initial value problems,
Runge–Kutta methods (1) and linear multistep methods (2):

xn+1 = xn + h

k∑
i=0

biYn,i, Yn,j = f(tn + hcj , xn + h

j−1∑
i=0

wjiYn,i), (1)

q∑
i=−1

αixn−i = h

q∑
i=−1

βifn−i, fn−i = f(tn−i, xn−i). (2)

One can think of these as three sets of ingredients: problem dependent dynamic memory
contents [(xn, Yn,j)], (xn, fn)], a step size h, and step size agnostic static method param-
eters [(cj , wji, bi), (αi, βi)]. Similarly, λ = O(h) leads to almost independent inference
problems on each subinterval [tn, tn+1]. Recently, Schober et al. (2016) have proposed
a Gauss–Markov process prior

d

⎛
⎝

X
X ′

X ′′

⎞
⎠ =

⎛
⎝
0 1 0
0 0 1
0 0 0

⎞
⎠

⎛
⎝
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X ′

X ′′

⎞
⎠ dt+

⎛
⎝
0
0
1

⎞
⎠ dω, (3)
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which directly encodes the linear computational cost requirement. The authors have
also been able to show convergence rate of O(h3).

3 Probabilistic ODE Solvers with Reproducible Output

Chkrebtii et al. (2016) achieve accurate uncertainty quantification through sampling.
This approach of injecting randomness into the problem to reduce dependence between
error and estimate is elegant in its formal simplicity. Its downside is a comparably high
computational cost, since Monte Carlo estimates only converge at stochastic rate. In the
context of numerical methods, computational efficiency is particularly crucial. Kerst-
ing and Hennig (2016) recently proposed an alternative based on Bayesian quadrature,
which suggests that calibrated uncertainty can also be achieved in an entirely determin-
istic fashion. Combined with recent convergence results on Bayesian quadrature (Briol
et al., 2015), it might be interesting to see whether theoretical guarantees can be found
for uncertainty quantification in this similar setting.
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