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A Bayes Interpretation of Stacking
for M-Complete and M-Open Settings

Tri Le∗,‡ and Bertrand Clarke†

Abstract. In M-open problems where no true model can be conceptualized, it
is common to back off from modeling and merely seek good prediction. Even in
M-complete problems, taking a predictive approach can be very useful. Stacking
is a model averaging procedure that gives a composite predictor by combining
individual predictors from a list of models using weights that optimize a cross-
validation criterion. We show that the stacking weights also asymptotically mini-
mize a posterior expected loss. Hence we formally provide a Bayesian justification
for cross-validation. Often the weights are constrained to be positive and sum to
one. For greater generality, we omit the positivity constraint and relax the ‘sum
to one’ constraint.

A key question is ‘What predictors should be in the average?’ We first verify
that the stacking error depends only on the span of the models. Then we propose
using bootstrap samples from the data to generate empirical basis elements that
can be used to form models. We use this in two computed examples to give stacking
predictors that are (i) data driven, (ii) optimal with respect to the number of
component predictors, and (iii) optimal with respect to the weight each predictor
gets.

Keywords: stacking, cross-validation, Bayes action, prediction, problem classes,
optimization constrains.

1 Introduction

Stacking is a model averaging procedure for generating predictions first introduced by
Wolpert (1992). The basic idea is that if J candidate signal plus noise models of the
form Y = fj(x)+ ε for j = 1, . . . , J are available then they can be usefully combined to
give the predictor

Ŷ (x) =

J∑
j=1

ŵj f̂j(x),

where f̂j is an estimate of fj . Usually, fj(x) = fj(x, βj) so f̂j(x) = fj(x, β̂j) where β̂j

is an estimate of βj . The weights ŵ = (ŵ1, . . . , ŵJ ) satisfy

ŵ = argmin
w

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj f̂j,−i(xi)

⎞
⎠

2
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where f̂j,−i is the estimate of fj using the n − 1 of the n data points by dropping the
i-th one, i.e., (x1, y1), . . . , (xi−1, yi−1), (xi+1, yi+1), . . . , (xn, yn). The Yi’s are assumed
independent and the xi’s are deterministic design points. Often the wj ’s are assumed
to be non-negative and sum to one. The properties of stacking as a predictor have been
explored in numerous contexts such as regression Breiman (1996), Clarke (2003), Sill
et al. (2009), classification and distance learning Ting and Witten (1999), Ozay and
Vural (2012), density estimation Smyth and Wolpert (1999), and estimating bagging’s
error rate Rokach (2010), Wolpert and Macready (1999).

These earlier contributions treated stacking as a frequentist procedure. However,
more recently, Clyde and Iversen (2013) brought stacking into the Bayesian paradigm.
They recalled the tripartite partition of statistical problems into three classes namely
M-closed, M-complete, M-open, see Bernardo and Smith (2000), and suggested that
outside the M-closed setting the posterior risk could be approximated by a cross-
validation (CV) error (for the same loss function). Hence the action minimizing the
posterior risk could be approximated by the stacking predictor that minimizes (1).
More precisely, given models Mj for j = 1, . . . , J , a loss function �, a vector of responses
Y = y = (y1, . . . , yn), and an element a(y) in the action appropriate for a collection of
models, say M, Clyde and Iversen (2013) used

∫
�(yn+1, a(y))p(yn+1 | y)dyn+1 ≈ 1

n

n∑
i=1

�(yi, a(y−i)) (2)

in an M-open context, where yn+1 represents a future outcome at a future design
point xn+1, y−i is the data vector y with the i-th entry deleted, and p(· | y) is the
predictive distribution for Yn+1. Here and elsewhere, the design points x1, . . . , xn+1 are
suppressed in the notation unless consideration of them is essential for a step in a proof.
Hence, Clyde and Iversen (2013) observed that minimizing the left hand side of (2) over
a(y) and the right hand side over a(y−i) leads to two actions that are asymptotically
identical. Otherwise put, the stacking predictor is the asymptotic Bayes action for M-
complete problems. It is not the Bayes action in the M-open case because the mode
of convergence is undefined. Nevertheless, Clyde and Iversen (2013) used (2) in an M-
open context to good effect. It should be noted that (2) seems to have been initially
conjectured in Bernardo and Smith (2000) and a non-cross-validatory version of (2) for
individual models Mj , namely

EYn+1|Y ,Mj
�(Yn+1, aMj (Y ))− 1

n

n∑
i=1

�(Yi, aMj (Y ))
P→ 0

is established in Walker and Gutierrez-Pena (1999) where aMj (Y ) is in the action space
associated with Mj .

Aside from the applications of these results to the stacking predictor, the results –
if proved formally as below – establish that leave-one-out CV is asymptotically a Bayes
optimal procedure under some conditions. It can be verified that the proofs below extend
to leave-k-out CV as well. That is, our results provide a Bayesian justification for using
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CV as a way to choose a model from which to generate predictions outside of M-closed
problems.

For the sake of completeness, we recall that Bernardo and Smith (2000) define M-
closed problems as those for which a true model can be identified and written down but
is one amongst finitely many models from which an analyst has to choose. By contrast,
M-complete problems are those in which a true model (sometimes called a belief model)
exists but is inaccessible in the sense that even though it can be conceptualized it cannot
be written down or at least cannot be used directly. Effectively this means that other
surrogate models must be identified and used for inferential purposes. M-open problems
according to Bernardo and Smith (2000) are those problems where a true model exists
but cannot be specified at all.

Here however, we make a stronger distinction between M-complete and M-open
problems by taking the view that in the M-open case no true model can even be
conceptualized. Hence it is inappropriate to assume the existence of a true model. We
prefer this stronger distinction because it ensures that M-complete and M-open are
disjoint classes. In both M-complete and M-open classes the status of the prior is
unclear because none of the models under consideration are taken is true. However, a
weighting function ostensibly indistinguishable from a prior can be regarded as a sort
of pseudo-belief in the sense that it is the weight one would pre-experimentally assign
to the model if it were an action for predicting the outcomes of a data generator. More
generally, the weights can only be interpreted as an index for a class of actions, provided
the weighted combination of predictors from the J models is regarded as an action.

