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A Generalised Semiparametric Bayesian
Fay–Herriot Model for Small Area Estimation

Shrinking Both Means and Variances

Silvia Polettini∗

Abstract. In survey sampling, interest often lies in unplanned domains (or small
areas), whose sample sizes may be too small to allow for accurate design-based
inference. To improve the direct estimates by borrowing strength from similar
domains, most small area methods rely on mixed effects regression models.

This contribution extends the well known Fay–Herriot model (Fay and Herriot,
1979) within a Bayesian approach in two directions. First, the default normality
assumption for the random effects is replaced by a nonparametric specification
using a Dirichlet process. Second, uncertainty on variances is explicitly intro-
duced, recognizing the fact that they are actually estimated from survey data.
The proposed approach shrinks variances as well as means, and accounts for all
sources of uncertainty. Adopting a flexible model for the random effects allows
to accommodate outliers and vary the borrowing of strength by identifying local
neighbourhoods where the exchangeability assumption holds. Through applica-
tion to real and simulated data, we investigate the performance of the proposed
model in predicting the domain means under different distributional assumptions.
We also focus on the construction of credible intervals for the area means, a topic
that has received less attention in the literature. Frequentist properties such as
mean squared prediction error (MSPE), coverage and interval length are inves-
tigated. The experiments performed seem to indicate that inferences under the
proposed model are characterised by smaller mean squared error than competing
approaches; frequentist coverage of the credible intervals is close to nominal.

Keywords: Dirichlet process prior, Fay–Herriot, Hierarchical models, mixed
effects regression models, small area, smoothing of sampling variances.

1 Introduction and Motivation: The Fay–Herriot Model

The information content of a sample survey is clearly not limited to the planned do-
mains, and researchers are often interested in obtaining estimates for a whole variety of
subpopulations, that we refer to as small areas. The reason for this terminology is that
often the sample sizes for such domains are too small to provide sufficiently accurate
design-based estimates of the domain parameters.

To improve such estimates, indirect estimators introduce linking models that rely
on auxiliary information to connect small areas, thus borrowing strength and increasing
the effective sample size. Modern methods for small area estimation (SAE hereafter)
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heavily rely on mixed effects modelling. The book by Rao and Molina (2015) contains
a thorough analysis of the model based approach to small area estimation and SAE
methods in general.

In this contribution we focus on area level models. Area-level models rely on aggre-
gated, area-specific, quantities and are often the only available model under microdata
confidentiality protocols. Indeed, due to disclosure limitation procedures, data aggre-
gated to the area level are currently more readily available to users than are unit level
data, for both the variable of interest as well as for the auxiliary information. Another
advantage of area level modelling is that it allows one to account for the sampling de-
sign in a straightforward way, by introducing the direct survey estimators of the target
small-area parameters in the sampled areas, and their corresponding (design-based)
variance estimates. Typically, in small area estimation problems the direct estimators
may present unacceptably high variances due to small sample size in some or all of the
small areas.

In the literature, the first and most popular area-level model is the one proposed
by Fay and Herriot (1979). The Fay–Herriot model prescribes a sampling model for the
direct survey estimates, supplemented by a linking model for the small area parameters
of interest. Let m be the number of sampled small areas. Under the sampling model,
design unbiased, direct estimators θ̂i of the small area parameters θi, i = 1, . . . ,m,
are assumed to be available, whose sampling error is εi. Usually the εi’s are assumed
to be independent, normally distributed random variables with known variance ψi,
εi ∼ N(0, ψi), so that

θ̂i ∼ N(θi, ψi), i = 1, . . . ,m. (1)

To achieve the desired borrowing of strength across areas, a linking model for θi is
introduced, namely θi = x′

iβ + νi, where xi = (xi1, . . . , xip)
′ is a vector of auxiliary

variables, β is a vector of regression coefficients, and finally the vi’s are area-specific
random effects accounting for heterogeneity and lack of fit. Normality of the random

effects is usually assumed: νi
i.i.d.∼ N(0, σ2

ν), so that

θi|β, σ2
ν ∼ N(x′

iβ, σ
2
ν), i = 1, . . . ,m. (2)

Combining the previous equations together, one obtains a mixed effects linear regres-
sion model with normal random components, θ̂i = x′

iβ + εi + νi. Since areas of interest
may not be all sampled in practice, it is assumed that the combined area-level model
above also holds for the non-sampled areas. This amounts to assuming no selection bias
for areas. If the parameters β, σ2

ν were known, the small area estimator would be the
Best Linear Unbiased Predictor (BLUP)

˜̃
θi = xi

′β + γi(θ̂i − xi
′β), γi =

σ2
ν

σ2
ν + ψi

, i = 1 . . . ,m;

because the above parameters are unknown, plug-in estimators are implemented, that
are referred to as the Empirical Best Linear Unbiased Predictor (EBLUP) or empirical
Bayes (EB) estimator. Many papers in the literature discuss procedures for estimating
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model parameters and measures of uncertainty for the EBLUP θ̃i, usually the mean
squared prediction error, defined as MSPEi = E(θ̃i − θi)

2. See e.g. Prasad and Rao
(1990); Datta and Lahiri (2000); Rao and Molina (2015); Datta and Ghosh (2012) and
references therein.

In the Fay–Herriot setup, accuracy and precision of small area predictors depend on
the validity of the model. In this respect, we focus specifically on two major underlying
assumptions, namely the assumption of known sampling variances in (1) and the nor-
mality of random effects (2). As to the first point, an identifiability issue arises for the
Fay–Herriot model, unless the sampling variances ψi are assumed to be known. Most
of the literature has focused on reflecting uncertainty in estimating σ2

ν while assuming
known ψi (Prasad and Rao, 1990; Datta and Lahiri, 2000). In practice however the
latter quantities are estimated from the sample; in some applications, smoothed esti-
mators, usually obtained by means of the generalised variance function (GVF, see Dick,
1995) approach, are introduced, and then treated as known. Quoting Hawala and Lahiri
(2010) “the small area data, especially the design-based variance estimates, could be
very unreliable and noisy making it difficult to identify a reasonable GVF model with
small area specific random effects”. Wang and Fuller (2003) and Rivest and Vandal
(2003) consider estimation of the MSE when the ψis are estimated. Bell (2008) investi-
gated sensitivity of inferences to uncertainty about sampling variances, reporting larger
true mean squared errors (MSE) and biases in reported MSE when the survey variances
are poorly estimated, the major problem being identified in underestimation of survey
variances when the ratio ψi/σ

2
v is large, which is typical for small counties. Rao and

Molina (2015) report the relative increase in MSE of the BLUP obtained assuming ψi

known and equal to the estimated values, and the relative bias of the reported MSE
estimator.

