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Joint Species Distribution Modeling: Dimension
Reduction Using Dirichlet Processes

Daniel Taylor-Rodŕıguez∗, Kimberly Kaufeld†, Erin M. Schliep‡,
James S. Clark§, and Alan E. Gelfand¶

Abstract. Species distribution models are used to evaluate the variables that af-
fect the distribution and abundance of species and to predict biodiversity. Histor-
ically, such models have been fitted to each species independently. While indepen-
dent models can provide useful information regarding distribution and abundance,
they ignore the fact that, after accounting for environmental covariates, residual
interspecies dependence persists. With stacking of individual models, misleading
behaviors, may arise. In particular, individual models often imply too many species
per location.

Recently developed joint species distribution models have application to pres-
ence–absence, continuous or discrete abundance, abundance with large numbers
of zeros, and discrete, ordinal, and compositional data. Here, we deal with the
challenge of joint modeling for a large number of species. To appreciate the chal-
lenge in the simplest way, with just presence/absence (binary) response and say,
S species, we have an S-way contingency table with 2S cell probabilities. Even if
S is as small as 100 this is an enormous table, infeasible to work with without
some structure to reduce dimension.

We develop a computationally feasible approach to accommodate a large num-
ber of species (say order 103) that allows us to: 1) assess the dependence structure
across species; 2) identify clusters of species that have similar dependence patterns;
and 3) jointly predict species distributions. To do so, we build hierarchical models
capturing dependence between species at the first or “data” stage rather than at a
second or “mean” stage. We employ the Dirichlet process for clustering in a novel
way to reduce dimension in the joint covariance structure. This last step makes
computation tractable.

We use Forest Inventory Analysis (FIA) data in the eastern region of the United
States to demonstrate our method. It consists of presence–absence measurements
for 112 tree species, observed east of the Mississippi. As a proof of concept for our
dimension reduction approach, we also include simulations using continuous and
binary data.
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1 Introduction

Understanding the processes that determine the distribution and abundance of species
is a goal of ecological research. Species distribution models are used to evaluate the
variables that affect the distribution and abundance of species and to predict biodiver-
sity, including responses to climate change (Midgley et al., 2002; Guisan and Thuiller,
2005; Gelfand et al., 2006; Iverson et al., 2008; Botkin et al., 2007; Fischlin et al., 2007;
McMahon et al., 2011; Thuiller et al., 2011). These models are used to infer a species
range either in geographic space or in climate space (Midgley et al., 2002), to identify
and manage conservation areas (Austin and Meyers, 1996), and to provide evidence of
competition among species (Leathwick, 2002). The core objective is interpolation, to
predict species response at plots that have not been sampled.

Species distribution models (SDMs) are most commonly fitted to presence/absence
data (binary) or abundance data (counts, ordinal classifications, or proportions). Occa-
sionally, continuous responses are used such as biomass (Dormann et al., 2012). Predic-
tion of species over space can be accommodated using a spatially explicit specification
(Gelfand et al., 2005, 2006; Latimer et al., 2006).

Within a Bayesian framework, SDMs can be fitted using hierarchical models. Hier-
archical models provide a flexible way to include information regarding the distribution
of a species as well as the uncertainty (Gelfand et al., 2006). The stages in a hierarchi-
cal model can describe latent processes that are ecologically important. These models
enable separation of the measurement and biological process models (MacKenzie and
Royle, 2005; Latimer et al., 2006; Gelfand et al., 2005).

Customarily, SDMs are fitted independently across a collection of species (Thuiller,
2003; Latimer et al., 2006; Elith and Leathwick, 2009; Chakraborty et al., 2011). To
make predictions at the community scale, independent models for individual species are
aggregated or stacked (Calabrese et al., 2014). However, collectively, the independent
models tend to predict too many species per location (Guisan and Rahbek, 2011), as well
as other misleading results (see Clark et al., 2014, for some examples). At least one source
of the problem is the omission of the residual dependence between species. Modeling
species individually does not allow underlying joint relationships to be exploited (Clark
et al., 2011; Ovaskainen and Soininen, 2011).

Joint species distribution models (JSDMs) that incorporate species dependence now
include applications to presence–absence (Pollock et al., 2014; Ovaskainen et al., 2010;
Ovaskainen and Soininen, 2011), continuous or discrete abundance (Latimer et al., 2009;
Thorson et al., 2015), abundance with large number of zeros (Clark et al., 2014) and,
recently, discrete, ordinal, and compositional data (Clark et al., 2016). JSDMs jointly
characterize the presence and/or abundance of multiple species at a set of locations,
partitioning the drivers into two components, one associated with environmental suit-
ability, the other accounting for species dependence through the residuals, i.e., adjusted
for the environment.
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Joint distributions are meaningful at all scales, but interpretation should properly
reflect scale. Clark et al. (2014) discuss why the covariance matrix does not quantify
‘species interactions’. For example, competition is a mutually negative interaction. How-
ever, the strongest competitors will typically have a positive correlation – tendency to
co-occur is the cause, not the consequence, of competition. Likewise, predation, dis-
ease, and parasitism are not quantified by the covariance matrix. Both are asymmetric,
whereas, a covariance matrix cannot be.

Although the covariance matrix cannot be interpreted as the species interactions
themselves, it does depend on them. The joint distribution is critical in models of forest
composition, because the canopy is ‘full’. So, regardless of scale, a species cannot increase
unless others decline. Accounting for co-dependence is critical for accurate prediction.
Although the nature of the covariance matrix changes with aggregation (Simpson’s
Paradox), the need to accommodate it applies across scales (Clark et al., 2014).

These JSDMs are also specified through hierarchical models, introducing latent mul-
tivariate normal structure, capturing dependence through the associated covariance ma-
trices. We envision vectors of data Yi collected at plot i with the jth entry in the vector
being the response of the jth species at plot i. We assume the Yi are independent across
plots, i.e., that the plots are sufficiently dispersed that a change in composition at one
location does not perceptibly influence composition at another. We focus on depen-
dence between species, because, after accounting for the environmental effects at each
plot through the mean effect, residual interspecies dependence persists. We introduce
this dependence at the first stage, viewing Yi as a componentwise function Yij = g(Vij),
whereVi is a latent multivariate normal. For example, with biomass, Yij = Vij if Vij > 0
and Yij = 0 if Vij ≤ 0. This is a customary Tobit specification (Cameron and Trivedi,
2005). With binary response (presence/absence), Yij = 1 if and only if Vij > 0, i.e.,
g(Vij) = 1 for Vij > 0. Note that we are not modeling dependence between the (ran-
dom) probabilities of presence, e.g., between P (Yij = 1) and P (Yij′ = 1) (Ovaskainen
et al., 2015). This would move the dependence to the second modeling stage, i.e., in the
mean specification, introducing a probit link. We believe that, with regard to the pro-
cess, modeling the dependence at the data level is more informative. Similar remarks
follow for any of the responses above; we can capture them through suitable latent
multivariate normals (see Clark et al., 2016).

JSDMs enhance understanding of the distribution of species, but their applicability
has been limited due to computational challenges when there is a large number of
species. To appreciate the challenge with even the simplest presence/absence (binary)
response and S species, we have an S-way contingency table with 2S cell probabilities
at any given site. With observational data collection over space and time, as in large
ecological databases, the number of species is on the order of hundreds to thousands,
rendering contingency table analysis infeasible. There is need for strategies to fit joint
models in a computationally tractable manner.

To deal with these large datasets it is necessary to consider data dimension reduction
techniques. Common approaches include principal component analysis (Artemiou and
Li, 2009, 2013), partial least squares (Naik and Tsai, 2000), and sliced inverse regres-
sion (Li, 1991). Machine learning approaches include clustering techniques such as the



942 Joint Species Distribution Modeling with Dirichlet Processes

Chinese Restaurant process (Blei et al., 2010), Indian buffet process (Ghahramani and
Griffiths, 2005), and latent Dirichlet allocation (Blei et al., 2003).