The three main contributions of this paper are (i) a formal proof that (2) holds
for several loss functions in M-complete settings, (ii) explicit formulae for the stacking
weights for various choices of constraints on the wj ’s, and (iii) a way to choose optimal
basis expansions to stack so as to clarify the suggestion in Breiman (1996) that the
models be chosen as different from each other as possible. In our examples, we choose
two data generators, one M-complete and one M-open, to see how stacking performs.

The structure of this paper is as follows. In Section 2 we present the formal proof of
using CV to approximate posterior risk and hence derive stacking as an approximation
to the Bayes action. In Section 3, we use the approximation to the posterior expected
risk to derive stacking weights under several sets of constraints on the weights, observing
that relaxing the non-negativity and the sum to one constraints improves prediction. In
Section 4, we show how to get optimal data-driven basis expansions to stack. These bases
should be different from each other in the sense of being independent; orthogonality
does not seem to be helpful. In Section 5, we give two real data examples where the
M-complete or M-open assumption is reasonable. We use them to show the effect of the
sum of the coefficients and to suggest desirable properties of basis element generation.
Some concluding remarks are made in Section 6.

2 Approximating posterior risk

Let M = {M1, . . . ,MJ} be a class of models and y = (y1, · · · , yn) be the vector
of outcomes of Y = (Y1, . . . , Yn), where the Yi’s are independently distributed with
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probability density function (pdf) pj(y | θj) for j = 1 . . . , J equipped with a prior
wj(θj). Consider a loss function � : R × A → R where A is the action space of a
predictive decision problem. In this setting �(yn+1, a(y)) is the cost of taking action
a(y), where yn+1 is a future observation. Although the language of utility functions is
more common in our context, we prefer the language of loss functions because it is more
suggestive of decision theory. The posterior risk under model j is∫

�(yn+1, a(y))pj(yn+1 | y)dyn+1, (3)

where pj(· | y) is the predictive density from model j. Given a set of convex weights
π(j) for use over the models, the overall posterior risk is∫

�(yn+1, a(y))p(yn+1 | y)dyn+1, (4)

where p(yn+1 | y) is the predictive density marginalizing out over j as well as the θj ’s.

The relationship between the notation in (1) and the above is that if Y = fj(x) + ε
we can write fj in a generic parametric form fj(x) = fj(x, βj) so that Y ∼ pj(y | θj)
means Y ∼ pj(y | x, θj) where θj is the concatenation of βj and the parameters in the
distribution of ε. We also assume without further comment that (i) the explanatory
variable x and the parameter θj are of fixed dimension, and, for simplicity of notation,
(ii) (x, θj) ∈ K1 ×K2 where K1 is a compact set in the space of explanatory variables
and K2 is a compact set. Strictly speaking, K2 depends on j, but we assume that a
single K2 can be found and used for all j. This latter regularity condition can be relaxed
at the cost of more notation. As a separate issue, because the Bayes predictors require
integration over θ, the compactness of K2 is only needed for the frequentist results.

In the results below we establish six versions of (2) using three different loss functions
(squared error, absolute error, and logarithmic loss – also sometimes called a logarithmic
scoring rule) and two different classes of predictor (Bayes and plug-in). Bayes predictors

are of the form Ej(Yn+1 | Y ) and plug-in predictors are of the form Eθ̂j
Yn+1 where θ̂j

is an estimator of the true value of θj using Y . To an extent the proofs of these results
are similar: All of them use multiple steps of the form ‘add and subtract the right extra
terms, apply the triangle inequality, and bound the result term-by-term’, and conclude
by invoking a uniform integrability condition. One difference is that the results for the
Bayes predictors invoke a martingale convergence theorem whereas plug-in predictors
add an extra step based on the consistency of the θ̂j ’s.

We begin by giving conditions under which we can state and prove (2) for squared
error and Bayes predictors; this provides formal justification for the methodology in
Clyde and Iversen (2013) in M-complete problems.

Theorem 2.1. Let �(z, a) = (z − a)2 denote squared error loss. Assume

(i) For any j = 1, . . . , J and any pre-assigned ε > 0,

Ej(Y
4+ε) =

∫ ∫
y4+εpj(y | x, θj)wj(θj)dθjdy < ∞,
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and Ej(Y
4+ε) is continuous for x ∈ K1,

(ii) For each j = 1, . . . , J , the conditional densities pj(y | x, θj) are equicontinuous for
x ∈ K1 for each y and θj ∈ K2, and,

(iii) For each j = 1, . . . , J , the Bayes predictor

Ŷj = Ej(Yn+1 | Y ) =

∫ ∫
yn+1pj(yn+1 | xn+1, θj)wj(θj | Y )dθjdyn+1

is used to generate predictions at the n+ 1 step.

Then, for any action a(Y ) =
∑J

j=1 wj Ŷj, wj ∈ R for all j, we have

∫
�(yn+1, a(Y ))p(yn+1 | Y )dyn+1 −

1

n

n∑
i=1

�(Yi, a(Y−i))
L2

→ 0 as n → ∞.

Proof. See Supplemental Appendix A (Le and Clarke, 2016).

The result in Theorem 2.1 remains true for squared error loss if we use plug-in
predictors of the form

Ŷj = Eθ̂j(Y )(Yn+1) =

∫
yn+1pθ̂j(Y )(yn+1)dyn+1,

where θ̂j is any consistent estimator for θj in Mj rather than Bayes predictors as in
Assumption (iii). This assertion is in the following.