As to the second point, whereas for area-level models the distributional assumption
on the sampling errors εi is usually justified by the properties of the direct estimators
θ̂i, the normality assumption for the random effects νi has no justification other than
computational convenience. Moreover, this assumption is difficult to detect in prac-
tice, since it involves unobservable quantities. The problem affects both frequentist and
Bayesian analyses, although availability of Markov Chain Monte Carlo (MCMC) tech-
niques makes computational convenience less relevant in the latter framework. Datta
and Lahiri (1995) and Chakraborty et al. (2016) discuss the impact of outliers on the
shrinkage property of the standard Fay–Herriot model. They observe that even a sin-
gle substantively outlying observation may corrupt the shrinkage property of the small
area model due to overestimation of the model variance σ2

ν . To overcome the problem
and accommodate for outliers Datta and Lahiri (1995) model the small area means by
means of heavy-tailed distributions, obtained as scale mixture of normals with given
mixing distribution. More recently, to avoid specification of the mixing distribution
above, Chakraborty et al. (2016) propose a two-component normal mixture, analogous
to the frequentist outlier-robust model of Sinha and Rao (2009). The second element of
the mixture describes the model error for the outlying units and has an inflated vari-
ance: θi = x′

iβ + (1 − δi)ν1i + δiν2i, the δis, i = 1, . . . ,m being Bernoulli(p) random
variables characterising the outlying areas, and ν1 ∼ N(0, V1), ν2 ∼ N(0, V2). Using
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noninformative priors, Chakraborty et al. (2016) explore the shrinkage effect under the
mixture model above and assess flexibility and robustness of their proposal.

Addressing the above mentioned issues, this contribution extends the Fay–Herriot
model within a Bayesian approach in two directions:

1. First, a hierarchical Bayesian (HB) formulation of the Fay–Herriot model is pro-
posed, in which the default normality assumption for random effects is replaced
by a nonparametric specification, namely using a Dirichlet process (DP hereafter,
see Ferguson, 1973; Antoniak, 1974). Using the HB representation of the standard
Fay–Herriot model, it is easy to see that it borrows strength from all areas by
shrinking small area parameters to a common mean; usually shrinkage is higher
for areas where the direct estimates have more variability. Borrowing strength is
achieved by applying an exchangeability assumption across small areas, with the
amount of shrinkage being only adjusted, not the sets of areas where borrowing
can take place. Several definitions of closeness, besides spatial closeness, may be
implemented to select such sets; also, it may be difficult to identify which units
belong to each set. In addition, some small areas may be outliers and should
not be used in drawing inference about other areas and, vice versa, other areas
should not be used in drawing inference about them. In our formulation, the aim
of achieving different levels of shrinkage and accommodating outliers is pursued
by choosing the Dirichlet process to model the random effects. This amounts to
define a probability model over all possible partitions of small areas. Due to the
clustering structure induced by the DP (see Ferguson, 1973), the resulting esti-
mates selectively use data from only subsets of the observed small areas. Indeed
the posterior predictive distribution of the area means θi will support common
random effects for areas that are “close”, that is, belong to the same cluster. The
uncertainty about which clusters are valid is automatically accounted for. This
model is useful when, a priori, one suspects that small areas are not equally sim-
ilar but there is no information about where the dissimilarities are (Malec and
Müller, 2008).

2. Second, following e.g. You and Chapman (2006), uncertainty on variances is in-
troduced in the model, so as to reflect the fact that they are actually estimated
from survey data. To allow for unknown variances, the model proposed in the next
Section adds a level in the hierarchy, that permits to smooth variances without
introducing an exogenous model for that. Denoting by ni the sample size observed
in area i, You and Chapman (2006) model the sampling within-area variances as

(ni − 1)S2
i ∼ ψiχ

2
(ni−1), i = 1, . . . ,m

independently of θ̂i. You and Chapman (2006) assign the parameters ψi separate
priors with known hyperparameters, therefore their model does not enjoy the
shrinkage property of variances. The previous model holds e.g. when data for area
i, i = 1, . . . ,m are i.i.d. normal so that θ̂i and S2

i are independent and (ni−1) are
the degrees of freedom in estimating ψi. Wang and Fuller (2003, p. 721) suggest
that when the normality assumption does not hold, the chi-squared distribution
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may still represent a good approximating model for the sampling variances once
a careful determination of the “equivalent” degrees of freedom δi is performed.

In the proposed approach shrinkage is obtained by assuming a common distribu-
tion generating the variance parameters as in Dass et al. (2012). As highlighted
in Maiti et al. (2014) an important feature of the model is the dual shrinkage
property. In particular, modelling of variances is performed within the model, and
inference on means also reflects uncertainty about sampling variances. We refer
to Maiti et al. (2014) for a discussion of the different approaches taken in the
literature concerning the issue of unknown sampling variances.

While MSE estimation under several types of model misspecification has received con-
siderable attention, the construction of confidence intervals for the area quantities has
not been investigated thoroughly in the literature. Recently Diao et al. (2014) focus on
deriving accurate CIs for small area means using the EBLUPs and estimators of mean
square prediction error of EBLUPs based on various methods of estimation of model
parameters, under the standard Fay–Herriot model. They also investigate robustness to
misspecifications of the random component distribution via simulation. In this paper we
consider both point and interval prediction and investigate the performance of the pro-
posed model in both these problems. In Maiti (2003) a unit-level Bayesian hierarchical
model is proposed, where the random intercept is modelled by a Gaussian mixture with
an unknown number of components; a simulation study illustrates that in particular
interval estimation may be misleading when the distribution of the random effects is
misspecified. Malec and Müller (2008) discuss use of DP in the context of small area
estimation. Their model is formulated as a unit-level setup in which the county-specific
random effects are described by a mixture of Dirichlet processes. Dass et al. (2012) and
Maiti et al. (2014) propose an extension of the Fay–Herriot model shrinking both means
and variances, but do not include a flexible representation of the random effects. To our
knowledge, the formulation proposed in this paper has not previously appeared in the
literature.

The paper is structured as follows: Section 2 describes the proposed model; viability
of the approach and the effect of introducing a flexible specification of the random effects
and an explicit shrinkage of sampling variances are investigated through application to
simulated and real data in Sections 3 and 4. Section 5 contains final remarks.

