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Optimal Robustness Results for Relative Belief
Inferences and the Relationship to Prior-Data

Conflict∗

Luai Al Labadi† and Michael Evans‡

Abstract. The robustness to the prior of Bayesian inference procedures based on
a measure of statistical evidence is considered. These inferences are shown to have
optimal properties with respect to robustness. Furthermore, a connection between
robustness and prior-data conflict is established. In particular, the inferences are
shown to be effectively robust when the choice of prior does not lead to prior-data
conflict. When there is prior-data conflict, however, robustness may fail to hold.
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1 Introduction

Robustness to the choice of the prior is an issue of considerable importance in a Bayesian
statistical analysis. If an inference is very sensitive to the choice of the prior, then this
could be viewed as either a negative for the inference method being used or for the
choice of prior. In this paper it is shown that certain inferences are in a sense optimally
robust to the choice of the prior. Furthermore, when the sensitivity of the inferences to
the prior is measured quantitatively, it is shown that there is an intimate connection
between the effective robustness of the inferences and whether or not there is prior-data
conflict. So by choice of the inferential methodology and the avoidance of prior-data
conflict, robustness of the inferences to the choice of prior is achieved. It is to be noted
that, while the results derived here are for specific Bayesian inferences, the optimality of
these inferences with respect to robustness implies that the effect of prior-data conflict
applies to all Bayesian inferences.

The basic ingredients for a statistical analysis are taken here to be the data x, a
statistical model {fθ : θ ∈ Θ}, where each fθ is a probability density with respect to
volume measure μ on the sample space X , and a proper prior density π with respect
to volume measure ν on Θ. Note that volume measure on a discrete set is taken to
be counting measure. Furthermore, suppose that interest is in making inferences about
the quantity ψ = Ψ(θ) where Ψ : Θ → Ψ is onto and we don’t distinguish between
the function and its range to save notation. Throughout the paper the spaces Θ and Ψ
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can be thought of as open subsets of Euclidean spaces or more generally as Riemann
manifolds with dim(Θ) ≥dim(Ψ).

Let πΨ(· |x) and πΨ denote the posterior and prior densities of ψ where these are
both taken with respect to volume measure νΨ on Ψ. It follows that when Ψ is smooth,
and ψ is not in the set of volume measure zero given by the image of the critical
values of Ψ, then πΨ(ψ) =

∫
Ψ−1{ψ} π(θ)JΨ(θ) νΨ−1{ψ}(dθ) where JΨ(θ) = (det(dΨ(θ)) ◦

(dΨ(θ))t)−1/2, dΨ is the differential of Ψ and νΨ−1{ψ} is volume measure on Ψ−1{ψ}.
Also, πΨ(ψ |x) =

∫
Ψ−1{ψ} π(θ |x)JΨ(θ) νΨ−1{ψ}(dθ) where π(θ |x) = π(θ)fθ(x)/m(x),

with m(x) =
∫
Θ
π(θ)fθ(x) ν(dθ), is the posterior density of θ with respect to ν. Note

that m is the prior predictive density of the data with respect to μ. The conditional
prior of θ given ψ = Ψ(θ) has density π(θ |ψ) = π(θ)JΨ(θ)/πΨ(ψ) with respect to
νΨ−1{ψ} on the set Ψ−1{ψ}. The conditional prior predictive density of x is then given
by m(x |ψ) =

∫
Ψ−1{ψ} π(θ |ψ)fθ(x) νΨ−1{ψ}(dθ). A simple argument, see Baskurt and

Evans (2013), gives the Savage–Dickey ratio result that

πΨ(ψ |x)
πΨ(ψ)

=
m(x |ψ)
m(x)

, (1)

which has some use in the developments here. Note that there is no need to coordinatize
nuisance parameters as λ = Λ(θ), since all nuisance parameters are integrated out via
π(· |ψ) and, in general, there need not exist a complementing function Λ such that
(Ψ,Λ) is 1–1.