Theorem 2.2. Let �(z, a) = (z − a)2 denote squared error loss. Assume

(i) For any j = 1, . . . , J and any pre-assigned ε > 0,

Ej(Y
4+ε) =

∫ ∫
y4+εpj(y | x, θj)wj(θj)dθjdy < ∞,

and Ej(Y
4+ε) is continuous for x ∈ K1,

(ii) For each j = 1, . . . , J , the conditional densities pj(y | x, θj) are equicontinuous for
x ∈ K1 for each y and θj ∈ K2, and,

(iii) For each j = 1, . . . , J , let the plug-in predictor

Ŷj = Eθ̂j(Y )(Yn+1) =

∫
yn+1pθ̂j(Y )(yn+1)dyn+1

be used to generate predictions at the n + 1 step, where θ̂j(Y ) is a consistent
estimator for θj, and

(iv) For each j = 1, . . . , J , Eθj (Yn+1) and Eθj (Y
4
n+1) are continuous for θj ∈ Θj, where

Θj ⊂ K2 is a compact parameter space for Mj.
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Then, for any action a(Y ) =
∑J

j=1 wj Ŷj, wj ∈ R for all j, we have

∫
�(yn+1, a(Y ))p(yn+1 | Y )dyn+1 −

1

n

n∑
i=1

�(Yi, a(Y−i))
L2

→ 0 as n → ∞.

Proof. See Supplemental Appendix B (Le and Clarke, 2016).

Unsurprisingly, the conclusions of Theorems 2.1 and 2.2 continue to hold if the
squared error is replaced by the absolute error �(z, a) = |z− a|. We state the Bayes and
plug-in versions for absolute error in the following.

Theorem 2.3. Let �(z, a) = |z − a| denote absolute error loss. Assume

(i) For any j = 1, . . . , J and any pre-assigned ε > 0,

Ej(Y
2+ε) =

∫ ∫
y2+εpj(y | x, θj)wj(θj)dθjdy < ∞,

and Ej(Y
2+ε) is continuous for x ∈ K1,

(ii) For each j = 1, . . . , J , the conditional densities pj(y | x, θj) are equicontinuous for
x ∈ K1 for each y and θj ∈ K2, and,

(iii) For each j = 1, . . . , J , let either the Bayes or the plug-in predictor from Theo-
rem 2.1 or Theorem 2.2, respectively, be used to generate predictions at the n+ 1
time step.

(iv) If plug-in predictors are chosen in Assumption (iii), then assume in addition that
for each j = 1, . . . , J , Eθj (Yn+1) and Eθj (Y

2
n+1) are continuous as functions of

θj ∈ Θj , where Θj ⊂ K2 is a compact parameter space for Mj .

Then, for any action a(Y ) =
∑J

j=1 wj Ŷj, wj ∈ R for all j, we have

∫
�(yn+1, a(Y ))p(yn+1 | Y )dyn+1 −

1

n

n∑
i=1

�(Yi, a(Y−i))
L2

→ 0 as n → ∞.

Proof. See Supplemental Appendix B (Le and Clarke, 2016).

The log-loss is qualitatively different from squared error or absolute error because
log-loss can be positive or negative. Nevertheless, we extend our results to the log-loss to
verify that CV continues to remain an asymptotically Bayes procedure. Now, an action
a is of the form

a(Yn+1 | Y ) =

J∑
j=1

wjpj(Yn+1 | Y ), (5)
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and the corresponding log-loss is

�(Yn+1, a(Yn+1 | Y )) = − log

⎡
⎣ J∑
j=1

wjpj(Yn+1 | Y )

⎤
⎦ . (6)

As shown in our next result, CV approximates the posterior expected loss of the
Bayes action of the form (5) or the plug-in action of the form a(Yn+1 | Y ) =∑J

j=1 wjpθ̂j(Y )(Yn+1) where θ̂j(Y ) is a consistent estimator of θj ∈ K2 in Mj .

Theorem 2.4. Let �(Yn+1, a(Y )) = − log[
∑J

j=1 wjpj(Yn+1 | Y )] denote log-loss. As-
sume

(i) For each j = 1, . . . , J , there is a function Bj(·) so that

sup
Y

| log pj(Yn+1 | Y )| ≤ Bj(Yn+1) < ∞,

Bj(·) is independent of x1, x2, . . ., and

E[g(Yn+1)] < ∞,

where

g(Yn+1) = max

⎧⎪⎨
⎪⎩
⎛
⎝log

J∑
j=1

wje
−Bj(Yn+1)

⎞
⎠

4

,

⎛
⎝log

J∑
j=1

wje
Bj(Yn+1)

⎞
⎠

4
⎫⎪⎬
⎪⎭ .

(ii) For each j = 1, . . . , J , the conditional densities pj(y | x, θj) are equicontinuous in
x for each y and θj ∈ Θj ⊂ K2, and the predictive densities pj(y | Y ) within the
j-th model are uniformly equicontinuous in y.

(iii) For each j = 1, . . . , J , let the Bayes action (5) be used to generate predictions at
the n+ 1 time step.

Then, we have

∫
�(yn+1, a(Y ))p(yn+1 | Y )dyn+1 −

1

n

n∑
i=1

�(Yi, a(Y−i))
L2

→ 0 as n → ∞.

If pθ̂j(Y )(yn+1) where θ̂j(Y ) is a consistent estimator of θj is used instead of pj(yn+1 |
Y ), the result still holds.

Proof. See Supplemental Appendix B (Le and Clarke, 2016).
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3 Derivation of stacking weights

Suppose we have J predictors Ŷ1, · · · , ŶJ from distinct models. Then we might seek
weights ŵj , using the training data, so as to form a model average prediction at xnew

of the form

ŷ(xnew) =

J∑
j=1

ŵj ŷj(xnew). (7)

From a Bayesian point of view, one should find the action that minimizes the posterior
risk (or maximizes the posterior expected utility) given the data y. Theorem 2.1 shows
that the posterior risk is asymptotically equivalent to

1

n

n∑
i=1

�(yi, a(y−i)) =
1

n

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i(xi)

⎞
⎠

2

,

when � is squared error loss. Ignoring the (1/n) and minimizing over the ŵj ’s gives the
same expression as (1). That is, the stacking weights are asymptotically Bayes optimal –
the precise form of optimality given by the constraints imposed on the wj ’s – and can be
used in (7) to give the stacking predictor. This formalizes the heuristic approximations
used in Clyde and Iversen (2013).