2 Proposed Approach

As mentioned in the Introduction, this contribution focuses on two major assumptions
underlying the Fay–Herriot model, namely the normality of random effects and the
assumption of known sampling variances. The proposed model aims to address both
aspects within a Bayesian formulation. We assume that (independent) information is
available about sampling variances and choose to include this as an additional stage in
the proposed hierarchical model, so that estimation of area means and sampling vari-
ances is performed at the same time and smoothing of variances is performed within the
same model. Inference on small area means incorporates the uncertainty on sampling
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variances: a further consequence is that the proposed approach allows to produce a for-
mal quantification of sampling variances. Adopting a flexible specification of the random
effects would allow greater flexibility, and robustness against model misspecifications.
Although McCulloch and Neuhaus (2011) conclude in favour of a substantial insensitiv-
ity of linear random effects models to assumptions on the random effects distribution,
they point out an impact on the prediction of the random effects, which is reportedly
modest as far as the mean squared error of prediction is concerned, and high as far as the
shape of the distribution of the best predicted values is concerned. Interval estimation
may be affected by this problem. Accurate prediction of the random effects is crucial
for predicting small area quantities, and the presence of outliers may be problematic.
Also, estimation of nonlinear functionals may suffer from misrepresentation of the law of
the random effects, as remarked in Fabrizi and Trivisano (2010). The previous authors
develop two robustified versions of the Fay–Herriot model, assuming either exponential
power (EP) or skewed-EP distributed random effects, and investigate robustness of such
models under deviations from normality. Their aim is to understand whether estimates
of linear and, especially, nonlinear functionals such as ranks are sensitive to deviations
from normality of the random effects. Although the models proposed by Fabrizi and
Trivisano (2010) are based on distributions that generalise, and contain, the normal,
yet these parametric models may fail to adequately describe the distribution of the
random effects, and again the problem of checking the adequacy of these models arises.
Many proposals in the literature try to extend the model for the small area means. As
mentioned in Section 1, Datta and Lahiri (1995) generalise the Fay–Herriot model by
introducing an heavy-tailed distribution, defined as a scale mixture of normal distri-
butions, to properly account for outliers; in the same context, Sinha and Rao (2009)
and Chakraborty et al. (2016) propose a two-components mixture of normals. Maiti
(2003) proposes a Bayesian hierarchical unit-level model where the random intercept is
modelled by a Gaussian mixture with an unknown number of components. Here we con-
sider a different though related extension of the Fay–Herriot model based on Dirichlet
process (DP) priors, where the assumption of normality producing the linking model
(2) is replaced by

νi|σ2
ν ,M

i.i.d.∼ G(·), i = 1, . . . ,m, G ∼ DP (M,N(0, σ2
ν)), (3)

where DP (M,G0) stands for the Dirichlet process (DP) with precision parameter M
and base measure G0. In the context of a generalisation of the Fay–Herriot model, it is
natural to assume G0 to be a normal distribution.

The representation above not only relaxes the normality assumption, but also pro-
vides an enlarged model for describing the random effects, with specific advantages. As
mentioned, a flexible model for describing the random effects having the capacity of
borrowing strength from subsets of units would be key to improve the model, induce
robustness against outliers and reduce the prediction error. In particular, (3) defines a
probability model over all possible partitions of small areas. As a consequence, small
areas are partitioned into clusters sharing the same random effect, with areas within
the same cluster being independent, but not independent between clusters. Given m ob-
servations from a Dirichlet process, the probability of observing a partition m1, . . . ,mk
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such that
∑k

j=1 mj = m,mj > 0, j = 1, . . . , k is

π(m1, . . . ,mk|M,m, k) =
Γ(M)

Γ(M +m)
Mk

k∏
j=1

Γ(mj). (4)

Predictions are thus obtained by combining local information, e.g. by focusing on clus-
ters of the observed small areas, the uncertainty about the clustering structure being
accounted for through (4). From the previous equation it is clear that choice of M ,
the precision parameter of the DP, is crucial as it drives the clustering property of the
DP. Following the literature on the subject (e.g. Escobar and West, 1994), we intro-
duce a further layer in the hierarchy, modelling this unknown parameter according to
a Gamma distribution, see (12). This prior is usually justified due to its conditional
conjugacy property. However the problem of selecting the Gamma parameters is non-
trivial. Dorazio (2009) shows that the posterior mass for the number of clusters tends to
concentrate on k = 1 as the shape of the Gamma distribution goes to zero, therefore the
usual noninformative argument is not appropriate. Dorazio (2009) suggests to choose
the parameters of the Gamma distribution in such a way that the resulting posterior
for the total number of clusters is closest to the uniform in terms of the Kullback–
Leibler divergence. See also Murugiah and Sweeting (2012), who propose an alternative
elicitation of the Gamma prior for M .

To complete the specification of the proposed model, we explicitly model the sample
variances S2

i as suggested in Dass et al. (2012). This accounts for uncertainty on the

sampling variances ψi (the true variances of θ̂i) in predicting small area quantities.

The proposed model reads as follows:

θ̂i = θi + ei, ei ∼ N(0, ψi), independently, i = 1, . . . ,m (5)

θi = x′
iβ + νi, νi ∼ G(·), independently, i = 1, . . . ,m (6)

G ∼ DP (M,N(0, σ2
ν)) (7)

δiS
2
i ∼ ψiχ

2
δi , independently and independent on θ̂i, i = 1, . . . ,m (8)

ψ−1
i ∼ Ga(a0, b0), independently, i = 1, . . . ,m (9)

σ−2
ν ∼ Ga(a1, b1) (10)

β ∼ N(0, dI) where I is the identity matrix (11)

M ∼ Ga(a2, b2), (12)

where δi represents the degrees of freedom for estimating the sampling variance, Ga(a, b)
denotes the Gamma distribution with shape a and rate b, and a0, b0, a1, b1, d, a2, b2 are
known constants. The hyperparameters in (10)–(12) are fixed; for comparability with
the EBLUP, the hyperprior on the β vector is assumed to be normal with large variance.

The modelling assumption in (8) is fully justified in a normal setting, with simple
random sampling; in our case, it can be taken as an attempt to achieve a more com-
prehensive quantification of uncertainty in estimating domain means that also accounts
for variability of sampling variances. Arora and Lahiri (1997) and You and Chapman
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(2006) use δi = ni − 1, ni being the number of sampled units belonging to each small
area. Selecting an appropriate number of degrees of freedom allows one to approximate
the distribution reasonably well, as suggested in Wang and Fuller (2003), even in the
non-normal case; an application of this principle can be found in Maples et al. (2009).
Thorough investigation of the quality of the approximation in complex sample surveys
has not been undertaken. Some comments can be found in Maiti (2003).

Unlike You and Chapman (2006), assuming a single prior for the ψis allows shrinking
the sample variances, to an extent that depends on ni, i = 1 . . . ,m (see also Dass et al.,
2012). The proposed hierarchical model differs from the one analysed in Maiti et al.
(2014) for the nonparametric modelling of the random effects.

Setting Ψ = {diag(ψi)}, under the proposed model the likelihood factorizes as
L(β,Ψ|θ̂)

∏
i L(ψi|S2

i ) where, following Lo (1984), Liu (1996) the first component is

L(β,Ψ|θ̂) =
m∑
c=1

∑
C:|C|=c

Γ(M)

Γ(M +m)
M c

c∏
j=1

Γ(mj)

∫
p(θ̂(j)|β,Ψ, νj)dG0(νj),

where C is a partition of areas {1, . . . ,m} into c groups (or clusters), mj is the number

of small areas in the j-th cluster, 1 ≤ mj ≤ m, θ̂(j) is the vector of the direct estimates
belonging to cluster j and finally

p(θ̂(j)|β,Ψ, νj) =
∏

k∈cluster j

1√
2πψk

exp{− 1

2ψk
(θ̂k − x′

kβ − νj)
2},

and the dependence on Ψ of the latter equation is only through the elements involved
in the j-th cluster. As evident from the previous equation, all areas belonging to a given
cluster are assigned the same random effect; furthermore, the number of clusters in each
partition is unknown. Data are assumed exchangeable only within the same cluster and
the posterior predictive distribution of the area means θi will support common random
effects for areas that are “close”, that is, belong to the same cluster. In this formulation
all possible partitions are explored and the uncertainty about which clusters are valid is
automatically accounted for. In a small area context, such feature may prove particularly
useful because, a priori, one can expect that areas are not equally similar, and that some
outlying areas should be singled out, but often there is no information about how to
form clusters and where the dissimilarities are. Under the assumption of normal random
effects, one can expect both “undue influence of larger outliers, and undue impact on
smaller outlying areas as they are shrunk towards the overall mean” (Ohlssen et al.,
2007): under DP-distributed random effects, shrinkage can be higher for some non-
outlying areas and lower for outlying areas, and this is performed in a data-driven way.