Here, we propose a Bayesian nonparametric approach, working with Dirichlet pro-
cesses, to capture dependence among species while reducing the effective dimensionality
of the problem. We use a stick-breaking representation based upon MacEachern (1994)
which defines a dependent Dirichlet process (see also Dunson and Park (2008); Chung
and Dunson (2011)). The attractiveness of stick-breaking constructions is that they are
computationally efficient and easy to implement. In our work we employ the Dirichlet
process in a novel way to reduce dimension in the dependence structure among species.
In joint species modeling, a much different Bayesian nonparametric approach by Arbel
et al. (2015) models species dependence across plots through a Gaussian process and a
location dependent covariance structure. However, this approach assumes independence
among species.

The primary contribution of this article is to develop a computationally feasible
approach for a large number of species (say order 103), that allows us to: (i) assess
the residual dependence structure among species, (ii) identify clusters of species that
exhibit similar dependence patterns, and (iii) jointly predict species behavior. Again,
the proposed hierarchical model captures dependence between species at the first or
“data” stage rather than at a second or “mean” stage.

Dependence is introduced in the first-stage level through plot level latent multivari-
ate normal variables whose dimension is the number of species. Dependence is introduced
using low dimensional random effects described by a low dimensional covariance matrix,
which is then made nonsingular through diagonal dominance. Dimension reduction in
the form of clustering of the random effects is done with a Dirichlet process. Here, we
employ the Dirichlet process for clustering in a novel way. Rather than the customary
clustering of the replications (in our case, this would be plots), we cluster the compo-
nents of the response (here, species). Instead of replacing Gaussian random effects with
Dirichlet process random effects, we use the Dirichlet process to reduce dimension in
the joint covariance structure. This last step makes computation tractable and is highly
scalable. Altogether, we have a form of latent factor analysis but our implementation
differs from that of Bhattacharya and Dunson (2011).

We use the Forest Inventory Analysis (FIA) data in the eastern United States to
demonstrate our method. It consists of roughly 100 tree species considered on 1200
hectare sized plots. As a proof of concept for our dimension reduction approach, we also
include a simulation using both continuous and binary response data.

Other potential settings for our Dirichlet process dimension reduction approach in-
clude: (i) gene expression data, anticipating dependence between some of the genes,
where replicates would be expression data for individuals and (ii) stock price data for
stocks associated with an index, anticipating dependence between some of the stocks.
Replication here would be across time and could be accommodated through independent
increments in a dynamic model.

This article is structured as follows. We describe the illustrative dataset in Section 2.
In Section 3, we introduce our dimension reduction approach for a multivariate collection
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of species, including details about the clustering step, an adaptation to binary data,
and other necessary considerations. Section 5 discusses prediction under our approach.
In Section 6 we provide simulation examples. Section 7 presents the Forest Inventory
Analysis data example. In Section 8 we conclude with a summary and future work.

2 Motivating Example: Forest Inventory Analysis Data

A motivating challenge is joint modeling of multiple tree species in the Forest Inventory
and Analysis (FIA) Data. It is a collection of annual inventory plots (2003–2009) in 31
states in the eastern US (Woudenberg et al., 2010, FIADB version 4.0.) that includes
species, size, health of trees, tree growth, mortality, and removal by harvest. It is a
systematic inventory of all US forests (USDA) that is documented online in a national
resource report (Smith et al., 2009). In our analysis we use presence/absence of tree
species from over 20,000 FIA monitored plots from which there are measurements of
roughly 1 million trees spanning more than 200 tree species.

The FIA has a sampling protocol that is applied consistently throughout the country.
This protocol consists of a quasi-systematic design that covers all ownerships across the
United States, and these sampling efforts yield a national sampling intensity of one plot
for every 2,438 hectares (Bechtold and Patterson, 2005). Each FIA plot is made up of
four circular subplots with a radius of 7.32 meters (m) each, and the centroids for the
subplots are 35.58 m apart. The aggregate area of the four subplots is 673.34 m2 or
≈ 0.067 hectares (ha).

FIA plots are too small to adequately summarize local distribution and abundance.
With a plot area equal to 25 m on a side, each supports only a handful of large trees,
and most species occur sporadically. Predicting the composition on a plot this small is
neither feasible, nor desirable. Instead we focus on the 1-ha scale, an area large enough to
accurately represent forest structure; we aggregate plots to model at this scale. Given
that FIA plots are located relatively far, nearest neighbors in geographic space need
not represent similar environments. As such, geographic aggregation of FIA data can
potentially group ridgetops with bottomlands. To avoid this issue, we combine FIA
plots to the hectare scale by grouping them according to their covariate values. This
translates the problem from a joint species distribution analysis in geographic space to
one in covariate space. Prediction at this scale is more relevant to questions in ecology
and climate change. The resulting joint distribution describes the tendency of species
to respond together to the environment at the (meaningful) ha-scale, beyond what is
captured in the mean structure of the model. To avoid ambiguity when discussing this
application in what follows, we refer to the plots aggregated in covariate space simply
as “plots”, and to the original ones as “FIA plots”.

To construct hectare-size plots in covariate space we follow the procedure described
in Schliep et al. (2016). The authors used a k-means clustering algorithm based on
stand age, temperature, and precipitation. Through this method, groups of 16 FIA
plots (to make up a 1.07 ha sized plots) are identified, each of which minimizes the
distance between the observations in the group and the cluster centroid, providing joint
presence/absence of species at the one hectare scale (in covariate space).
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Figure 1: Presence/absence status of four randomly selected species at hectare sized
plots in covariate space. Each location represents the centroid of the 16 combined FIA
plots.

Species that were either too abundant (present in all but 50 plots or fewer) or too
sparse (in fewer than 50) were removed such that inference on the regression param-
eters can be made for the species retained in the model. Data used here consist of
presence/absence for S = 112 species. We use standard climate predictors, temper-
ature and hydrothermal deficit, where the latter is the number of cumulative degree
hours for months with a negative water balance. The values of these covariates for the
plots are the means of the 16 FIA plots. Because the clustering is done in covariate
space, the covariate values within the 16 plots are similar. After grouping, we have
approximately 1200 hectare sized plots with presence/absence data. Figure 1 displays
presence/absence status at the plots for four randomly selected species mapped onto
the clustering covariate space.

3 A Joint Species Distribution Model Using
the Dirichlet Process

In this section, we formalize the joint species distribution model. We begin with the
model for the latent process Vi. We then connect it to presence/absence data. As noted
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in the introduction, we do not specify Dirichlet process models for the plots, i.e., for the
Vi across i; we do not replace normal models for errors or random effects with Dirichlet
process models. Rather, we use the Dirichlet process to provide a dimension reduction
in specifying the dependence structure.

Suppose there are j = 1, · · · , S species at i = 1, · · · , n plots. For plot i, an S-
dimensional vector, Vi, is modeled as

Vi = Bxi + εi with εi ∼ NS(0S ,Σ), (1)

where BS×p =

⎛
⎝ β′

1

...
β′

S

⎞
⎠ is the coefficient matrix.

This model has O(S2) parameters,
(
S
2

)
+ S from Σ and, with p predictors in xi,

including an intercept, there are pS parameters in B. For example, for S = 100 species
and p = 3 predictors, the model contains 5,350 parameters. We propose a dimension
reduction approximation to Σ that allows the number of parameters to grow linearly
in S.