Although the wj ’s are often assumed to be positive and sum to one e.g., Clyde
and Iversen (2013), Breiman (1996) only assumed the weights were positive and some
remarks in Clyde and Iversen (2013) consider the case that the weights only satisfy
a ‘sum to one’ constraint thereby permitting negative weights. We can see the effect
of the sum to one constraint in a simple example. Following Clyde (2012), consider
the two models M1 : Y = x1β1 + ε and M2 : Y = x2β2 + ε where the explanatory
variables are orthogonal i.e., x′

1x2 = 0. As shown in Supplemental Appendix C (Le
and Clarke, 2016), if we stack these two models with the sum to one constraint we get

ŵ1 = ŵ2 = 1/2. That is, predictions are generated from YW = (1/2)x1β̂1 + (1/2)x2β̂2

where the β̂k are found from model Mk for k = 1, 2. On the other hand, if we stack
M1 and M2 without the sum to one constraint but with, say, a sum to two constraint
we get YWO = x1β̂1 + x2β̂2 + ε, i.e., ŵ1 = ŵ2 = 1. Obviously, YWO = 2YW so YW

is half the size it should be. This extends to three or more models and shows that
the sum to one constraint can be too restrictive. In addition, permitting wj ’s to be
negative increases the range of the stacking predictors and can only result in better
predictions. Consequently in most of our results below we do not impose either the sum
to one constraint or the non-negativity constraint. Indeed, removing the non-negativity
constraint and relaxing the sum-to-one constraint to a sum-to-m constraint give the
following.

Theorem 3.1. The weights w1, . . . , wJ achieving

min
w

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i(xi)

⎞
⎠

2

subject to

J∑
j=1

wj = m



T. Le and B. Clarke 815

are of the form

ŵ ∝ U−11J ,

where

U = (ulj)J×J ,

ulj =
n∑

i=1

( yi
m

− ŷj,−i

)
ŷl,−i −

n∑
i=1

(yi − ŷj,−i) yi,

1J = (1, · · · , 1)′.

(8)

Proof. This is a standard Lagrange multipliers problem. Write the Lagrangian as

L = −
n∑

i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i

⎞
⎠

2

− λ0(

J∑
j=1

wj −m).

Then ŵ is the solution of the following system,

∂L

∂wl
= 2

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i

⎞
⎠ ŷl,−i − λ0 = 0 for l = 1, · · · , J, (9)

∂L

∂λ0
=

J∑
j=1

wj −m = 0. (10)

From (9) and (10), we have

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i

⎞
⎠ ŷl,−i =

λ0

2

⇒
n∑

i=1

yiŷj,−i −
J∑

j=1

wj

n∑
i=1

ŷj,−iŷl,−i =
λ0

2

⇒ 1

m

n∑
i=1

yiŷj,−i

J∑
j=1

wj −
J∑

j=1

wj

n∑
i=1

ŷj,−iŷl,−i −
J∑

j=1

n∑
i=1

(yi − ŷj,−i)yiwj

=
λ0

2
−

J∑
j=1

n∑
i=1

(yi − ŷj,−i)yiwj for l = 1, · · · , J.

Since the right hand side does not depend on l, we have

1

m

n∑
i=1

yiŷj,−i

J∑
j=1

wj −
J∑

j=1

wj

n∑
i=1

ŷj,−iŷl,−i −
J∑

j=1

n∑
i=1

(yi − ŷj,−i)yiwj ∝ 1.



816 Bayes Interpretation of Stacking

Rearranging gives

w1

(
1

m

n∑
i=1

yiŷl,−i −
n∑

i=1

ŷ1,−iŷl,−i −
n∑

i=1

(yi − ŷ1,−i)yi

)

+ w2

(
1

m

n∑
i=1

yiŷl,−i −
n∑

i=1

ŷ2,−iŷl,−i −
n∑

i=1

(yi − ŷ2,−i)yi

)

...

+ wJ

(
1

m

n∑
i=1

yiŷl,−i −
n∑

i=1

ŷJ,−iŷl,−i −
n∑

i=1

(yi − ŷJ,−i)yi

)
∝ 1,

for l = 1, · · · , J .
In matrix form, this system of equations is

Uw ∝ 1J ,

where U and 1J are defined as in (8). Therefore, the solution is

ŵ ∝ U−11J ,

which can be rescaled to satisfy the sum to m constraint.

Corollary 3.1. If m = 1, then the weights w1, . . . , wJ achieving

min
w

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i(xi)

⎞
⎠

2

subject to
J∑

j=1

wj = 1

are of the form

ŵ ∝ (ê′ê)
−1

1J , (11)

where

ê = (yi − ŷj,−i)n×J and 1J = (1, · · · , 1)′.

Remark 3.1. This corollary is the result Clyde and Iversen (2013) used.

For contrast, let us solve (1) but without any sum constraint (and without the
non-negativity constraint). Now, the Lagrangian is

L = −
n∑

i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i

⎞
⎠

2

,
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and ŵ is the solution of the system of equations

∂L

∂wl
= 2

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i

⎞
⎠ ŷl,−i = 0 for l = 1, · · · , J.

Therefore,

n∑
i=1

ŷl,−i

J∑
j=1

wj ŷj,−i =

n∑
i=1

yiŷl,−i

⇔
J∑

j=1

(
n∑

i=1

ŷl,−iŷj,−i

)
wj =

n∑
i=1

yiŷl,−i, for l = 1, · · · , J,
(12)

or, in matrix form,

Tw = c,

where

T =

(
n∑

i=1

ŷl,−iŷj,−i

)
J×J

,

c =

(
n∑

i=1

yiŷ1,−i, · · · ,
n∑

i=1

yiŷJ,−i

)′

.