It is of interest here to understand the performance of the model in predicting small
area quantities under the extended Fay–Herriot model above, primarily the domain
means θi in (6). We consider measures of prediction error, for which a natural quantifi-
cation of uncertainty under the proposed approach is the posterior variance. We focus
on frequentist properties of the small area predictors and assess the MSPE through sim-
ulation under various data generating processes. The measures above reflect in-sample
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performance and do not have a formal Bayesian justification: to assess the model’s pre-
dictive performance from a Bayesian viewpoint, measures of prediction accuracy were
also evaluated, specifically DIC (Spiegelhalter et al., 2002), WAIC (Watanabe, 2009,
2010) and log pseudo marginal likelihood (LPML, see Geisser and Eddy, 1979). For
missing data and mixture models, DIC can be defined and estimated as discussed in
Celeux et al. (2006). WAIC and LPML are cross-validated criteria, indicated in the lit-
erature as better suited to assess a model’s predictive performance, in that a correction
is made for using the data twice: in estimating the model and in assessing the model’s
fit. Besides this, an aspect that has received less attention in the literature is the con-
struction of confidence intervals for the area means. Recently Diao et al. (2014) focus
on deriving accurate CIs for small area means using the EBLUPs and estimators of
MSPE of EBLUPs based on various methods of estimation of model parameters. Under
the Bayesian model proposed in this paper, a natural approach to the former issue is to
produce posterior credible intervals. Dass et al. (2012) also develop confidence intervals
for the small area means based on a decision theoretic approach. They obtain Bayes
confidence intervals by minimizing the expected loss, specified through a function that
takes into account both the coverage probability and the length of the interval and
that depends on a tuning parameter that allows to vary the weight attached to the
interval length compared to the coverage probability. The actual coverage properties of
the intervals proposed in Dass et al. (2012) are only investigated under the assumption
of normality. We address the performance of the credible intervals obtained under the
proposed model and compare it to existing solutions through simulation.

The variable shrinkage property allows us to reduce prediction error and although
the proposed model accounts for all sources of uncertainty, applications show that the
resulting credible intervals tend to be shorter than other frequentist solutions. The fre-
quentist coverage of such intervals is also analysed. In Section 3 we assess the predictive
performance of the model under known data generating processes and describe the
findings of a simulation study aimed at investigating the frequentist properties of the
proposed approach.

2.1 Posterior Computations

The posterior distribution of the small area quantities θi is analytically intractable, so
we adopt MCMC techniques to perform inference. We use a Gibbs sampler, repeatedly
sampling one set of parameters at a time, specifically β|rest, ψ|rest, ν|rest, M |rest,
σ2
ν |rest. Given model specification and the previous equations, sampling the fixed effects

parameters given the cluster configuration proceeds as in standard normal hierarchical
models; updating σ2

ν |rest is also standard, whereas given the structure of the model,
one can exploit conjugacy in sampling the random effects; the approach proposed in
West et al. (1994) is used. To avoid use of Metropolis steps, M |rest is updated using
the scheme proposed in Escobar and West (1994). In synthesis, the model is augmented
with an extra variable η whose distribution, given M and the number of clusters k, is
Beta(M + 1,m), such that the conditional distribution of M |η, k reduces to a mixture
of two gamma densities (see formula (13) in Escobar and West, 1994), which allows
straightforward implementation within a Gibbs sampling scheme.
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3 Simulation Study

To assess model’s performance, we conducted a simulation study, that enables us to
benchmark the fitted values to the true underlying values. Following the scheme adopted
in Wang and Fuller (2003) and Maiti et al. (2014), unit-level data were generated from
the model

Yij = β + νi + εij , j = 1, . . . , ni, i = 1, . . . ,m,

with β = 10, and εij ∼ N(0, niψi). Unequal sampling variances were ensured by choos-
ing three levels of ψi, namely 1, 4, 16, each assigned to one third of the areas. The
corresponding area level model is

Yi = β + νi + εi,

with Yi = Ȳi =
∑ni

i=1 Yij/ni, εi =
∑ni

j=1 εij/ni.

Therefore εi ∼ N(0, ψi) and Yi|θi, ψi ∼ N(θi, ψi) with θi = β + νi. As in Wang and
Fuller (2003), we set n = 36 areas, with ni = 9 units each, β = 10 and σ2

ν = 1.

Within the simulation scheme just described, three different assumptions on the
random effects νi are investigated: we first generate the random effects from a normal
distribution, which is the standard setup examined in Wang and Fuller (2003) and Maiti
et al. (2014), and then relax such an assumption by introducing a skew-t distribution
and a mixture of normals to investigate the model’s robustness against departures from
normality in the regression component of the model.

The details of the simulation setup are specified below:

M.1) First, the normal case is considered, in which νi ∼ N(0, σ2
ν), as in Wang and Fuller

(2003) and Maiti et al. (2014); although Maiti et al. (2014) select three different
levels for σ2

ν , we only consider σ2
ν = 1.

M.2) Second, a skew-t distribution (Azzalini and Capitanio, 2003) for the random ef-
fects ν is considered. The skew-t is an extremely flexible distribution, allowing to
introduce skewness and heavy tails, and therefore its use induces the presence of
outliers. This scheme also allows us to test the effect of misspecifying the model
for the sampling variances: indeed the independence between means and variances
does not hold in this case and the chi-square distribution is no longer the correct
model in (8). The skew-t distribution has four parameters, namely location (ξ),
scale (ω), slant (α), and degrees of freedom (v). In the simulation the parameters
were set to ξ = 0, ω = 1.404, α = 12, v = 10. Setting δ = α/

√
1 + α2, the mean of

the distribution can be expressed as (Azzalini and Capitanio, 2003)

μ = ξ + ωδ

√
v

π
∗ Γ(0.5(v − 1))

Γ(0.5v)
;

the random effects were then centred using the above expression to ensure zero
mean. The variance of the skew-t distribution is

σ2 = ω2

[
v

v − 2
−

(
δ
v

π

Γ(0.5(v − 1))

Γ(0.5v)

)2
]
;
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Therefore setting ω = 1.404 ensures unit variance of the random effects as in the
normal scenario, whereas setting ω = 1 implies a variance of about 0.5, which
makes the regression model for the θis comparatively more accurate than the
direct estimators. This latter choice was also investigated for comparison.