We approximate Σ with Σ� = AA′ + σ2
εI and replace (1) with:

Vi = Bxi +Awi + εi, (2)

where the random vectors wi are i.i.d. with wi ∼ Nr(0r, Ir) and εi ∼ NS(0S , σ
2
εI), and

A is an S × r matrix with r < S.

In fact, we think of r << S and A as ‘tall and skinny.’ Σ� has Sr + 1 unknowns
clarifying the conversion of an O(S2) problem to an O(S) problem. Evidently, the rank
of AA′ is only r but adding σ2

εI yields diagonal dominance and a nonsingular matrix.1

We require i.i.d. wi in order to ensure that the Vi are conditionally independent given
A and σ2 as they are in (1) given Σ. A further reduction in the number of parameters
can be attained by finding common rows in A; a method to achieve this is described in
the following section.

3.1 Clustering the Rows of A with a Dirichlet Process

Briefly, the Dirichlet process (DP) provides stochastic models for random distributions.
It is widely used in the Bayesian nonparametric literature as a prior for distributions
rather than using customary parametric distributions adopting priors for the parame-
ters (Escobar and West, 1995; Ishwaran and James, 2001; Papaspiliopoulos and Roberts,
2008). It finds attractive application in hierarchical modeling to provide random distri-
butions for random effects.

A constructive and useful representation of the DP is the stick-breaking formu-
lation of Sethuraman (1994). It is ideally suited for implementation within a Gibbs
sampling setting (see Escobar, 1994; Escobar and West, 1995; MacEachern, 1994; Bush
and MacEachern, 1996; Neal, 2000) due to a Pólya urn scheme representation which

1One can imagine adding a more general diagonal matrix to AA′ but, in our experience, σ2
εI performs

well enough.
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provides easy sampling from full conditional distributions. Under a stick breaking con-
struction, we say the random distribution, G, follows a DP with base measure H and
precision parameter α, G ∼ DP(αH), if

G(·) =

∞∑
l=1

plδθl(·), (3)

where p1 = ξ1, pl = ξl
∏l−1

h=1(1 − ξh) (h ≥ 2) with i.i.d. ξl ∼ Beta(1, α), and δθl(·)
is the Dirac delta function at θl where θl ∼ H. Because it is almost surely a discrete
distribution, it enables ties; hence, it enables clusters. We make use of this feature to
allow some rows of A to be common, which corresponds to clustering species in their
dependence behavior.

As shown in Ishwaran and Zarepour (2000), the sum in (3) can be approximated with

a truncated version
∑N

l=1 plδθl(·), where ξl ∼ Beta( α
N , (N−l)

N α) (l < N), and ξN = 1 is

needed to ensure
∑N

l=1 pl = 1. The weights defined in this fashion come from a gener-
alized Dirichlet distribution GD(a,b), which is conjugate with multinomial sampling.

We refer to this finite approximation as DPN (αH), and it is the version that we
employ in developing our clustering strategy. The DPN (αH) formulation facilitates
sampling with the blocked Gibbs sampler of Ishwaran and James (2001), which avoids
marginalizing out the base measure, instead allowing the prior to be involved in the
Gibbs sampling scheme.

To specify the hierarchical formulation for this model, let Z = (Z ′
j)

N
j=1 (with Zj

iid∼
H) denote the N × r matrix whose rows make up all potential atoms (i.e., vector values
that the rows a′l of A may take). In this setup, we need a vector of grouping labels
k = (k1, k2, . . . , kS) (1 ≤ kl ≤ N) such that al = Zkl

. Note that A can be represented
by A = Q(k)Z, where Q(k)S×N = (ek1 , ek2 , . . . , ekS

)
′
, and ekl

is the N -dimensional
vector with a 1 in position kl and 0’s elsewhere. Using this notation, our approximate
model is given by

Vi|k,Z,wi,B, σ2
ε ∼ NS(Bxi +Q(k)Zwi, σ

2
εIS), for i = 1, . . . , n,[

B, σ2
ε

]
∝ 1

σ2
ε

,

wi ∼ Nr(0, Ir),

kl|p iid∼
N∑
j=1

pjδj(kl), for l = 1, . . . , S,

Zj |Dz
iid∼ Nr(0,Dz), for j = 1, . . . , N,

p ∼ GDN (aα,bα),

Dz ∼ IW(2 + r − 1, 4 diag(1/η1, . . . , 1/ηr)),

ηh ∼ IG(1/2, 1/104), for h = 1, . . . , r, (4)

where NS(·, ·) is the S-dimensional multivariate normal distribution. Also, GDN (aα,bα)
corresponds to the N -dimensional Generalized Dirichlet process with aα = ( α

N , . . . , α
N )

and bα = (α(N−1)
N , α(N−2)

N , . . . , α
N ), and δj(·) represents a point mass at j.



D. Taylor-Rodriguez, K. Kaufeld, E. M. Schliep, J. S. Clark, and A. E. Gelfand 947

As suggested in Ishwaran and Zarepour (2000), even for a very large number of
species (S), a moderate level of truncation should suffice to approximate a DP(αH).
In both our simulations and case study we set N = min {150, S}. The specification
for the prior of Dz follows the noninformative strategy to sample covariance matrices
described in Huang andWand (2013). Further details on implementation of the sampling
algorithm for the hierarchical setup in (4) are provided in Supplementary Appendix A
(Taylor-Rodŕıguez et al., 2016). Finally, we note that this approach for generating a
reduced rank matrix A, differs considerably from the approach in Bhattacharya and
Dunson (2011). There, entries in A arise from inverse gamma scaled normals.

3.2 Adaptation for Binary Response (Presence/Absence)

In ecological surveys, by far the most common response is the set of presence/absence in-
dicators for the set of species recorded at each plot. The FIA data described in Section 2
is an example of this. To work with binary responses, we resort to an adaptation of the
data-augmentation algorithm proposed by Chib (1998) for multivariate probit regres-
sion, which improves the mixing of the MCMC algorithm. This modification is known in
the literature as the parameter-expansion data-augmentation (PX-DA) algorithm (Liu
and Wu, 1999; Lawrence et al., 2008; Schliep and Hoeting, 2015). It allows us to use
the machinery proposed for the continuous case as a latent model. The PX-DA strategy
was also considered by (Clark et al., 2016) to model non-continuous responses. In either
case, approximation is needed to handle a large collection of species. The augmentation
consists of introducing multivariate normal latent random variables, which are used to
obtain a full conditional posterior density where the entire covariance matrix can be
sampled. The sampled covariance is then re-scaled as a correlation matrix to accommo-
date the identifiability constraints imposed by the probit link. In our case, the approach
is further modified to accommodate the dimension reduction step as described below.

Again, let Σ� = AA′ + σ2
εI for some S × r matrix A, and denote by R =

D−1/2Σ�D−1/2, where D is the diagonal matrix containing diag(Σ�). We can use data
augmentation with the binary likelihood, assuming that, for plot i, V ∼ Nn×S(XB′,
R, In), where X is the n×p matrix of predictors and B is the S×p matrix of regression
coefficients. Assume that the matrix of binary responses is given by Y = [Y1, . . . ,Yn]

′
,

where Y′
i = (Yi1, . . . , YiS) for i = 1, . . . , n. Recall that we connect Yi with Vi through

Yij = I(Vij > 0) so that the contribution to the likelihood for species j in plot i is

I
Yij

{Vij>0}I
1−Yij

{Vij≤0}. With yi = (yi1 . . . , yiS) the binary vector of observed presences indi-

cators at plot i, we have

Pr(Yi = yi) =

∫
Γ(yiS)

· · ·
∫
Γ(yi1)

(2π)−S/2|R|−1/2 ×

exp

{
−1

2
(Vi −Bxi)

′
R−1 (Vi −Bxi)

}
dVi,

where Vi is the ith row of V, and Γ(yij) is (−∞, 0] if yij = 0 and (0,∞) if yij = 1.