(13)

Hence the solution to (1) without the sum to one constraint and without the non-
negativity constraint is

ŵ = T−1c.

We summarize this in the following theorem.

Theorem 3.2. The weights w1, . . . , wJ achieving

min
w

n∑
i=1

⎛
⎝yi −

J∑
j=1

wj ŷj,−i(xi)

⎞
⎠

2

are of the form

ŵ = T−1c, (14)

where T and c are given in (13). In addition, if the J predictors are orthonormal,

n∑
i=1

ŷl,−iŷj,−i = δl �=j (1 if l �= j and 0 otherwise),

then T = I and the solution becomes

ŵj =
n∑

i=1

yiŷj,−i, for j = 1, · · · , J. (15)
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Note that the minimum in Corollary 3.1 with the sum to one constraint is taken
over a smaller set than that of Theorem 3.2 without any sum constraint. So, when the
stacking weights from the two cases both exist, we expect the latter to give better pre-
dictive performance because the minimum in Theorem 3.2 can only be smaller than the
minimum in Corollary 3.1. Hence we do not favor imposing the sum to one constraint.
Indeed, we find in our computed examples that when a sum to one constraint gives
better prediction, it is merely a happenstance from the more general optimization. This
is straightforward because if we find the optimal weights from Theorem 3.2 then we can
use them to find m =

∑J
j=1 wj for use in Theorem 3.1.

Using arguments similar to those used in the proof of Theorem 3.2, the following
result extends Theorem 3.2 to a Hilbert space H equipped with an empirical inner
product

〈g, h〉n =
1

n

n∑
i=1

g(xi)h(xi) ∀g, h ∈ H.

Theorem 3.3. The weights w1, . . . , wJ achieving

min
w

n∑
i=1

⎛
⎝y(xi)−

J∑
j=1

wj f̂j,−i(xi)

⎞
⎠

2

,

where y and f̂j,−i, j = 1, · · · , J , belong to H, are of the form

ŵ = T−1c,

where T and c are of the same form as (13).

As n → ∞, there are conditions that ensure the empirical inner product 〈g, h〉n
converges uniformly to the inner product 〈g, h〉 =

∫
g(x)h(x)dx of the H space, see

van de Geer (2014). Therefore, as n increases we can approximate the empirical inner
product by the H inner product and the results in Theorem 3.3 will remain true.

4 What models should we put in the stack?

Here, we show that the intuition of Breiman (1996) that the models to be stacked
should be as different as possible is only partially correct. In M-complete problems
what matters about the models to be stacked is that they be independent. The extra
‘difference’ amongst models from imposing orthogonality is not actually helpful in terms
of reducing the error criterion (1). We show this for models constructed in general Hilbert
spaces of functions and then provide one possible answer for how to construct the models
in a Hilbert space to be stacked. By contrast, in M-open problems one cannot assume
the regression function is in a Hilbert space. In our M-open example in Section 5.2
we did not find orthonormality of a basis gave better predictions than merely requiring
independence but this need not hold in general. That is, in general, using models that are
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different but not necessarily independent give asymptotically optimal performance. This
is seen by analogy in an example from Minka (2002). He uses a finite model list for an
M-complete problem and finds that distinct models that are not independent can give
asymptotically optimal performance. By the same logic it is reasonable to conjecture
that independence will likewise not help in M-open problems, let alone orthogonality.
That is, in M-open problems, it is likely enough in general for models to be genuinely
different and for independence or orthogonality not to be useful.

4.1 The error depends only on the span of the model list

In the last section, we saw that releasing the sum to one constraint can only reduce the
error criterion and from our example in Section 3 we saw that this constraint can often
be genuinely harmful. This argument is particularly strong outside M-closed settings
where model mis-specification is always present.

Our first result shows that given a set of models to stack in an M-complete problem,
the error depends only on the span of the models; requiring that the models to be
stacked be orthogonal as well as independent does not reduce the error. Our result is
the following.

Theorem 4.1. Let H be a Hilbert space with inner product denoted 〈·, ·〉. Let M =
{f1, · · · , fJ} and M′ = {f ′

1, · · · , f ′
J ′} be sets of elements from H with minima QM

min and

QM′

min for (1), respectively. Denote the span of a set of elements in H by 〈·〉. Then, if
〈M〉 = 〈M′〉,

QM
min = QM′

min,

i.e., the stacking error only depends on the span of the predictors.

Proof. This involves routine manipulations with Hilbert spaces, see Supplemental Ap-
pendix C (Le and Clarke, 2016) for details.

Theorem 4.1 means that given a fixed subspace S ⊂ H, any basis for S is as good
as any other for forming a stacking predictor. So, we are free to choose whichever basis
is most convenient. In Section 4.2 we will choose fj ’s through bootstrapping function
estimators that lie in a Hilbert space. Consequently, Theorem 4.1 holds when the stack-
ing weights, the wj ’s, are constrained to be positive. If a given wj is negative, an extra
negative sign can be put on the function estimator without changing the span of the
model list. In Section 5, we will show that the behavior of the sum of the wj ’s can
change character when they are required to be non-negative.

Note that Theorem 4.1 does not hold in the presence of the ‘sum to one’ con-
straint on the wj ’s. Indeed, in this case the conclusion may be false. Let J = J ′,
M = {ŷj = (ŷj,−1, · · · , ŷj,−n)

′, j = 1, · · · , J} be an orthogonal basis, and M′ = {ŷ′j =
(ŷ′j,−1, · · · , ŷ′j,−n)

′, j = 1, · · · , J} be any basis of 〈M′〉 = 〈M〉. Then, under the sum to
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one constraint on M we have

QM
min =

∥∥∥∥∥∥y −
J∑

j=1

ŵj ŷj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
J∑

j=1

〈y, ŷj〉ŷj +
n∑

j=J+1

〈y, ej〉ej −
J∑

j=1

ŵj ŷj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
J∑

j=1

(〈y, ŷj〉 − ŵj) ŷj

∥∥∥∥∥∥
2

+ ‖y2‖2,

(16)

where ŵ is now the solution in Corollary 3.1, {ej , j = J + 1, · · · , n} are complement
vectors of {ŷj , j = 1, · · · , J} to form an orthonormal basis of Rn, and y = y1 + y2 =∑J

j=1〈y, ŷj〉ŷj +
∑n

j=J+1〈y, ej〉ej . Similarly, for M′ we have

QM′

min =

∥∥∥∥∥∥
J∑

j=1

(
αj − ŵ′

j

)
ŷ′j

∥∥∥∥∥∥
2

+ ‖y2‖2, (17)

where ŵ′ is the solution in Corollary 3.1 and y = y1+y2 =
∑J

j=1 αj ŷ
′
j+

∑n
j=J+1〈y, ej〉ej .