M.3) Finally, a contaminated distribution, analogous to the scheme adopted in Sinha
and Rao (2009) was considered for modelling the random effects: νi ∼ (1 −
γ)N(0, σ2

ν) + γ N(0, σ∗2
ν ), with σ2

ν = 1 and σ∗2
ν = 25. This gives a rather strong

contamination scenario, potentially inducing highly outlying units. In order to
assess the effect of increasing the proportion of outliers, two choices of γ were
considered, namely, γ = 0.11 and γ = 0.25.

Denoting by θ̃i the small area predictions under a given model, we consider as
measures of prediction error the following quantities: total bias: B = 1

m

∑m
i=1 E(θ̃i− θi)

and total mean squared error of prediction: MSPE = 1
m

∑m
i=1 E(θ̃i − θi)

2, and their
relative counterparts:

RB =
1

m

m∑
i=1

E

(
θ̃i − θi

θi

)

RMSPE =
1

m

m∑
i=1

E

(
θ̃i − θi

θi

)2

.

In order to check the model’s predictive ability under each of the data generating
processes, Bayesian predictive criteria were evaluated for data simulated according to
the schemes just described. Results are reported in Table 1: with the exception of
the normal setup, in which the parametric model is preferred, in the other cases the
semiparametric model is slightly superior in terms of estimated predictive criteria.

3.1 Simulation Results

A total of 3000 simulations from each of the models described above was considered.
The following hyperparameters were selected: a0 = 0.5, b0 = .1, a1 = 1, b1 = 1, d =
5000, a2 = 1, b2 = 0.04. The choice of the parameters a1, b1 was based on the fact
that as the base measure of the DP becomes diffuse, the probability of adding new
clusters decreases, thus implicitly favouring models with a small number of components
(see Rossi, 2014). Indeed, using the Blackwell and MacQueen (1973) representation, the
posterior probability of selecting a new atom for the random effect νi given the data and
the current cluster configuration, conditional on the remaining m− 1 random effects, is
proportional to Mhi(θ̂i), with

hi(θ̂i) =

∫
p(θ̂i|β,Ψ, νi)dG0(νi)

(see West et al., 1994). Diffuse specifications for G0 are therefore informative and not
desirable.
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WAIC DIC LPML

M.1 Normal
Proposed model 352.68 340.78 -195.75

You–Chapman model 349.49 339.02 -196.57
M.2 Skew-t

Proposed model 351.99 343.57 -198.87
You–Chapman model 354.09 344.23 -199.42

Skew-t, unit variance
Proposed model 335.25 331.95 -188.58

You–Chapman model 338.44 334.59 -188.43
M.3 Mixture of normals, 10%

Proposed model 204.84 196.01 -131.78
You–Chapman model 210.69 197.68 -137.03

Mixture of normals, 25%
Proposed model 229.13 212.30 -136.85

You–Chapman model 250.89 216.59 -161.97

Table 1: Models’ predictive measures under the data generation models adopted in
the simulation study: comparison between the proposed semiparametric model and the
model of You and Chapman (2006).

For each simulation, the model based point predictions were computed and empirical
measures of total bias and MSPE were obtained, averaging over areas within homoge-
neous groups. For schemes M.1 and M.2 the groups above comprise areas having the
same true sampling variance; for the scheme M.3 there are two groups, one for each level
of the variance selected for the random effects; the overall figures are also reported.

M.1) The results for the normal setup are shown in Table 2. The figures for the absolute
and relative measures of bias and mean squared prediction error indicate a certain
stability over different levels of sampling error, with some larger discrepancies
when ψ = 1. For comparison, in Table 3 we report an extract from Table 2 in
Maiti et al. (2014), where the performance of the proposed model is assessed by
simulation and contrasted to the method of Wang and Fuller (2003). Although
with a different number of replications, there is a remarkable difference in the
MSPEs under the three different approaches, showing that the method proposed in
this paper outperforms the parametric approach. Compared to the bias-corrected
method of Maiti et al. (2014), the proposed model carries a higher, downwards,
bias, but the MSPEs indicate a clear advantage in terms of prediction error. The
frequentist coverage of the prediction intervals, not reported in the cited paper,
seems for the proposed method to vary with the level of the sampling variance,
and is lower than the nominal level for the 95% intervals, but is still around the
nominal value, except for ψ = 1. In light of the simulation results, it would be
advisable to refer to the 99% credible intervals.

M.2) The results obtained under the model with skew-t-distributed random effects (see
Table 4) are encouraging, giving estimates of the sampling variances that are close
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ψ bias Rbias MSPE RMSPE ψ̂ C95 C99

1 -0.0067 -0.0023 0.3158 0.0546 1.0338 0.9233 0.9805
4 -0.0138 -0.0035 0.3937 0.0603 4.1331 0.9402 0.9880

16 -0.0133 -0.0038 0.4035 0.0603 16.5175 0.9499 0.9918

Table 2: Results from the simulation scheme of Wang and Fuller (2003) and Maiti et al.
(2014), with n = 36 and ni = 9, i = 1, . . . , n. The selected sampling variances are
shown in the first column. The last two columns report frequentist coverage of the 95
and 99% credible intervals.

ψ biasM biasWF MSPEM MSPEWF

1 0.002 0.001 0.564 0.623
4 0.003 0.002 0.937 1.131

16 0.002 -0.001 1.101 1.359

Table 3: Results from Table 2 in Maiti et al. (2014); the selected sampling variances
are shown in the first column. The suffix WF refers to the method in Wang and Fuller
(2003) while M refers to the method of Maiti et al. (2014).

ψ bias Rbias MSPE RMSPE ψ̂ C95 C99

1 0.0096 -0.0026 0.5885 0.0736 1.0295 0.9258 0.9765
4 0.0121 -0.0052 1.0349 0.0950 4.1043 0.9417 0.9821
16 0.0083 -0.0072 1.2147 0.1007 16.4930 0.9544 0.9865

Table 4: Results from the simulation scheme M.2: errors generated from a skew t dis-
tribution with unit variance.