Now, let V�
i = D1/2Vi and note that V�

i ∼ NS(B
�xi,Σ

�), where B� = D1/2B. This
change of variable doesn’t affect the probabilities for Yi (Lawrence et al., 2008). Hence,



948 Joint Species Distribution Modeling with Dirichlet Processes

Pr(Yi = yi) =

∫
Γ(yiS)

· · ·
∫
Γ(yi1)

(2π)−S/2 |Σ�|−1/2 ×

exp

{
−1

2
(V�

i −B�xi)
′
Σ�−1 (V�

i −B�xi)

}
dv�

i ,

which in turn implies the expanded likelihood given by

L(B�,Σ�,V�|Y) = |Σ|−n/2

(
n∏

i=1

exp

{
−1

2
(V�

i −B�xi)
′
Σ�−1 (V�

i −B�xi)

}
×

S∏
j=1

I{V �
ij>0}

yij I{V �
ij≤0}

1−yij

)
[B�] [Σ�] . (5)

As in the continuous response case, we can introduce an n×r matrix of standard nor-
mal random variables W, such that V�|B�,A,W, σ2

ε ∼ Nn×S(X B� ′ +WA′, σ2
εIS , In),

where Na×b(M,Vcol, Vrow) represents the a× b-dimensional matrix normal distribution
with mean M , and column and row covariance matrix Vcol and Vrow, respectively.

Hence, the expanded likelihood can now be expressed as

LPA(B
�,W,A, σ2

ε ,V
�|Y)

∝ (σ2
ε)

−nS/2

(
n∏

i=1

exp

{
− 1

2σ2
ε

‖V�
i −B�xi −Awi‖2 −

1

2
‖wi‖2

}
×

S∏
j=1

I{V �
ij>0}

yij I{V �
ij≤0}

1−yij

)
[B�] [A]

[
σ2
ε

]
. (6)

With the expanded likelihood in (6), the sampling algorithm becomes

1. SampleV�
i ∼ tr.NS(B

�xi +Awi, σ
2
εIS ; Γ(yi)). This proposal density is convenient

as it corresponds to drawing from univariate truncated normal random variables.

2. Draw A = Q(k)Z and σ2
ε as in the continuous case (see in Supplementary Ap-

pendix A sampling steps for Z,k,p and σ2
ε), where the full conditional densities

for A and σ2
ε depend on V�,B�, and W.

3. Assuming a flat prior on B�, the full conditional posterior distribution for B� is
given by NS×p((V

� −WA′)′X(X′X)−1, σ2
ε(X

′X)−1, IS).

4. Finally, obtain the variables on the correlation scale using the transformations
V = D−1/2V�, B = D−1/2B� and R = D−1/2(AA′ + σ2

ε I)D
−1/2.

3.3 Non-Negative Response (Continuous Abundance)

In many species distribution surveys, the biomass of living organisms is recorded as an
indication of species abundance. This type of response is continuous, but takes on 0
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values whenever the species is absent from a plot. Functionally, we have a Tobit model
defined by

Yij =

{
Vij if Vij > 0
0 if Vij ≤ 0

, (7)

where Yij corresponds to the random variable that measures continuous abundance for
species j at plot i, and Vij is an element of the S-dimensional vector Vi as specified in
(2).

Using the connection between Yij and Vij provided by (7), the likelihood for contin-
uous abundance data is given by

LCA(B,W,A, σ2
ε ,V|Y)∝

(
σ2
ε

)−nS
2

(
n∏

i=1

exp

{
− 1

2σ2
ε

‖Vi −Bxi −Awi‖2 −
1

2
‖wi‖2

}
×

S∏
j=1

(
I{Vij≤0}

)I{Yij=0} (I{Vij=Yij}
)I{Yij>0}

)
×

[B] [A]
[
σ2
ε

]
. (8)

This formulation provides for direct Gibbs sampling, with full conditionals for the
latent variables given by

Vij ∼
{
tr.N

(
x′
iβj +w′

iaj , σ
2
ε ; (−∞, 0])

)
if Yij ≤ 0

I{Yij} otherwise
,

where βj and aj correspond to the jth row of B and A, respectively. Sampling for B,
A and σ2

ε is performed in the same way as in the continuous case (see Supplementary
Appendix A).

4 Prediction

While explanation through the covariates is usually the objective in species distribu-
tion modeling, prediction also plays a key role. Prediction can be envisioned for unob-
served plots, for instance, predicting probabilities of presence–absence, or predicting the
biomass for the set of species at unobserved plots. With independent plots, this becomes
prediction of a latent multivariate vector using the fitted regression. Given that species
are correlated within plots, if the response for some of the species is available at a new
plot (e.g., presence/absence), one may take advantage of this fact to further inform
prediction of the responses at the new plot for the unobserved species, conditionally
on values for the observed ones. This is useful if only information on subset of species
is available for some new plots and prediction on the remaining species is of interest.
Alternatively, this feature can be exploited in formulating hypothetical experiments. If
we assume certain species are present at a site, which species are likely to join them; if
we assume certain species are absent at a site, which species are likely to replace them.

As mentioned earlier, individual level models when aggregated tend to overestimate
richness – the number of distinct species at a plot (Clark et al., 2016; Calabrese et al.,
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2014). Under joint modeling the data we are fitting are vectors, each of 0’s and 1’s, such
that each vector has an implicit observed richness. As a result, when the joint model
is fitted, these observations inform about the number of distinct species at a plot. We
will expect to see substitution among species that are equally suited to the available
environment at the new plot. However, we will not expect the overall number of species
to be overestimated.

We briefly describe how such prediction is implemented for the latent variables
and then add the modifications for binary and non-negative data. First we derive the
posterior predictive distribution. Recall that our latent fitting model is Vi = Bxi +
Awi + εi, where A = Q(k)Z depends on the label vector k = (k1, . . . , kS) through
Q(k). Again, Q(k) is the S × N matrix that assigns the rows of Z to the rows of A
according to the clustering specified by the vector of groupings k. Also recall that the
N × r matrix Z is such that its rows, denoted by Zj , are iid with prior distribution

Nr(0,Dz), for j = 1, . . . , N . Finally, we have wi
iid∼ Nq(0, Ir), εi

iid∼ Nq(0, σ
2
ε IS) for

i = 1, . . . , n, and the labels kl|p iid∼
∑N

j=1 pjδj(kl) for l = 1, . . . , S, with the pj ’s drawn
from a generalized Dirichlet process.

We sort the columns of V to have in the first Sp columns the response for species
that will be predicted at the new plots. The remaining S−Sp correspond to those species
specified as observed at the new plots. The response matrix at the no new locations is
given by Vo = [Vo

pred Vo
obs]. Next, denoting θ = (B,Z,k,p, σ2

ε) and letting Xo be the
matrix of environmental features at the new plots, the posterior predictive distribution
after integrating out the wi’s, is

Pr(Vo
pred|V,Vo

obs) =

∫
Θ

p(Vo
pred|θ,V,Vo

obs)p(θ|V) dθ. (9)

Now, letting μi = Bxi and Σ� = Q(k)ZZ′Q(k)′ + σ2
εIS , we have

p(θ|V) ∝
(

n∏
i=1

φS

(
Vi

∣∣∣μi,Σ
�
) )

πθ(θ),

and

p(Vo
pred|θ,V,Vo

obs) =

no∏
h=1

φSp

(
Vo

h,pred

∣∣∣μh,pred|obs,Σpred|obs

)
,

where φk(·|μ,Σ) denotes the k-dimensional normal density with mean vector μ and
variance–covariance matrix Σ, and

μh,pred|obs = μh,pred +Σ1,2Σ
−1
2,2

(
Vo

h,obs − μh,obs

)
,

with μh,pred = Bpredx
o
h, μh,obs = Bobsx

o
h, and

Σpred|obs = Σ1,1 − Σ1,2Σ
−1
2,2Σ

′
1,2, with Σ∗ =

(
Σ1,1 Σ1,2

Σ′
1,2 Σ2,2

)
.