The approach taken here is to study robustness to the prior for relative belief infer-
ences for ψ rather than all possible inferences. Relative belief inferences are based on
the relative belief ratio defined as

RBΨ(ψ |x) = lim
δ→0

ΠΨ (Nδ(ψ) |x)
ΠΨ (Nδ(ψ))

(2)

when this limit exists for a sequence of neighborhoods Nδ(ψ) of ψ converging nicely
to ψ (see Rudin (1974)) for the definition of “converging nicely”. Whenever there exist
versions of the densities πΨ and πΨ(· |x), of the probability measures ΠΨ and ΠΨ(· |x)
respectively, taken with respect to νΨ, that are continuous at ψ with πΨ(ψ) > 0, then
(2) exists and is given by RBΨ(ψ |x) = πΨ(ψ |x)/πΨ(ψ). A similar statement for the
densities of the probability measures M and M(· |ψ) with respect to μ establishes that
the relative belief ratio of x, having observed ψ, is given by m(x |ψ)/m(x) and, when
both conditions hold, then (1) obtains. Since RBΨ(ψ |x) measures the change in belief
that ψ is the true value, it is a measure of evidence. Here RBΨ(ψ |x) > 1 means that
there is evidence in favor of ψ being the true value, as belief in ψ has increased after
seeing the data, and RBΨ(ψ |x) < 1 means that there is evidence against ψ being the
true value, as belief in ψ has decreased after seeing the data. Section 2 provides some
more details concerning relative belief inferences for both estimation and hypothesis
assessment but also see Baskurt and Evans (2013) and Evans (2015). The relevant
mathematical details for the formulas provided for πΨ and πΨ(· |x) can be found in
texts that deal with geometric measure theory such as Federer (1969), Hirsch (1976),
Krantz and Parks (2008) and Tjur (1974).
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Results in Section 3 establish that relative belief inferences have optimal robustness
properties when the marginal prior for ψ is allowed to vary over all possibilities in
the class of ε-contaminated priors. This generalizes results found in Wasserman (1989),
Ruggeri and Wasserman (1993) and de la Horra and Fernandez (1994). Furthermore, an
ambiguity concerning the interpretation of the results is resolved. As such this provides
further justifications for these inferences.

While inferences may be optimally robust, this does not imply that they are in fact
robust. In Section 4 quantitative measures of the sensitivity of relative belief inferences
to both the marginal prior of ψ and the conditional prior for θ given Ψ(θ) = ψ are
derived. In Section 5 it is shown that these inferences are indeed robust when the
base prior π does not suffer from prior-data conflict. This adds weight to arguments
concerning the importance of checking for prior-data conflict before reporting inferences,
as prior-data conflict can imply sensitivity of the inferences to the choice of the prior.
Prior-data conflict is interpreted as the true value lying in the tails of the prior and
consistent methods have been developed for assessing this in Evans and Moshonov
(2006) and Evans and Jang (2011b). Methodology for modifying a prior when prior-
data conflict is encountered, through the selection of a prior weakly informative with
respect to the base prior, is developed in Evans and Jang (2011c). Other approaches
to identifying and dealing with prior-data conflict can be found in O’Hagan (2003),
Marshall and Spiegelhalter (2007), Dahl et al. (2007), Scheel et al. (2011), Presanis
et al. (2013).

Robustness to the prior has been considered by many authors and there are a number
of different approaches. Many discussions are concerned with determining the range of
values that some characteristic of interest takes when the prior is allowed to vary over
some class. Berger (1990), Berger (1994) contain broad reviews of work on this topic and
Rios Insua and Ruggeri (2000) is a collection of papers by key contributors. Sivaganesan
et al. (1993) develop γ-credible regions for θ that have posterior content at least γ for
every prior in an ε-contaminated class and have smallest Euclidean volume amongst all
such regions and so are optimal. By contrast, as developed in Evans et al. (2006), the
relative belief γ-credible region for a general ψ minimizes the prior content, with respect
to the base prior, among all γ-credible region for ψ and these regions are shown here to
also possess optimal robustness properties. Dey and Birmiwall (1994) consider global
robustness measures based upon measures of distance from the posterior distribution.
While the concern here is with robustness to the prior, it is also relevant to be concerned
with robustness to the likelihood. Given the similarities between likelihood inferences
and relative belief inferences, see Evans (2015), the robustness results in Royall and
Tsou (2003) suggest similar properties will hold but this topic is not pursued further
here. It is to be emphasized that the discussion here is only concerned with proper
priors and it is unclear how this relates to the situation where improper priors are
used.