ψ bias Rbias MSPE RMSPE ψ̂ C95 C99

1 0.0058 -0.0015 0.4493 0.0642 1.0302 0.9399 0.9819
4 0.0040 -0.0031 0.6892 0.0775 4.1184 0.9592 0.9889
16 0.0041 -0.0039 0.7434 0.0786 16.4522 0.9728 0.9938

Table 5: Results from the simulation scheme M.2: errors generated from a skew t dis-
tribution with ω = 1 and variance about 0.5.

to the target values, and moderate amount of relative bias, comparable to what
obtained under the normal setup. As expected, the prediction error increases, with
RMSPE as high as 1.7 times the corresponding figures for the normal case; yet
the maximum RMSPE amounts to about 10%. Compared to the normal case, the
coverage corrupts slightly, especially when ψ = 1, with values below the nominal
level, but still around 98% for the 99% credible intervals. To assess the cover-
age of the credible intervals, data were also drawn for comparison from a skew-t
distribution with variance 0.5. Results, reported in Table 5, indicate an improve-
ment in bias, MSPE and coverage, showing that the model performance improves
when the variance of the random effects distribution is lower than the sampling
variance, a result analogous to the normal case. This is a case when the model
is relatively more informative than the direct estimator and an advantage can be
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σ2
ν bias Rbias MSPE RMSPE ψ̂ C95 C99

25 -0.0074 -0.0155 1.1605 0.3088 1.0380 0.8707 0.9524
1 0.0030 -0.0032 0.6203 0.0796 1.0319 0.9254 0.9764

overall -0.0033 -0.0067 0.7568 0.1842 1.0342 0.9117 0.9704

Table 6: Results for the simulation scheme in M.3: errors generated from a mixture
of normals as in Sinha and Rao, with an 11% of outliers. The last line reports the
assessment for the whole simulated sample. The first column reports the variance of the
random components in each subgroup.

σ2
ν bias Rbias MSPE RMSPE ψ̂ C95 C99

25 0.0028 -0.0198 1.3126 0.5710 1.0581 0.8804 0.9578
1 -0.0044 -0.0031 0.6680 0.0824 1.0335 0.9288 0.9770

overall 0.0046 -0.0107 0.8376 0.2294 1.0361 0.9167 0.9722

Table 7: Results for the simulation scheme in M.3. Errors generated from a mixture of
normals as in Sinha and Rao, with a 25% of outliers. The last line reports the assessment
for the whole simulated sample.

expected from using a model based approach for small area estimation. Conse-
quently, the proposed nonparametric model may be useful when it is expected
that the model is reliable. Even though there is evidence of some undercoverage,
the MSPE indicate that the true area means are not far off the interval bounds.

M.3) The third setup considered for modelling the random effects is a mixture of nor-
mals with mean zero and different variances (1 and 25, respectively). This setup
is analogous to the one analysed in Sinha and Rao (2009) and represents a situa-
tion in which the model is weak and the direct estimator is comparatively more
reliable. The assessment was performed for the whole simulated sample, and sepa-
rately for the data from each submodel. The overall behaviour is similar, although
with lower performances, to the skew-t setup (first line of Table 4), which however
refers to a balanced case where the sampling and error variances have equal weight.
Table 6 presents the results for the normal mixture with γ = 0.11, whereas Table 7
contains the figures for the same setup, but with γ = 0.25. When the proportion
of outlying areas is γ = 0.11 the performance of the submodel with unit sampling
variance is similar to the setup M.2, with analogous undercoverage and slightly
higher MSPE. When γ = 0.25 this effect is widened and the whole model per-
formance is slightly worse. As may be expected, the subset of units characterised
by large sampling variance has high prediction error and low coverage. For these
units, the performance is poor in both configurations, with considerable increase
in the MSPE with respect to both the normal and the skew-t setup, and worsening
behaviour when the proportion of outliers increases. This can also be ascribed to
the fact that this is a situation in which the model is very weak and the direct
estimator is comparatively more, and increasingly, reliable. The overestimation of
the true ψ seems to increase with the proportion of outliers, and so do the bias
and prediction error. While on a smaller scale, the same increase can be noticed
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also for the non-outlying areas. In fact, for the contamination pattern considered,
the presence of outliers affects the whole model, to an extent that depends on
the proportion of outliers, but clearly carries the strongest consequences on the
outlying units.

4 Application

Next, we consider for illustration two simple applications to real data, that have been
extensively analysed in the literature. In particular they are used in You and Chapman
(2006) and Dass et al. (2012), to which we compare our results.

We first consider the milk data set studied in Arora and Lahiri (1997). Table 8
contains a comparison with results presented in Table 3 of You and Chapman (2006).
Although the sample sizes are all large, and the CV not exceedingly high for this data
set, this example is interesting for testing the proposed model because of the auxiliary
information introduced, which amounts to a classification of areas into a number of
major areas (four in our application, as in the analysis of You and Chapman, 2006).
Indeed, as discussed in Section 1, one of the features of the proposed approach is to
explore possible configurations of the sampled areas into clusters, thus producing alter-
native aggregations of “similar” areas, useful for the purpose of borrowing strength in
small area prediction, while accounting for uncertainty about sampling variances. To
understand the role of the nonparametric formulation of the random effects, the model
without covariates is also estimated; results are shown in the last column of Table 8.

For comparability with the model fitted by You and Chapman (2006), a flat Gamma
prior (a0 = 0.0001, b0 = 0.0001) was used for the sampling variance parameters ψi. To
assist the prior elicitation on M , the distribution of the number of clusters (Antoniak,
1974), integrated with respect to the Gamma prior, was considered (see Dorazio, 2009):

π(k|m, a2, b2) =
b2

a2 |Sm,k|
Γ(a2)

∫ ∞

0

Γ(M)

Γ(M +m)
Mk+a2−1e−b2MdM (13)

where |Sm,k| is the unsigned Stirling number of the first kind.

In Figure 1 the graph of such distribution under various choices of (a2, b2) is reported,
for m = 43 as with the milk dataset; numerical integration of (13) was performed. The
induced distribution over K is not completely flexible. As suggested by Dorazio (2009),
practical choice of the pair (a2, b2) may be performed with the aim of spreading the
distribution (13) as much as possible. For this example, a Gamma prior with shape
0.1 and rate 0.004 was selected for both models. Such a choice seems to be a good
compromise in terms of prior mean and spread of the distribution, see Table 9. Although
this prior gives a larger weight to K = 1, the number of clusters concentrates on larger
values, as reported in Figure 2.

Under the model with covariates, point estimates are robust to different choices
of the hyperparameters for M and σ2

ν . The number of clusters may vary according to
different prior choices; nonetheless, point estimates are stable and, as a consequence, the
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θ̂HB
i SD CV θ̂Y C