To sample the predicted responses, instead of integrating out the parameters, we can
obtain samples from Pr(Vo

pred|V,Vo
obs) by using the MCMC draws of θ from p(θ|V),

and then drawing Vo
pred from p(Vo

pred|θ,V,Vo
obs).
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Adaptation to the binary case is clear. The latent variables for the responses of the
observed species need to be drawn to predict the latent variables for the unobserved
species. Positive latent responses for the unobserved species are set to 1 (presence),
and negative latent responses are set to 0 (absence). With presence/absence, Yo is now
a matrix of binary responses at new locations, while Vo represents the matrix with
the associated latent variables. Using analogous notation to that from Section 3.2, we
have

p(θ|Y) ∝
∫

LPA(θ,V|Y)dV,

and

p(Yo
pred|θ,Y,Yo

obs) ∝
no∏
h=1

∫
p(V�o

h,pred|θ,Y,V�o
h,obs)×

Sp∏
j=1

I{V �
hj>0}

Yhj I{V �
hj≤0}

1−YhjdV�o
h,pred,

where V �
hj and Yhj represent the elements of the vectors V�o

h,pred and Yo
h,pred, respec-

tively. Here, p(V�o
h,pred|θ,Y,V�o

h,obs) = φSp(V
�o
h,pred|μh,pred|obs,Σpred|obs), making the

obvious modifications to μh,pred|obs and Σpred|obs in the definitions provided for the
continuous case to accommodate V�o instead of Yo and B� instead of B. Similarly,
prediction is done by using the MCMC draws from θ.

Prediction with continuous abundance data follows a similar strategy. For the ob-
served species at the new plots, the latent variables at new plots are drawn from normals
truncated to be negative for species that are absent, and are set equal to the response
for those species that take on positive values of the response. In this case

p(θ|Y) ∝
∫

LCA(θ,V|Y)dV

and

p(Yo
pred|θ,Y,Yo

obs) ∝
no∏
h=1

Sp∏
j=1

g(Yhj |θ,Y,V�o
h,obs),

where

g(Yhj |θ,Y,V�o
h,obs) =

{∫
R− φ(Vhj |μ(hj|obs), σ

2
(hj|obs))dVhj if Yhj = 0

φ(Yhj |μ(hj|obs), σ
2
(hj|obs)) otherwise

,

where μ(hj|obs) = E[Vhj |θ,Vo
h,obs] and σ2

(hj|obs) = var(Vhj |θ,Vo
h,obs).

Prediction can also be used for model validation/comparison. That is, a portion of
the data can be held out from the fitting and used for validation. In Section 5, using
simulated data, we offer a few examples of how this can be done.
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5 Simulations

In this section, we conduct simulations for both the continuous and the binary case. The
simulation for the continuous case is merely intended as a proof of concept. That is, on
the latent scale, we show how well we can recover the specified multivariate dependence
structure. The binary case is intended to demonstrate what we can expect to recover
with real presence/absence data. The performance of the algorithm is assessed in terms
of out-of-sample prediction. For the continuous case, we generate data for a large number
of species using two illustrative simulation mechanisms according to how the variance–
covariance matrix is specified. At plot i, the continuous joint response vector (e.g.,
biomass) for S species is drawn from yi ∼ NS(0S ,Σ). For the binary case, we generate
the data using one choice of covariance structure and compare the parameter estimates
and predictions with and without dimension reduction, as well as assuming independent
models for each species. To fit the models without dimension reduction and compare the
results with the reduced dimension approach, we consider a smaller number of species
than in the continuous case.

In generating the continuous responses we consider two types of covariance matrices
for 1000 species (see Figure 2 for an illustration). For each data generating mechanism,
we employ r = 5, 10, 20 to assess the effect of the approximation. In the binary case,
we only use a single covariance structure (imposed on the latent scale) and simulate
data for 100 species. This is manageable to fit even without implementing a dimension
reduction scheme, and allows us to compare the estimates and prediction with and
without dimension reduction. With both types of data we also obtain the results from
the independent stacked models. Below we describe in detail the simulation setup used
in each case.

5.1 Continuous Case

The two covariance structures considered for the simulations with continuous responses
are given by

1. Expected equicorrelation: Assumes Σ = ΦΦ′ where the ith row of Φ is given by
φi = θ0v0 + θ1vi with the v’s i.i.d. from NS(0, σ

2
vIS). Under this alternative we

have that E [Σii] = E[φ′
iφi] = Sσ2

v(θ
2
0 + θ21) and E[Σij ] = E[φ′

iφj ] = Sσ2
vθ

2
0.

2. Clustered covariance: This structure assumes that Σ = AtrueA
′
true + τ2IS , where

Atrue is an S × q matrix (with q ≤ S). Each row of Atrue is assigned a label
randomly from κ = 1, . . . ,Ktrue, where Ktrue < S, such that if the lth row is
assigned label κ, then al = vκ, with vκ ∼ Nq(0, σ

2
vIq).

We view equicorrelation as essentially a straw man; it is not what we expect in practice.
The second scenario, clustering of species, is more likely in real data and is, in fact,
what our DP dimension reduction approach is designed to capture. Below, we will see
that, indeed, our approach does work well.

Using these two alternatives, 10 independent data sets were generated in order to
examine the ability of the algorithm to recover the true covariance structure and to



D. Taylor-Rodriguez, K. Kaufeld, E. M. Schliep, J. S. Clark, and A. E. Gelfand 953

Figure 2: Covariance structures.

perform out-of-sample prediction. Assessing out-of-sample predictive performance is
done with respect to a hold out sample of species within plots as opposed to using a hold
out sample of plots on all species. Predictive performance is assessed by calculating the
Euclidean distances between the true values and the conditional predictions, predicting
5%, 10%, 20% and 50% of the species, conditional on the remaining 95%, 90%, 80%
and 50% species, respectively. We denote the out-of-sample response matrix by Vo. The
rows of Vo, denoted by Vo

i , correspond to some permutation of (Vo
i,pred Vo

i,obs), where
Vo

i,obs is the vector of responses for species that are assumed observed and Vo
i,pred are

those considered for prediction.

The prediction vector, Vo
i,pred is given by (Vim1 , . . . , VimSp

), with Sp denoting the
number of out of sample species chosen to make prediction for, and m1,m2, . . . ,mSp

denote the set of indices chosen at random for the species to be predicted. Similarly,
V̂o

i,pred denotes the vector of predicted values. Therefore, Vo
i,obs corresponds to the

remaining S − mSp responses. The criterion used to assess predictive ability of the
algorithm is the root mean squared predictive error (RMSPE), given by

RMSPE =

√√√√ 1

Spno

no∑
i=1

(Vi,pred − V̂i,pred)′(Vi,pred − V̂i,pred).

To test the algorithm we built the A matrix in model (2) setting r = 5, 10, 20
columns. The parameters chosen for each of the covariance types are:

Expected equicorrelation θ0 =
√

0.3
ψ , θ1 =

√
0.7
ψ and σ2

v = ψ
S , where ψ = 2. This

choice of parameters yields E[φ′
iφi] = 1 for the diagonal elements, and E[φ′

iφj ] =
0.3 for the off-diagonal ones.