Robustness to the prior is studied here via the Gâteaux derivative. Undoubtedly the
Fréchet derivative is a more reasonable choice but it comes with some computational
costs and so we have used the simpler directional derivative here. Robustness to the
prior, as measured by the Fréchet derivative, will be pursued in another study.
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2 Relative Belief Inferences

When RBΨ(ψ |x) > 1 this is the factor by which prior belief in the truth of ψ has
increased after seeing the data. Clearly the bigger RBΨ(ψ |x) is, the more evidence
there is in favor of ψ while, when RBΨ(ψ |x) < 1, the smaller RBΨ(ψ |x) is, the more
evidence there is against ψ. This leads to a total preference ordering on Ψ, namely, ψ1

is not preferred to ψ2 whenever RBΨ(ψ1 |x) ≤ RBΨ(ψ2 |x) since there is at least as
much evidence for ψ2 as there is for ψ1. This in turn leads to unambiguous solutions to
inference problems.

The best estimate of ψ is the value for which the evidence is greatest, namely,

ψ(x) = arg supRBΨ(ψ |x).

Associated with this estimate is a γ-relative belief credible region CΨ,γ(x) = {ψ :
RBΨ(ψ |x) ≥ cΨ,γ(x)} where cΨ,γ(x) = inf{k : ΠΨ(RBΨ(ψ |x) ≤ k |x) ≥ 1−γ}. Notice
that ψ(x) ∈ CΨ,γ(x) for every γ ∈ [0, 1] and so, for selected γ, the size of CΨ,γ(x)
can be taken as a measure of the accuracy of the estimate ψ(x). The interpretation of
RBΨ(ψ |x) as the evidence for ψ, forces the use of the sets CΨ,γ(x) for our credible
regions. For if ψ1 is in such a region and RBΨ(ψ2 |x) ≥ RBΨ(ψ1 |x), then ψ2 must be
in the region as well as there is at least as much evidence for ψ2 as for ψ1. Optimal
properties for relative belief credible regions, in the class of all credible regions, have
been established in Evans et al. (2006) and Evans and Shakhatreh (2008). As previously
mentioned, a relative belief γ-credible region for a general ψ minimizes the prior content
and always has posterior content greater than or equal to its prior content. The latter
generalizes a result of Piccinato (1984) to any ψ. Optimal properties for the estimator
ψ(x) are established in Evans and Jang (2011a).

For the assessment of the hypothesis H0 : Ψ(θ) = ψ0, the evidence is given by
RBΨ(ψ0 |x). One problem that both the relative belief ratio and the Bayes factor share
as measures of evidence, is that it is not clear how they should be calibrated. Certainly
the bigger RBΨ(ψ0 |x) is than 1, the more evidence there is in favor of ψ0 while the
smaller RBΨ(ψ0 |x) is than 1, the more evidence we have against ψ0. But what exactly
does a value of RBΨ(ψ0 |x) = 20 mean? It would appear to be strong evidence in favor
of ψ0 because beliefs have increased by a factor of 20 after seeing the data. But what
if other values of ψ had even larger increases? For example, the discussion in Baskurt
and Evans (2013) of the Jeffreys–Lindley paradox makes it clear that the value of a
relative belief ratio or a Bayes factor cannot always be interpreted as an indication of
the strength of the evidence.

The value RBΨ(ψ0 |x) can be calibrated by comparing it to the other possible values
RBΨ(· |x) through its posterior distribution. For example, one possible measure of the
strength is

ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x) (3)

which is the posterior probability that the true value of ψ has a relative belief ratio
no greater than that of the hypothesized value ψ0. While (3) may look like a p-value,
it has a very different interpretation. For when RBΨ(ψ0 |x) < 1, so there is evidence
against ψ0, then a small value for (3) indicates a large posterior probability that the
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true value has a relative belief ratio greater than RBΨ(ψ0 |x) and so there is strong
evidence against ψ0. If RBΨ(ψ0 |x) > 1, so there is evidence in favor of ψ0, then a large
value for (3) indicates a small posterior probability that the true value has a relative
belief ratio greater than RBΨ(ψ0 |x) and so there is strong evidence in favor of ψ0.
Notice that, in the set {ψ : RBΨ(ψ |x) ≤ RBΨ(ψ0 |x)}, the “best” estimate of the true
value is given by ψ0 simply because the evidence for this value is the largest in this set.