Obviously, from (16) and (17), it is possible for QM
min < QM′

min or QM
min > QM′

min. This can
be seen from the following example. Let J = J ′ = 1 and ŷ′ = kŷ, then ŵ = ŵ′ = 1 and
α = 〈y, ŷ〉/k. Hence QM

min = (〈y, ŷ〉 − 1)2 + ‖y2‖2 and QM′

min = (〈y, ŷ〉 − k)2 + ‖y2‖2. So,
by careful choice of k, QM

min can be larger than QM′

min or the reverse.

To reinforce Theorem 4.1, we observe that reducing the dimension of the span of the
predictors can only increase the error criterion.

Theorem 4.2. Let M = {f1, · · · , fJ} be a basis and N = {f1, · · · , fJ−1}. Let QM
min

and QN
min be the minima of (1) corresponding to M and N , respectively. Then,

QM
min ≤ QN

min. (18)

Proof. This involves relatively routine manipulations with Hilbert spaces, see Supple-
mental Appendix C (Le and Clarke, 2016) for details.

Taken together, Theorem 4.1 and Theorem 4.2 tell us that the predictors being
stacked should be different from one another in the sense of being independent (but not
necessarily orthogonal) and that the stacking error (1) is a non-increasing function of
the span of the predictors. Thus, when choosing predictors to stack, there is a tradeoff
between the number of predictors and their proximity to a true model assuming one
exists. That is, using more predictors will generally be helpful, but using fewer, better
predictors can easily outperform many, weaker predictors.
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4.2 Optimal choice of predictors to stack

Having seen that both the number of basis vectors and the proximity of a linear combi-
nation of them to a true function (if a true function exists) can be important we want
to choose the basis vectors effectively. The results in Section 4.1 mean that, without loss
of generality, we can limit our search to orthogonal bases. Hence, in this subsection, we
propose a data-driven method to choose an optimal number of basis vectors even if the
set of basis vectors is not unique.

Assume we have an orthonormal basis for a space 〈{e1, · · · , eJ}〉 then for each J ′ ≤ J
we can form

ŷJ ′(xσk(i)) =
J ′∑
j=1

〈ej , f̂(· | xσk(1), · · · , xσk(i−1))〉ej(xσk(i)), (19)

where σk for k = 1, . . . ,K is a collection of independently chosen permutations of
{1, · · · , n} and f̂ is an estimate of the true predictor. For instance f̂ may be a Nadaraya–

Watson estimator of the form fλ̂, see Nadaraya (1964) and Watson (1964), in which λ̂
is an estimate of the tuning parameter λ. Then, in principle, we can find, for instance,

{Jopt, basisopt}

= arg min
J ′,basis

K∑
k=1

n∑
i=1

(
ŷJ ′,λ̂(xσk(i))− y(xσk(i))

)2

,
(20)

where basis is a variable varying over the possible orthonormal bases for subspaces of
〈{e1, · · · , eJ}〉 and ŷ = ŷJ ′,λ̂ is formed using the Nadaraya–Watson estimator.

The idea is that (20) is a sort of variance-bias expression that can be minimized to
find the right number of basis vectors. Minimizing in (20) means we are preventing Jopt
from being too high or too low. If J ′ is too low then the prediction is biased and can
be improved by adding more basis vectors. If J ′ is too large then the variability of the
prediction is too high and can be improved by removing the basis vectors that are least
important to good prediction. While this variance-bias approach is commonly done in
non-sequential settings, here we find it equally useful in sequential settings.

Expression (20) gives an approximate solution to this variance-bias optimization
because it uses K independent orderings of the data and sequential predictive error
(since we want ŷJ ′,λ̂(xσk(i)) at stage σk(i) to use only the data xσk(1), · · · , xσk(i−1)).
Averaging over the permutations of the data points as they appear in the sequential
predictive error means that it is reasonable to regard the empirical optimum as close
to an actual optimum if it exists (the M-complete case). In M-open settings, it does
not make sense to take limits of (20), so it is hard to prove theory. What is feasible
is to seek a {Jopt, basisopt} that makes (20) small. This can be done numerically by a
stochastic search provided we have a way to propose basis vectors.

Our method for data-driven random generation of basis vectors is simple. Choose J
sufficiently large and draw B bootstrap samples from the data set of size n. For each
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bootstrap sample, define a basis vector using the Nadaraya–Watson estimator. This
gives B candidates for basis vectors. In some cases, two or more of these basis vectors
may be so close as to be de facto the same. When this occurs, we reject one of the basis
vectors and repeat the procedure until we have J basis vectors that are satisfactorily
different and apply Gram–Schmidt orthonormalization to form an orthonormal basis.
Note that any technique for nonparametric regression can be used in place of Nadaraya–
Watson. In Section 5 we also use Gaussian process priors, see Rasmussen and Williams
(2006), to generate function estimates that can be used as basis vectors.