Clustered covariance Ktrue = 80, q = 20 and σ2
v = 3.
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For the simulation experiments with continuous response, we assume S = 1000
species on n = 3000 plots. With every covariance structure, 10 datasets were generated
at random from yi ∼ NS(0S ,Σ) for i = 1, . . . , n. Using each of these datasets, the
algorithm was applied individually for the different values of r. The results extracted
from each run of the algorithm are the Euclidean distances between the true out of
sample dataset Vo

pred and their posterior predictive means V̂o
pred.

In Supplementary Appendix B we included Figures 1 and 2 which display, for a single
dataset, a comparison between: (i) the true and estimated covariance parameters, and
(ii) the observed responses with the out-of-sample predicted values. The figures shown
were obtained for A with r = 5 columns, corresponding to a single dataset generated
either with the equicorrelation or the clustered covariance.

When the observed data is generated using the expected equicorrelation structure,
our methodology attractively recovers two distinctly different groups of parameters,
namely, those on the diagonal and those off the diagonal. This is expected, following
from the difference in magnitude in their expected values, which are E [Σii] = E[φ′

iφi] =
Sσ2

v(θ
2
0+θ21) and E[Σij ] = E[φ′

iφj ] = Sσ2
vθ

2
0 for the diagonal and off-diagonal elements,

respectively.

At a first glance, in terms of prediction the method appears to perform poorly under
equicorrelation. However, the very nature of the data generating mechanism induces this
behavior. To better understand the role that expected equicorrelation plays, consider
the conditional expectation at a single plot replacing Σ by its expected (equicorrela-
tion) covariance matrix Λ = E [Σ] = ( Λ11 Λ12

Λ21 Λ22
). The diagonal entries of Λ are given by

Sσ2
v(θ

2
0+θ21) and the off-diagonal elements are Sσ2

vθ
2
0, such that the posterior conditional

predictive means are

E[Vpred|yobs,Λ] =
θ20(S − Sp)

θ21 + θ20(S − Sp)
V̄obs1Sp ,

where J is an Sp×(S−Sp) matrix of ones and V̄obs is the average of the entries in Vobs.
Therefore, the conditional mean for ypred at a given plot is equal for all of its entries.
So even though prediction from our method appears to render poor results, it is in fact
behaving as if the true covariance matrix was equicorrelated.

With the clustered covariance structure our approach fares quite well, both recover-
ing the true covariance and predicting new observations accurately (see Figures 1 and 2
in Supplementary Appendix B (Taylor-Rodŕıguez et al., 2016)).

The notable improvement in conditional prediction by accounting for the interspe-
cific dependence is also observed in Figure 3. Under both covariance structures used
to generate the true data, modeling the dependence dramatically reduces the error in
out-of-sample prediction. In this figure we can also assess the effect of increasing r, the
number of columns in A. For the equicorrelated covariance, the results indicate that
adding more columns yields an insubstantial improvement. With the clustered covari-
ance structure, the RMSPE slowly decreases as r grows until r = q = 20, the number
of columns in Atrue. Hence, when the true covariance structure is of the same form
as that from our approximation, the error is minimized when rank(A) = rank(Atrue).
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Figure 3: Out-of-sample RMSPE for continuous simulations using the (a) unstructured
and (b) clustered covariances. Results compared the independence model to the dimen-
sion reduced approach (assuming r = 5, 10, 20) when predicting 50, 100, 200 and 500
species (out of 1000) from 10 simulated datasets with n = 3000.

Although not shown here, it is also reassuring that a posteriori the number of clusters
is highly concentrated about 80, the true number of clusters Ktrue in Atrue.

5.2 Binary Case

For presence–absence data, we consider a single covariance type (imposed on the latent

scale), of the form Σ = (ΨΨ′)−1
, where Ψ is an S × S matrix generated from inde-

pendent standard normal random variables, which yields inverse Wishart draws. In this
simulation, we considered only S = 100 species on 1000 different plots in order to be
able to compare our results with those from the estimation procedure that considers de-
pendence among species but has no dimension reduction. The mean structure is defined
by an intercept and a single predictor. Thus, the true model contains 100× 2 regression
coefficients and

(
100
2

)
= 4950 correlation parameters.

Our dimension reduction approach requires a choice of r, the number of columns to
be used for the A matrix. Noting the similarity of this formulation with factor analysis
models, some guidelines regarding this choice can be extracted from this extensive body
of literature. A pervasive notion in this literature is that the relevant number of factors
(i.e., columns in A) generally ranges from small to moderate (e.g., see Lopes and West,
2004).
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In this spirit, letting K denote the number of unique cluster labels, then rank(A) =
min {r,K}. Given that A must be of full column rank for the model to be well identified
(Geweke and Singleton, 1980), then K (or an approximation) can act as an upper bound
on r. The number of unique clusters is unknown, but in our experience, for a given r,
K can be assessed relatively fast by monitoring the number of unique clusters drawn
throughout the MCMC algorithm. If this value appears too small relative to r, then
r must be reduced. Another indication that r is inadequately large is the appearance
of multimodalities in the posterior densities of the elements in A (Aguilar and West,
2010).

A straightforward approach for selecting r is to perform sensitivity analysis varying
r, and selecting the value that optimizes some criterion. Here, for the dimension reduced
approach we fit models with r = 3, 5, 10, 15, 30, 50, 75, 100. To identify a suitable number
of columns we use the Tjur R2 coefficient of determination (Tjur, 2009), which compares
the estimated probabilities of presence between the observed ones and the observed

zeros. For species j, this quantity is given by TRj = (ˆ̄π
(1)
j − ˆ̄π

(0)
j ), where ˆ̄π

(1)
j and

ˆ̄π
(0)
j are the average probabilities of presence for the observed ones and zeros of the

jth species, respectively. The larger the TRj , the better the discrimination. An overall

criterion is to obtain the average over all species given by TR = 1
S

∑S
j=1 TRj , which we

employ in this section. We would hope to find a peak in TR as we increase r. If there is
little variation in TR over r, then we need not be concerned about the choice of r and
simply choose a suitably parsimonious model.

Although the analysis that follows is conducted for a single dataset, to observe the
behavior of the Tjur R2 for the proposed simulation scenario, we generate 50 indepen-
dent datasets, and for each of them calculate the posterior mean of TR for the different
values of r (displayed in Figure 4). Additionally, for these 50 datasets we extracted the
posterior mean for K to determine if identifiability issues might arise.

Here we observe that the model fit is similar for the different values of r, with
r = 3 being slightly better than the rest. Also, for values r ≥ 50 there might be model
identifiability problems given that K ≤ r.

We focus on a single dataset chosen at random from the 50 that were generated, and
use the results from the model with r = 3, given the behavior observed in Figure 4. For
comparison, we also perform the estimation using (i) the joint model without reducing
the dimensionality fitted with the gjam R package (Clark et al., 2016), and (ii) a model
where the species are fitted independently and the results are stacked together.

In Figure 5, we compare the parameter estimates obtained from the joint model
without reduction (left column), the joint model with dimension reduction (middle col-
umn), and the independence model (right column). The top row in Figure 5 compares
the ability of the three methods to recover the correlation parameters by contrasting
their estimates to the true values (using the means and 95% credible intervals). In this
case, the joint method without dimension reduction attempts to estimate all of the(
100
2

)
= 4950 parameters in the correlation matrix; however, it appears to have some

difficulties recovering the parameters for the sample size considered. Conversely, the
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Figure 4: (a) Goodness-of-fit measured by the posterior mean of Tjur R2 for 50
simulated datasets with binary response for 100 species in 1000 plots having r =
3, 5, 10, 15, 30, 50, 75, 100. (b) Posterior mean for the unique number of clusters (K)
drawn for each of 50 datasets for the value of r considered.