Various results have been established in Baskurt and Evans (2013) supporting both
RBΨ(ψ0 |x), as the measure of the evidence for H0, and (3) as a measure of the
strength of that evidence. For example, the following simple inequalities are useful
in assessing the strength of the evidence, namely, ΠΨ(RBΨ(ψ |x) = RBΨ(ψ0 |x) |x) ≤
ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x) ≤ RBΨ(ψ0 |x). So if ΠΨ({RBΨ(ψ0 |x)} |x) is large
when RBΨ(ψ0 |x) > 1, then there is strong evidence in favor of ψ0 while, if
RBΨ(ψ0 |x) < 1 is very small, then there is immediately strong evidence against ψ0.
Also, in situations where there are only a few possible values of ψ, then ΠΨ(RBΨ(ψ |x) =
RBΨ(ψ0 |x) |x) can be a more appropriate measure of strength.

It is worth noting that formally RBΨ(· |x) is an integrated likelihood. The interpre-
tation, however, is quite different as the value RBΨ(ψ |x) is a measure of the evidence
that ψ is the true value and this is not the case for an integrated likelihood which can be
multiplied by any positive constant. In effect likelihoods of any variety only give relative
measures of evidence when comparing two values. The importance of this distinction
is readily seen by noting the difference in the interpretation when RBΨ(ψ |x) < 1 and
when RBΨ(ψ |x) > 1. By contrast an integrated likelihood does not provide a clear dis-
tinction between having evidence for or against a specific value and this has numerous
consequences for the theory of inference. For example, based on a measure of evidence it
is possible to consider the bias a prior induces into an analysis as discussed in Baskurt
and Evans (2013). Also, the profile likelihood is commonly used for inferences about
ψ although it is not a likelihood in general. Piccinato (1984) and Liseo (1996) estab-
lish that Bayesian results concerning likelihood regions for θ can be easily generalized
to profile likelihood regions for ψ, see Corollary 3. Our concern here, however, is with
regions determined using the marginal prior and posterior distributions of ψ and, as
noted these can be considered as based on the integrated likelihood. Further properties
of inferences based on the integrated likelihood are discussed in Berger et al. (1999).

3 Optimal Robustness with Respect to the Marginal
Prior

When interest is in making inferences about ψ = Ψ(θ), it is reasonable to ask how sensi-
tive the relief belief approach is to the ingredients given by the prior. This entails exam-
ining how dependent ψ(x), CΨ,γ(x), RBΨ(ψ0 |x) and ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x)
are to changes in the prior, as these four objects represent the essential relative belief
inferences.

The full prior π for θ can always be factored as π(θ) = πΨ(ψ)π(θ |ψ). In contrast to
other discussions of robustness with respect to the prior, the sensitivity of the inferences
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to πΨ and the sensitivity of the inferences to π(· |ψ) are considered separately, as this
leads to more information concerning where the lack of robustness arises when this
occurs.

The result (1) implies that RBΨ(ψ |x) = m(x |ψ)/m(x). From this it is immediate
that ψ(x) = arg supψ RBΨ(ψ |x) = arg supψ m(x |ψ) and so the relative belief estimate
is optimally robust to πΨ as the estimate has no dependence on the marginal prior.
Furthermore, CΨ,γ(x) is of the form {ψ : m(x |ψ) ≥ k} for some k and so the form of
relative belief regions for ψ is optimally robust to πΨ. The specific region chosen for the
assessment of the accuracy of ψ(x) depends on the posterior and so is not independent
of πΨ. It is now proved that CΨ,γ(x) has an optimal robustness property among all
credible regions for ψ.

Consider ε-contaminated priors for θ of the form

Πε = Π(· |ψ)× [(1− ε)ΠΨ + εQ], (4)

where Q is a probability measure on Ψ and Π is the base prior as described in the Intro-
duction. Note that the conditional prior of θ given Ψ(θ) = ψ is fixed and independent
of ε.

To assess the robustness of the posterior content of a set A ⊂ Ψ, it makes sense
to look at δ(A) = Πupper

Ψ (A |x) − Πlower
Ψ (A |x) where Πupper

Ψ (A |x) = supQ Πε
Ψ(A |x)

and Πlower
Ψ (A |x) = infQ Πε

Ψ(A |x) and the supremum/infimum is taken over all prob-
ability measures on Ψ. For this let ε∗ = ε/(1 − ε) and r(A) = supψ∈A RBΨ(ψ |x) =
supψ∈A m(x |ψ)/m(x), so r(Ψ) = RBΨ(ψ(x) |x) and always one and only one of r(A),
r(Ac) equals r(Ψ).