Next let Jopt be the optimal value from (20). We choose Jopt orthonormal basis
vectors from the J orthonormal basis vectors by ordering them in terms of decreasing
size of the absolute values of their Fourier coefficients with a full-data set estimate of
f . More formally, let f̂ be an estimate of f such as Nadaraya–Watson or Gaussian
process priors using all the data i.e., not just a bootstrap sample, and write êj for
j = 1, . . . , J for the J empirical orthonormal basis vectors. To form a predictor we stack
the Jopt basis vectors with the largest values of | 〈êj , f̂〉 | for j = 1, . . . , J . When we use
this procedure in Section 5 we have several explanatory variables so rather than using
multidimensional Fourier expansions we impose an additive model structure and form
a stacking predictor from each variable individually.

5 Computed examples

In this section we apply our technique described in previous sections to one M-complete
data set and one M-open data set. The first is a ‘canned’ data set that is recognized to
be difficult. The second is a new data set on soil moisture graciously provided by Prof.
T. Franz, see Franz et al. (2015).

5.1 Forest Fires data

Consider the Forest Fires data set publicly available from the UC Irvine Machine Learn-
ing Reposition. The sample size is n = 517 and there are 8 non-trivial explanatory vari-
ables, X1, . . . , X8, related to the severity of a forest fire. The dependent variable Y is the
burn area of the fire. Details and references can be found at http://archive.ics.uci.
edu/ml/datasets/Forest+Fires. We regard the Forest Fires data set as M-complete
because a forest fire is a chemical reaction with a lot of randomness that cannot be quan-
tified well. That is, there is so little about the process that is stable that it is unclear
there is anything to estimate. However, it is plausible that there is a model, necessarily
highly complex, that might accurately encapsulate the behavior of forest fires under a
variety of environmental conditions. Of course, such a model could be so complex that
even though the data generator is M-complete it is nearly M-open. Thus, generating
predictions may be the most appropriate approach even if they have a high variability.

For our analysis, we divide the data randomly into two subsets, one for training and
one for validation. The training set contains n1 = 267 data points and the validation set
contains n2 = 250 data points. To generate a predictor, we assume an additive model

http://archive.ics.uci.edu/ml/datasets/Forest+Fires
http://archive.ics.uci.edu/ml/datasets/Forest+Fires
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Figure 1: The individual circles indicate the values of (20) for X1 with J = 1, . . . , 20,
K = 40 and the Nadaraya–Watson estimator. The smooth curve is the result of using
the Nadaraya–Watson smoother again for the 20 values of (20). To generate this graph
we used a burn-in of 200 data points to ensure that the predictors from (19) would be
well-defined in the sense that the predictions from the Nadaraya–Watson estimator for
points relatively far from the accumulated data would not be so small as to lead to
underflow problems.

structure to generate predictions. That is, we write

Y = A1(X1) + · · ·+A8(X8) + ε, (21)

where ε is mean zero noise. So, we form eight univariate models Âu by finding Jopt =

Jopt,u basis vectors for each u and stacking them. The result is Âu(Xu). Then we stack

the eight univariate terms Â1, . . . , Â8 to generate a predictor for Y . So, we use stacking
for both the individual functions in the additive model and to combine the individual
functions to form the additive predictor.

We consider two classes of data-driven basis vectors. The first class is generated as
discussed in Section 4.2 using the Nadaraya–Watson estimator. This was found using
the npreg() function in R. The second class is generated using Gaussian process priors
found using the gausspr() function in R. In both cases we used the default settings for
the R functions, e.g., cross-validation to find λ̂ and radial basis functions to define the
kernel in the Gaussian process prior, and we set the number of basis vectors to find to
be considered to be J = 1, . . . , 20. This range was sufficiently large that it contained
Jopt as an interior point in all cases. The value of Jopt depends on which variable Xu

was being used and both stacking procedures were done independently of the m in the
‘sum to m’ constraint.

As an illustration, Figure 1 shows how we found Jopt = 15 for X1. The mini-
mum sequential predictive error occurs for 15 basis vectors. Similar plots were made
for X2, . . . , X8 and led to values 12, 12, 13, 9, 13, 7, and 9 respectively. Accordingly, we
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Figure 2: Plots of cumulative predictive error of stacking eight univariate predictors
versus the stacking weights for the Â1, . . . , Â8 for the Forest Fires data, with basis
vectors generated by Nadaraya–Watson. Left: Cumulative predictive error on the test
set versus the sum of the stacking weights, m. Right: Cumulative predictive error on
the test set versus the sum of the absolute value of the stacking weights.

stacked eight univariate models that were themselves the result of stacking basis vectors
found via a variance-bias trade off for each explanatory variable. Note that we could
generate a figure similar to Figure 1 using Gaussian process priors. However, the differ-
ences in our examples due to using Nadaraya–Watson versus Gaussian process priors
are negligible. So, we present only the results for Nadaraya–Watson.

Figure 2 shows the predictive error on the test set as a function of m in two cases.
The left panel shows that mopt ≈ 1 where m =

∑8
u=1 wu when the Nadaraya–Watson

estimator is used. The right panel shows mopt ≈ 2.6 when the absolute value of the wu’s

are summed, i.e., m =
∑8

u=1 | wu |. Using Gaussian process priors gives essentially the
same result. The difference shows that requiring the non-negativity constraint without
adjusting the signs of the models going into the stack may give similar predictive per-
formance – the minimum predictive errors in the two panels are nearly equal – but the
constraints on the wu’s can make a large difference to the optimal values.

5.2 Soil moisture data

As an M-open example, we consider the Soil Moisture data set. The response variable
Y is an interpolated form of the moisture in the topsoil on a grid of plots near Waco,
Nebraska. There are six explanatory variables X1, . . . , X6; three are for location (two
for location on a grid, one for elevation), two for soil electrical resistivity, and one for
a standard ‘wetness index’ that is a function of elevation; see Franz et al. (2015) for a
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Figure 3: Parallel to Figure 1. Plots of cumulative predictive error for various J ’s to find
the number of basis vectors to stack for X1 in the Soil Moisture data. Numerically, the
smallest value on the left hand graph occurs for J = 8. However, the right hand graph
shows that past J = 7 the curve actually increases and the smoothed curve led us to
choose Jopt = 7 instead.

detailed description. The actual sample size is 18973 but for computational convenience,
and comparison with our analysis of the Forest Fires data set, we randomly selected
n = 517 data points, dividing them into two sets of size 267 and 250, at random, for
training and validation, respectively, as in Section 5.1.