Figure 5: Binary simulation results with 100 species at 1000 plots. Comparison between
joint model without reduction (top row), joint model with dimension reduction (middle
row), and independent model (bottom row).
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Figure 6: Binary simulation comparison of the predicted conditional probabilities of
presence for 10 species given the observed presence status of 90 and 60 species, respec-
tively.

dimension reduction approach, by only requiring 301 parameters, identifies an under-
lying lower dimensional structure, which, in this scenario, yields outstanding recovery
of the correlation matrix. The bottom row in the figure compares the fitted regression
coefficients to the true ones (means and 95% credible intervals). Here we observe that
all three approaches do a reasonably good job, with slightly more accuracy using either
the dimension reduced or the independence approach.

In the simulation exercise considered, our method, in addition to fairing well for esti-
mation, outperforms the joint unreduced and independent models in terms of prediction.
To assess out-of-sample conditional prediction, for each of 10 species, we obtained the
probability of presence at sites where the species was in fact present, and the probability
of presence when the species was in fact absent. The conditioning is on the presence–
absence status of 90 (top row) and 60 (bottom row) species (Figure 6), respectively, for
each of the three approaches considered. The 10 species being predicted are sorted from
most to least prevalent, thus the decreasing trend observed in the probabilities.

For the simulated dataset considered, the joint approach without reduction struggles
when attempting to estimate this many parameters for the number of samples available.
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For some species, it clearly separates the probabilities of presence at occupied and
unoccupied plots, but for other species the distributions of these probabilities appear
to be practically indistinguishable. This behavior seems to be affected by the number of
species on which the conditioning takes place for the joint unreduced model (compare
the top and bottom plots on the left column in Figure 6). With so many parameters and
the available sample size, both estimation and prediction appear to breakdown without
doing reduction. On the other hand, while prediction using the independence model
roughly captures the trend dictated by prevalence for each species, the probabilities of
presence at occupied and unoccupied plots (unaffected by conditioning when assuming
independence) barely separate from each other. In contrast, our reduced dimension
approach assigns visibly higher probabilities to plot/species combinations where the
species was in fact present than to those plot/species combinations where the species
was absent.

6 Forest Inventory Data Analysis

We apply our methodology to hectare scale plots obtained by aggregating FIA data
in covariate space, since, as clarified in Section 2, FIA plots are too small to allow for
meaningful fitting or interpretation. The model yields predictions in covariate space and
enables the analysis of species response to changes in the environment. The aggregated
data consists of presence–absence data in covariate space for 112 species on 1200 plots.
Of these, 1100 are used in model fitting the model, whereas the remaining 100 were
held out for out-of-sample prediction and subsequent validation. Also, we only consider
temperature and deficit as predictors. In this analysis, we compared the results obtained
for the joint dimension reduced approach against the independence model. We focus on
comparing (i) goodness of fit, and (ii) predicted species richness.

To assess model goodness-of-fit and compare the independent approach against re-
duced dimension joint models for r = 3, 5, 10, 15, 30, 50, we obtained the median and
95% credible sets for TR (see Figure 7), as defined in Section 5.2. As expected, the joint
approach with dimension reduction yields a remarkably better fit than the independent
model for all values of r considered. For the choices of r considered, the median TR
values were all similar. We present the analysis for r = 5 since this resulted in the
largest median TR. Before moving forward with the analysis, we look at the posterior
distribution of the number of unique clusters, K, to establish if the model is well de-
termined. With r = 5, the 95% credible interval for K lies between 42 and 51 with
a median value of 47, indicating that we should not run into indeterminacy issues by
fixing the A matrix to have r = 5 columns.

Tjur’s R2 can additionally be used to assess out-of-sample predictive performance
making use of the dependence between species. In particular, by considering a hold-
out sample of plots (in covariate space in this application), one may obtain at each
holdout plot the posterior predictive conditional expectations for species j given the
presence/absence status of species l. With these, we may calculate the conditional Tjur
R2, which we denote by TRj|Yl=0 and TRj|Yl=1, if we condition on species l being absent
or present, respectively. Being able to condition in this fashion can enhance the quality
of the predictions when species j and l show strong dependence.
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Figure 7: Goodness of fit measured by the posterior median and 95% credible sets of the
Tjur’s R2 coefficient averaged over all species (TR), comparing the independent model
to the dimension reduced joint models with r = 3, 5, 10, 15, 30 and 50.

NYSY TRNYSY|YFAGR

0 1 Joint (r = 5) Independent

F
A
G
R 0 n00 = 22 n01 = 12 0.7515 0.5633

1 n10 = 25 n11 = 41 0.5085 0.1945

Table 1: Tjur R for NYSY conditional on FAGR in a holdout sample at 100 plots.

We illustrate this alternative use for Tjur’s R2 at 100 holdout plots by conditioning
on the presence–absence state of Fagus grandifolia (FAGR) – present in 66 plots and
absent in the remaining 34 – and obtain the posterior probability of presence for Nyssa
sylvatica (NYSY) at each pseudo-plot. Using the probabilities of presence, we calculate
TRNYSY|YFAGR=1 and TRNYSY|YFAGR=0 under both the joint model with r = 5 and
the stacked independent models (Table 1). The posterior 95% credible interval for the
correlation parameter (on the latent scale) between FAGR and NYSY lies between
0.2957 and 0.4163, which is relatively high. As such, we expect that conditioning on
the presence–absence state of FAGR should improve the quality of the predictions for
NYSY. As observed in Table 1, the improved predicted ability of the joint model is
evident, when FAGR is either absent or present.

Using the selected model, among the 6,216 correlation parameters in AA′ +σ2
ε I, we

found that 72.4% of the 95% credible intervals excluded 0 and were positive, 12% ex-
cluded 0 and were negative. For the 95% credible intervals of the 112 temperature
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Figure 8: Posterior distribution for the mean difference between the true and predicted
species richness in 100 out-of-sample plots.

coefficients, 69% were positive and excluded 0 while 26.8% were negative and ex-
cluded 0. For deficit, 25.9% of the credible sets excluded 0 and were positive while
40.2% did not contain 0 and were negative. The signs resulting for the regression
coefficients of both predictors are consistent with the environment features the dif-
ferent species are best suited for (see Figure 4 in Supplementary Appendix C). For
instance, the temperature coefficient for Quercus laurifolia (QULA3) is large and pos-
itive, which is consistent with the higher temperatures found throughout its natural
range, i.e., southeastern and south-central US. Conversely, Betula papyrifera (BEPA)
is found throughout northern continental US where the temperatures are on average
lower and its coefficient is large and negative (see Figure 4). This predictive approach
can be applied to scenarios for climate change as a joint response across all dominant
species.

To validate the claim made in the literature that predicting richness from individual
models overestimates the number of species (see, for example, Guisan and Rahbek, 2011;
Clark et al., 2016; Calabrese et al., 2014), we considered a hold out sample of 100 plots.
At each of these plots we calculated the expected richness using the MCMC parameter
draws.

With the expected richness values estimated at each plot, we calculated the dif-
ference between the true richness and the predicted one, and with these derived the
posterior distribution of the average differences across all plots (Figure 8). This anal-
ysis corroborates the claim made in Guisan and Rahbek (2011). When modeling the
species distributions jointly, the mean differences between the true and predicted rich-
ness cluster more tightly about 0 than when using the independence model. The latter
specification concentrates more mass on large negative values, confirming that it tends
to overpredict richness.
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7 Summary and Future Work

We have extended recent activity in joint species distribution modeling. In particular, we
have noted that, with many species, perhaps hundreds or thousands, fitting explicit joint
species distribution models over several plots will become computationally infeasible.
We have offered a first stage latent multivariate normal modeling approach, incorporat-
ing a dimension reduction strategy to capture interspecies residual dependence, using
Dirichlet processes in a novel way that scales linearly in the number of species. We have
shown that this approximation enables estimation of dependence structure, prediction,
and clustering of species. The versatility of the framework developed, and the ease with
which it can be incorporated into strategies with other types of responses, make it a
powerful tool to tackle novel problems. Among others, this approach can be used to ad-
dress the challenges of microbiome data analysis (where presence–absence of hundreds
or thousands of OTUs – Operational Taxonomic Units – is jointly observed), or the
massive species distribution datasets currently being collected within the continental
scale National Ecological Observatory Network (NEON) project.