The following known result is needed.

Lemma 1. (Huber (1973)) Let Q denote a probability measure on Ψ. For prior measure
Πε

Ψ = (1− ε)ΠΨ + εQ on Ψ and A ⊂ Ψ,
(i) Πupper

Ψ (A |x) = (ΠΨ(A |x) + ε∗r(A))/(1 + ε∗r(A)),
(ii) Πlower

Ψ (A |x) = ΠΨ(A |x)/(1 + ε∗r(Ac)),
(iii)

δ(A) =
ΠΨ (A |x) ε∗(r(Ac)− r(A))

(1 + ε∗r(A))(1 + ε∗r(Ac))
+

ε∗r(A)

(1 + ε∗r(A))
,

(iv) δ(Ac) = δ(A).

Let γ∗(x) = ΠΨ(CΨ,γ(x) |x) be the exact posterior content of the γ-relative belief
region. The following result generalizes results found in Wasserman (1989) and de la
Horra and Fernandez (1994) who considered robustness to the prior of credible regions
for the full parameter θ. In particular, this result applies to arbitrary parameters ψ =
Ψ(θ) and does not require continuity.

Proposition 2. The following hold,
(i) among all sets A ⊂ Ψ satisfying ΠΨ(A |x) ≤ γ∗(x) and r(A) = r(Ψ), the set CΨ,γ(x)
minimizes δ(A),
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(ii) among all sets A ⊂ Ψ satisfying ΠΨ(A |x) ≥ γ∗(x) and r(Ac) = r(Ψ), the set
Cc

Ψ,1−γ∗(x)(x) minimizes δ(A),

(iii) when γ∗(x) = γ ≥ 1/2 then, among all sets A ⊂ Ψ satisfying ΠΨ(A |x) = γ, the
set CΨ,γ(x) minimizes δ(A).

Proof. (i) For any set A with r(A) = r(Ψ) then r(Ac) − r(A) = r(Ac) − r(Ψ) ≤ 0.
Therefore,

δ(A) =
ΠΨ (A |x) ε∗(r(Ac)− r(Ψ))

(1 + ε∗r(Ψ))(1 + ε∗r(Ac))
+

ε∗r(Ψ)

1 + ε∗r(Ψ)

≥ ΠΨ (CΨ,γ(x) |x) ε∗(r(Ac)− r(Ψ))

(1 + ε∗r(Ψ))(1 + ε∗r(Ac))
+

ε∗r(Ψ)

1 + ε∗r(Ψ)
.

Now
r(Ac)− r(Ψ)

1 + ε∗r(Ac)
(5)

is increasing in r(Ac), so we need to show that A = CΨ,γ(x) minimizes r(Ac) among
all A satisfying ΠΨ(A |x) ≤ ΠΨ(CΨ,γ(x) |x) and r(A) = r(Ψ). Suppose that r(Ac) <
r(Cc

Ψ,γ(x))and let B = {ψ : RBΨ(ψ |x) > r(Ac)}. Note that r(Cc
Ψ,γ(x)) ≤ infψ∈CΨ,γ(x)

RBΨ(ψ |x) and so CΨ,γ(x) ⊂ B, which implies ΠΨ(B |x) > ΠΨ(CΨ,γ(x) |x) with the
strictness of the inequality following from the definition of CΨ,γ(x). But also B ⊂ A
which contradicts ΠΨ(A |x) ≤ ΠΨ(CΨ,γ(x) |x) and so we must have r(Ac) ≥ r(Cc

Ψ,γ(x)).
This establishes that (5) is minimized by A = CΨ,γ(x).

(ii) Now consider all the sets A with r(Ac) = r(Ψ). Since δ(A) = δ(Ac), it is equiv-
alent to minimize δ(Ac) among all sets Ac satisfying ΠΨ(A

c |x) ≤ ΠΨ(C
c
Ψ,γ(x) |x) =

1−γ∗(x) and r(Ac) = r(Ψ). By part (i) this is minimized by taking Ac = CΨ,1−γ∗(x)(x)
and the result is proved.