i SD CV θ̃i SD CV θ̃wo
i SD CV

1.020 0.113 0.111 1.020 0.112 0.110 1.047 0.086 0.082 1.122 0.124 0.110
1.045 0.072 0.069 1.045 0.072 0.069 1.059 0.061 0.057 1.147 0.054 0.047
1.065 0.073 0.069 1.063 0.074 0.069 1.066 0.061 0.057 1.152 0.049 0.042
0.767 0.095 0.124 0.770 0.096 0.125 0.717 0.111 0.155 0.698 0.058 0.082
0.849 0.096 0.113 0.851 0.097 0.114 0.834 0.135 0.162 0.723 0.066 0.092
0.975 0.103 0.106 0.974 0.103 0.105 1.022 0.095 0.093 1.024 0.190 0.186
1.058 0.125 0.118 1.057 0.123 0.117 1.062 0.089 0.084 1.150 0.102 0.089
1.097 0.099 0.090 1.096 0.099 0.090 1.150 0.105 0.091 1.144 0.079 0.069
1.219 0.121 0.099 1.213 0.121 0.100 1.218 0.100 0.082 1.183 0.081 0.068
1.192 0.122 0.102 1.189 0.122 0.103 1.206 0.101 0.084 1.174 0.077 0.066
0.793 0.094 0.119 0.800 0.097 0.122 0.755 0.109 0.144 0.694 0.059 0.085
1.213 0.131 0.108 1.208 0.130 0.108 1.215 0.106 0.087 1.183 0.094 0.079
1.206 0.112 0.093 1.204 0.112 0.093 1.214 0.096 0.079 1.178 0.071 0.060
0.984 0.107 0.109 0.986 0.107 0.108 0.975 0.153 0.157 0.800 0.161 0.202
1.187 0.105 0.088 1.186 0.104 0.087 1.195 0.088 0.074 1.156 0.074 0.064
1.156 0.104 0.090 1.157 0.103 0.089 1.173 0.097 0.083 1.140 0.095 0.083
1.225 0.101 0.083 1.225 0.099 0.080 1.216 0.078 0.064 1.168 0.060 0.051
1.284 0.115 0.089 1.281 0.114 0.089 1.237 0.087 0.071 1.187 0.087 0.073
1.234 0.101 0.082 1.233 0.100 0.081 1.220 0.078 0.064 1.171 0.062 0.053
1.233 0.110 0.089 1.233 0.109 0.089 1.217 0.083 0.068 1.169 0.071 0.060
1.092 0.097 0.089 1.094 0.097 0.089 1.106 0.118 0.107 1.074 0.157 0.147
1.192 0.128 0.107 1.192 0.127 0.107 1.188 0.111 0.094 1.095 0.167 0.153
1.122 0.103 0.092 1.124 0.101 0.090 1.142 0.110 0.096 1.105 0.135 0.122
1.221 0.113 0.092 1.221 0.110 0.090 1.211 0.086 0.071 1.164 0.074 0.063
1.193 0.086 0.072 1.193 0.086 0.072 1.203 0.072 0.060 1.163 0.050 0.043
0.761 0.091 0.120 0.760 0.091 0.120 0.757 0.067 0.089 0.734 0.083 0.112
0.763 0.092 0.120 0.762 0.092 0.120 0.758 0.067 0.089 0.737 0.086 0.117
0.734 0.125 0.170 0.732 0.123 0.167 0.732 0.103 0.141 0.823 0.196 0.238
0.768 0.085 0.110 0.766 0.083 0.109 0.760 0.062 0.082 0.732 0.071 0.097
0.615 0.076 0.124 0.618 0.075 0.122 0.630 0.101 0.160 0.675 0.067 0.099
0.769 0.122 0.158 0.769 0.120 0.156 0.753 0.090 0.119 0.894 0.215 0.240
0.795 0.119 0.150 0.791 0.116 0.147 0.765 0.085 0.111 0.961 0.217 0.225
0.771 0.091 0.118 0.768 0.091 0.118 0.761 0.066 0.086 0.740 0.088 0.119
0.612 0.060 0.099 0.614 0.061 0.100 0.624 0.088 0.141 0.671 0.064 0.095
0.701 0.085 0.121 0.701 0.084 0.120 0.725 0.077 0.106 0.710 0.054 0.076
0.757 0.094 0.123 0.757 0.093 0.123 0.756 0.070 0.093 0.737 0.090 0.122
0.534 0.080 0.150 0.538 0.081 0.150 0.500 0.113 0.226 0.633 0.103 0.162
0.744 0.096 0.129 0.741 0.096 0.129 0.748 0.073 0.098 0.727 0.078 0.107
0.754 0.082 0.108 0.753 0.081 0.108 0.756 0.062 0.082 0.724 0.057 0.079
0.768 0.088 0.115 0.768 0.088 0.114 0.761 0.065 0.085 0.733 0.075 0.103
0.747 0.071 0.095 0.746 0.071 0.096 0.754 0.057 0.076 0.722 0.051 0.070
0.801 0.093 0.116 0.800 0.092 0.115 0.773 0.067 0.087 0.789 0.147 0.186
0.682 0.094 0.139 0.683 0.093 0.137 0.706 0.094 0.134 0.704 0.061 0.087

Table 8: Comparison of results from You and Chapman (2006) with those obtained
under the proposed method. The first portion of the table refers to the HB version
of the Fay–Herriot model (known sampling variances and normal components); the
second portion refers to the parametric model proposed by You and Chapman (2006)
with unknown variances; the second half of the table refers to our semiparametric model
with uncertainty on sampling variances, with and without covariates. SD refers to the
posterior standard deviation and CV is obtained by the ratio of posterior standard
deviation to posterior mean.
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Figure 1: Prior distribution for K, integrated over the Gamma prior on M , for the
milk data example. Left panel: a2 = 0.1, b2 = 0.004; centre: a2 = 1, b2 = 0.04; right:
a2 = 1, b2 = 1.

Figure 2: Posterior distribution of the number of clusters for the milk and corn data
examples. Left panel: milk data, model without covariates; centre: milk data, model
with covariates; right panel: corn data.

Gamma parameters mean sd

a2 = 0.1, b2 = 0.004 9.7 12.8
a2 = 1, b2 = 0.04 21.1 9.3
a2 = 1, b2 = 1 4.0 2.8

Table 9: Prior mean and variances for the number of clusters, K, under a Gamma prior
for M for n=43 as for the milk data.

predictive criteria do not vary largely; the corresponding predictive scores are reported
in Table 10. The estimated variances are also very stable.

As far as the model without covariates is concerned, the role of hyperparameters
has a larger impact, as the number of clusters has a direct role in determining the small
area predictions. Having selected a Gamma(0.1, 0.004) prior for M , predictive measures
were used to identify a suitable model, that is, suitable prior hyperparameters for σ2

ν

within the range of values judged reasonable for the problem. Based on the predictive
criteria, the pair a1 = 1, b1 = 1 was selected, still resulting in a unit prior mean for σ2

ν .

The results for the semi- and the nonparametric model indicate lower CV if compared
with the standard HB and the parametric model proposed in You and Chapman (2006)
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DIC WAIC LPML

Model by You and Chapman -413.60 -425.91 187.28
Proposed model, with covariates -418.67 -431.38 189.94
Proposed model, without covariates -411.16 -426.44 180.01

Table 10: Milk data: estimated predictive criteria for comparison of the model by You
and Chapman (2006) with the proposed method, with and without covariates.

except for a few areas. In this application, the estimated predictive criteria indicate that
the proposed extended Fay–Herriot model is preferred over its parametric counterpart.
It is interesting to note the good behaviour of the (fully nonparametric) model without
covariates, whose predictive performance is not far from that of the models that explic-
itly introduce the categorical covariate: Table 10 confirms that the sole introduction of
DP random effects makes the no-covariate model close to the parametric model with
covariates estimated by You and Chapman (2006). Also, the application reveals that
the posterior mean of the number of classes is 10.2 in the model with covariates and 4.3
for the model without covariates, showing the role of the clustering mechanism.