We used the model (21) but for six explanatory variables rather than eight. Thus,
we found six estimates of univariate functions Âu(Xu) for u = 1, . . . , 6 by stacking
the basis vectors we found by using Nadaraya–Watson and Gaussian process priors on
bootstrap samples. For each u we ordered the basis vectors by the absolute value of their
Fourier coefficients with a full-data estimate of the unknown function (even though in
an M-open case this construct only exists in a mathematical sense). For each u we use
(20) to find an optimal number of basis vectors Jopt to stack to get each Âu(Xu).

To identify Jopt for X1 we generated Figure 3. Although the scale on the y-axis
obscures the point, the left panel does show a variance-bias tradeoff. The left panel
shows a sudden decrease around J = 6 after which the curve looks flat. In fact, past
J = 7, the curve increases, but slowly, as indicated by the right panel which has a much
finer scale on the y-axis. For A1 we therefore chose seven basis vectors. We found the
same qualitative appearance for the predictive error graphs for all X2, . . . , X6 and for
both Nadaraya–Watson and Gaussian process priors. For X2, . . . , X6 we used Jopt =
11, 10, 9, 12, and 12 respectively.

Figure 3 is qualitatively different from Figure 1. Being M-complete, there really
is a true function summarizing the Forest Fires data that the additive model can try
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Figure 4: Parallel to Figure 2, plots of cumulative predictive error of stacking six univari-
ate predictors versus the stacking weights for the Â1, . . . , Â6 for the Soil Moisture data,
with basis vectors generated by Nadaraya–Watson. Left: Cumulative predictive error
on the test set versus the sum of the stacking weights, m. Right: Cumulative predictive
error on the test set versus the sum of the absolute value of the stacking weights. Note
the ‘doubling back’ on the right hand panel.

to estimate. We attribute the nice, bowl-shaped appearance of Figure 1 to this clear
variance-bias tradeoff. However, Figure 3 does not show a variance-bias tradeoff (except
in a strictly technical sense). It shows that past a certain point the gain from adding
more vectors to the stacking average of any Au is effectively zero. Qualitatively, we
see this is closer in spirit to a sparsity condition than to a variance-bias tradeoff. The
importance of sparsity may be one of the key features of M-open data such as Soil
Moisture.

Figure 4 shows how the stacking coefficients for the Âu’s for u = 1, . . . , 6 behave
with predictive error, parallel to Figure 2. The left hand panels of Figures 4 and 2 are
nearly identical and show m ≈ 1 is optimal. The right hand panels of Figures 4 and 2
are qualitatively different. The right hand panel in Figure 2 shows that as the sum of
the absolute weights varies, the predictive error on the test set decreases to a minimum,
approximately at mopt = 1.2 and then begins to increase again. This is a consequence
of the predictive error not being a function of the sum of the absolute weights. That
is, different choices of weights can have the same sum of absolute values but different
predictive errors. We see this as another reflection of the complexity of M-open data,
but are unclear how to interpret it otherwise.

6 Discussion

Here we have formally established that leave-one-out CV is asymptotically the optimal
action in posterior risk for a variety of loss functions. We have used this to justify the
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coefficients in a stacking predictor since they are based on a CV criterion. Stacking is a

model averaging technique for prediction most effective when a true model is unavailable

or may not even exist. We have investigated theoretically and computationally the effect

of different choices of constraints on the coefficients of the stacking predictor and suggest

that not imposing any leads to the best result in the sense of minimizing predictive error.

In fact, our examples suggest that a ‘sum to one’ constraint naturally emerges when the

predictive error is small. If the sum constraint is applied to the absolute values of the

stacking weights the results can be very different. (Although they would have to be the

same if the signs of the models being stacked were adjusted accordingly.) We comment

that obvious extensions of our technique of proof show that leave-k-out CV by also be

regarded as Bayes actions.

We recall that Stone (1977) showed that the Akaike information criterion (AIC)

is asymptotically equivalent to leave-one-out CV and that Shao (1997) shows these

further asymptotically equivalent to the Mallows’ Cp criterion, the generalized CV, and

the ‘GIC2’ criterion. The implication from our main theorem here is that all of these

methods can also be regarded as asymptotically Bayes optimal.

When the concept of a true model is problematic, it is natural to fall back on

predictive methods. Indeed, it is possible that seeking a good predictor may be more

useful that modeling when the model is very complex. For instance, if no simplification

of the true model can be readily identified a model average predictor may give better

performance in a mean squared error sense. This seems to be the case for our two

examples here. In the first that we regard as M-complete we stack orthogonal models.

In the second, we used orthogonal models but found they were equivalent to independent

models. We suspect that with further work we would find models that were different

but not independent would do as well possibly even better cf. the Shtarkov solution in

Section 3.4 of Le and Clarke (2016).

More generally, one may ask for a precise definition of M-open. In Section 5.2 we

have suggested that for M-open problems, sparsity is more relevant than variance-bias

tradeoff. We have also suggested that anomalous behavior of other quantities that would

be well behaved were a true model to exist may be tip offs that a given problem is M-

open. However, these are suggestions more than defining properties and may simply

reflect complexity of a data set relative to efforts to model it in a more general sense.

A logical definition is as the complement of {M-complete ∪ M-closed}. However,
this is not very useful. The best we can do at this time is to declare a problem M-open

if it defeats enough M-complete or M-closed efforts to address it or exhibits so little

stability that such efforts seem bound to be inadequate.

Supplementary Material

Supplementary Appendices of “A Bayes interpretation of stacking for M-complete and

M-open settings” (DOI: 10.1214/16-BA1023SUPP; .pdf).

http://dx.doi.org/10.1214/16-BA1023SUPP
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