Our approach can be applied to other data settings, particularly abundance which
can be measured in various ways, e.g., counts, ordinal abundances, proportions of cover-
age, biomass, basal area, etc., each requiring a different first stage transformation from
the latent multivariate normal. To make the methodology readily available for practi-
tioners, it has been fully implemented in the gjam2.0 package (Clark et al., 2016) in R
for binary, count, and non-negative continuous responses.

At fine spatial scales, accounting for spatial dependence may be appropriate.
A straightforward alternative could be to build into the mean component some function
of the spatial coordinates – in the simplest case, by including the linear terms and in-
teraction between the coordinates. However, other more sophisticated strategies, where
the dependence is modeled directly, merit exploration. In these we will have both within
plot and between plot dependence arising across many species and many plots. Lastly,
utilizing climate scenarios, we can explore dynamic models to attempt to forecast the
evolution of joint species distributions in response to changing climate.

Supplementary Material

Appendices: Joint Species distribution modeling: dimension reduction using Dirichlet
processes (DOI: 10.1214/16-BA1031SUPP; .pdf).

References
Aguilar, O. and West, M. (2010). “Bayesian Dynamic Factor Models and Port-
folio Allocation.” Journal of Business & Economic Statistics, 18(3): 338–357.
papers2://publication/doi/10.1080/07350015.2000.10524875. 956

Arbel, J., King, C. K., Raymond, B., Winsley, T., and Mengersen, K. L. (2015). “Appli-
cation of a Bayesian nonparametric model to derive toxicity estimates based on the

http://dx.doi.org/10.1214/16-BA1031SUPP
papers2://publication/doi/10.1080/07350015.2000.10524875


D. Taylor-Rodriguez, K. Kaufeld, E. M. Schliep, J. S. Clark, and A. E. Gelfand 963

response of Antarctic microbial communities to fuel-contaminated soil.” Ecology and
Evolution, 5(13): 2633–2645. 942

Artemiou, A. and Li, B. (2009). “On principal components and regression: A statistical
explanation of a natural phenomenon.” Statistica Sinica, 19(4): 1557. MR2589197.
941

Artemiou, A. and Li, B. (2013). “Predictive power of principal components for single-
index model and sufficient dimension reduction.” Journal of Multivariate Analy-
sis, 119: 176–184. MR3061422. doi: http://dx.doi.org/10.1016/j.jmva.2013.04.
015. 941

Austin, M. and Meyers, J. (1996). “Current approaches to modelling the environmental
niche of eucalypts: implication for management of forest biodiversity.” Forest Ecology
and Management , 85(1): 95–106. 940

Bechtold, W. A. and Patterson, P. L. (2005). “The enhanced forest inventory and anal-
ysis program: national sampling design and estimation procedures.” Technical report,
US Department of Agriculture Forest Service, Southern Research Station Asheville,
North Carolina. 943

Bhattacharya, A. and Dunson, D. B. (2011). “Sparse Bayesian infinite factor mod-
els.” Biometrika, 98(2): 291–306. MR2806429. doi: http://dx.doi.org/10.1093/
biomet/asr013. 942, 947

Blei, D. M., Griffiths, T. L., and Jordan, M. I. (2010). “The nested Chinese restaurant
process and Bayesian nonparametric inference of topic hierarchies.” Journal of the
ACM (JACM), 57(2): 7. MR2606082. doi: http://dx.doi.org/10.1145/1667053.
1667056. 942

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). “Latent Dirichlet allocation.” The
Journal of Machine Learning Research, 3: 993–1022. 942

Botkin, D. B., Saxe, H., Araujo, M. B., Betts, R., Bradshaw, R. H., Cedhagen, T.,
Chesson, P., Dawson, T. P., Etterson, J. R., Faith, D. P., et al. (2007). “Forecasting
the effects of global warming on biodiversity.” Bioscience, 57(3): 227–236. 940

Bush, C. A. and MacEachern, S. N. (1996). “A semiparametric Bayesian model for
randomised block designs.” Biometrika, 83(2): 275–285. 945

Calabrese, J. M., Certain, G., Kraan, C., and Dormann, C. F. (2014). “Stacking species
distribution models and adjusting bias by linking them to macroecological models.”
Global Ecology and Biogeography , 23(1): 99–112. 940, 949, 961

Cameron, A. C. and Trivedi, P. K. (2005).Microeconometrics: methods and applications.
Cambridge University Press. 941

Chakraborty, A., Gelfand, A. E., Wilson, A. M., Latimer, A. M., and Silander, J. A.
(2011). “Point pattern modelling for degraded presence-only data over large regions.”
Journal of the Royal Statistical Society: Series C (Applied Statistics), 60(5): 757–776.
MR2844854. doi: http://dx.doi.org/10.1111/j.1467-9876.2011.00769.x. 940

http://www.ams.org/mathscinet-getitem?mr=2589197
http://www.ams.org/mathscinet-getitem?mr=3061422
http://dx.doi.org/10.1016/j.jmva.2013.04.015
http://dx.doi.org/10.1016/j.jmva.2013.04.015
http://www.ams.org/mathscinet-getitem?mr=2806429
http://dx.doi.org/10.1093/biomet/asr013
http://dx.doi.org/10.1093/biomet/asr013
http://www.ams.org/mathscinet-getitem?mr=2606082
http://dx.doi.org/10.1145/1667053.1667056
http://dx.doi.org/10.1145/1667053.1667056
http://www.ams.org/mathscinet-getitem?mr=2844854
http://dx.doi.org/10.1111/j.1467-9876.2011.00769.x


964 Joint Species Distribution Modeling with Dirichlet Processes

Chib, S. (1998). “Analysis of multivariate probit models.” Biometrika, 85(2): 347–361.
http://biomet.oupjournals.org/cgi/doi/10.1093/biomet/85.2.347 947

Chung, Y. and Dunson, D. B. (2011). “The local Dirichlet process.” Annals of the Insti-
tute of Statistical Mathematics , 63(1): 59–80. MR2748934. doi: http://dx.doi.org/
10.1007/s10463-008-0218-9. 942

Clark, J. S., Bell, D. M., Hersh, M. H., Kwit, M. C., Moran, E., Salk, C., Stine, A.,
Valle, D., and Zhu, K. (2011). “Individual-scale variation, species-scale differences:
inference needed to understand diversity.” Ecology Letters, 14(12): 1273–1287. 940

Clark, J. S., Gelfand, A. E., Woodall, C. W., and Zhu, K. (2014). “More than the sum of
the parts: forest climate response from joint species distribution models.” Ecological
Applications, 24(5): 990–999. 940, 941

Clark, J. S., Nemergut, D., Seyednasrollah, B., Turner, P., and Zhange, S. (2016).
“Median-zero, multivariate, multifarious data: generalized joint attribute modeling
for biodiversity analysis.” Ecological Monographs, in press. 940, 941, 947, 949, 956,
961, 962

Dormann, C. F., Schymanski, S. J., Cabral, J., Chuine, I., Graham, C., Hartig, F.,
Kearney, M., Morin, X., Römermann, C., Schröder, B., et al. (2012). “Correlation
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