We also apply the proposed model to the Corn data set first analysed in Battese
et al. (1988). For this data set, the very small area sizes make the direct estimates and
the sampling variances highly unreliable and to be supplemented by a suitable statisti-
cal model. Based on these data, Dass et al. (2012) provide results that indicate strong
superiority of their method compared to other proposals, including Wang and Fuller
(2003), showing a dramatic reduction in the interval widths. Except for the nonpara-
metric specification of the random effects, the proposed method and the one in Dass
et al. (2012) share the model formulation to a large extent. However Dass et al. (2012)
estimate the model parameters following an empirical Bayesian approach, whereas here
the hyperparameters were elicited subjectively. A Gamma(1, 0.25) prior was chosen for
M ; the implied prior mean for K is 4.1, with standard deviation 1.89. The posterior
concentrates on a small number of clusters, see the right panel in Figure 2 (posterior
mean: 1.9). Small area predictions are not sensitive to specification of M , but tend to
vary with the hyperprior on ψi, in light of the very small area sizes for this data set.
The extremely small area size makes use of a flat prior for ψi not advisable. The speci-
fication a0 = 1, b0 = 0.001 was used, implying a prior mean for the standard deviations
of 31.6, which is compatible with the observed data range (see Table 11), and with the
parameter estimates obtained by Dass et al. (2012) for the same data set.

The small area predictions provided by the method proposed in this paper are com-
patible with the results reported in Table 7 of Dass et al. (2012), with intervals of
length comparable to those obtained under method I in the cited table; note however
that compared to Dass et al. (2012) there is a greater variation in the interval widths,
that do not depend so closely on area size. For some areas the proposed intervals are
larger than the ones in Dass et al. (2012), which is not surprising since they minimize
an expected loss function defined in terms of the interval length. Besides that, a larger
interval length can be ascribed to the fact that the proposed intervals incorporate all
sources of variation and rely on a nonparametric assumption. The variable borrowing
of strength also impacts on the proposed intervals, that tends to be larger for those
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Semiparametric method Method by Dass et al.

θ̃i 2.5% 97.5% length θ̂Di 2.5% 97.5% length
√
S2
i n

Franklin 145.97 109.89 165.46 55.57 131.81 104.09 159.37 55.29 5.70 3
Pocahontas 105.43 65.15 144.08 78.93 108.73 80.90 136.44 55.54 43.41 3
Winnebago 118.05 93.15 147.41 54.27 109.06 81.43 136.65 55.22 30.55 3
Wright 126.33 102.18 163.71 61.53 131.61 103.74 159.56 55.83 54.00 3
Webster 108.98 72.08 141.42 69.33 113.15 92.81 133.35 40.54 21.30 4
Hancock 125.12 102.16 153.01 50.85 129.43 111.78 147.19 35.41 15.66 5
Kossuth 118.79 99.60 142.01 42.41 121.01 103.45 138.63 35.18 12.11 5
Hardin 133.05 96.49 169.05 72.56 130.26 112.37 148.11 35.74 36.81 5

Table 11: Comparison between credible intervals obtained from the proposed method
and confidence intervals obtained in Dass et al. (2012) for the modified Crop Area level
data from Battese et al. (1988).

areas, that are not shrunk towards a common mean. At any rate, in light of the very
small number of areas, and units within areas, all conclusions must be taken with care,
especially for the proposed semiparametric method.

5 Final Remarks

This contribution investigates a semiparametric generalised Fay–Herriot model that al-
lows for unknown sampling variance and specifies the random effects nonparametrically
through a DP prior. The model formulation allows to relax parametric assumptions on
the random effects by relying on a Dirichlet process prior, thus representing a means
to account for outliers and overcome the problem of model misspecification. Thanks to
the clustering property of the DP, the model is capable to uncover structure in the data
that allows potential gains in estimation efficiency without incurring in a consistency–
efficiency tradeoff. Indeed the clustering property allows to explore in a data driven
way subgroups of areas that may be characterised by different features: see Articus and
Burgard (2014) for a practical example in a real data setting. In light of such property,
the proposed model may also provide an improvement over the direct estimator even in
the absence of covariates.

Alternative approaches, specifically allowing for outliers, are finite mixtures of nor-
mal models and scale mixtures of normals, investigated e.g. in Maiti (2003) and Datta
and Lahiri (1995); compared to classical mixture models, the number of clusters here
is not fixed, and fixed effects parameter are estimated by pooling information from all
possible clusters of areas.

Moreover the hierarchical formulation of the model permits to include as a further
stage in the hierarchy an explicit specification of the sampling variances, usually assumed
known, or modelled through a separate and exogenous step. This choice allows shrinkage
of variances as well as of area means. As a consequence, under the proposed approach
inference on small area quantities incorporates all sources of variation, thus providing a
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more comprehensive account of uncertainty. As a by-product, the method also produces
smoothed estimates of the sampling variances. More elaborate models for smoothing the
sampling variances, possibly depending on specific covariates, may be accommodated
for in the hierarchical model. Although the distribution of sampling variances is not
χ2-distributed unless simple random sampling and normal population are assumed,
simulation results under non-normal schemes indicate that the proposed Bayesian model
is still reliable even under such model misspecification.

The simulation experiments performed seem to indicate that the proposed nonpara-
metric model may be useful when it is expected that the model is reliable. Even though
there is evidence of a little undercoverage, the MSPE indicate that the true area means
are not far off the interval bounds and that the method makes efficient use of sample
information. Alternative measures of coverage like the one proposed in Rossi (2014,
p. 134) might be used to take into account both coverage and the distance from the
true small area means.

Whenever availability of analogous published results made comparisons possible, the
prediction error appears to be lower than that attained by other procedures. The poor
coverage performances registered under the mixture of normals model may be ascribed
to the fact that this is an instance where the model itself is highly unreliable compared
to the direct estimator.

As commented, when the focus is point prediction of small area values, the para-
metric model is robust against departures from the normality assumption. Therefore
one can expect that the predictive measures would be similar for the parametric and
the non parametric model. Yet, under all the simulation schemes, predictive informa-
tion measures favour the nonparametric model over its fully parametric counterpart.
At the same time, analysis of the frequentist properties of the predictor obtained un-
der the model with nonparametric random effects highlights a sensible reduction in
MSPEs. In the applications, the proposal seems to produce typically smaller CVs than
the analogous procedure in You and Chapman (2006); in comparison to the bias cor-
rected procedure of Maiti et al. (2014) we noticed in simulations substantially lower
MSPEs.

From the above findings we can conclude that the model effectively achieves flexibil-
ity in modelling the random effects and a more realistic representation of the uncertainty,
without increasing the dimensionality of the problem.

Despite the focus in the application has been on prediction of small area means, other
quantities might be of interest, such as ranks or CDF. In this respect, the robustness
found in McCulloch and Neuhaus (2011) may not apply.

Finally, the same framework can also be extended to cover unit level and nonlinear
models.
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