(iii) The solutions to the optimization problems in parts (i) and (ii), namely, CΨ,γ(x)
and Cc

Ψ,1−γ(x) respectively, both have posterior content equal to γ. As such one of these
sets is the solution to the optimization problem stated in (iii). We have that

δ(CΨ,γ(x))− δ(Cc
Ψ,1−γ(x)) = δ(CΨ,γ(x))− δ(CΨ,1−γ(x))

=
γε∗(r(Cc

Ψ,γ(x))− r(Ψ))

(1 + ε∗r(Ψ))(1 + εr(Cc
Ψ,γ(x)))

−
γε∗(r(Cc

Ψ,1−γ(x))− r(Ψ))

(1 + ε∗r(Ψ))(1 + εr(Cc
Ψ,1−γ(x)))

=
γε∗

(1 + ε∗r(Ψ))

{
r(Cc

Ψ,γ(x))− r(Ψ)

1 + εr(Cc
Ψ,γ(x))

−
r(Cc

Ψ,1−γ(x))− r(Ψ)

1 + εr(Cc
Ψ,1−γ(x))

}
.

The result follows from this because Cc
Ψ,γ(x) ⊂ Cc

Ψ,1−γ(x), so r(Cc
Ψ,γ(x)) ≤

r(Cc
Ψ,1−γ(x)), and (5) is increasing in r(Ac).

It is interesting to consider the statistical meaning of the separate parts of Propo-
sition 2 as the statements create a degree of ambiguity. If a system of credible regions
is being used, say BΨ,γ(x), then it makes sense to require that these sets are monotoni-
cally increasing in γ and the smallest set limγ↘0 BΨ,γ(x) contains a single point which
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is taken as the estimate of ψ. The size of BΨ,γ(x), for some specific γ, can then be
taken as an assessment of the accuracy of the estimate where size is measured in some
application dependent way. The relative belief regions satisfy this and the estimate,
under the assumption of a unique maximizer of RBΨ(· |x), is ψ(x). So effectively (i)
is saying that CΨ,γ(x) is optimally robust with respect to posterior content. Note that
we have to exclude sets A with ΠΨ(A |x) > γ∗(x) because, for example, the set A = Ψ
is always optimally robust with respect to content but does not provide a meaningful
assessment of the accuracy of the estimate. Given that ψ(x) and the form of CΨ,γ(x)
are optimally robust, this further supports the claim that relative belief estimation is
optimally robust to the choice of the marginal prior. Note that the sets in (ii) do not
satisfy the stated criteria for being a system of credible regions.

Part (iii) indicates that, when there are many sets with posterior content exactly
equal to γ, and this is typically true in the continuous case, then CΨ,γ(x) is optimally
robust among these sets with respect to content. It makes sense to require γ∗(x) ≥ 1/2
for any credible region as, if γ∗(x) < 1/2, then there is more belief that the true value
is in Cc

Ψ,γ(x) than in CΨ,γ(x).

It is also interesting to note an immediate consequence of Proposition 2 that is
similar to a result in Liseo (1996) developed there in the context of a discussion of
likelihood regions. Let Cγ(x) be a relative belief credible region for θ and note that this
is a likelihood region. Put B

Ψ,γ(x) = ΨCγ(x), γ∗(x) = ΠΨ(BΨ,γ(x) |x) and note that
under weak conditions BΨ,γ(x) is a profile likelihood region for ψ. Denote the profile
likelihood by LΨ(· |x) and put s(A) = supψ∈A LΨ(ψ |x), so s(Ψ) = LΨ(ψprofile(x) |x)
with ψprofile(x) the profile likelihood estimate of ψ.

Corollary 3. The following hold,
(i) among all sets A ⊂ Ψ satisfying ΠΨ(A |x) ≤ γ∗(x) and s(A) = s(Ψ), the set BΨ,γ(x)
minimizes δ(A),
(ii) among all sets A ⊂ Ψ satisfying ΠΨ(A |x) ≥ γ∗(x) and s(Ac) = s(Ψ), the set
Bc

Ψ,1−γ∗(x)(x) minimizes δ(A),

(iii) when γ∗(x) = γ ≥ 1/2 then, among all sets A ⊂ Ψ satisfying ΠΨ(A |x) = γ, the
set BΨ,γ(x) minimizes δ(A).

So profile likelihood regions also have optimal robustness properties. The difference
between the two results is that profile likelihood regions and relative belief regions can
be quite different. For example, a γ-profile likelihood region need not contain the relative
belief estimate ψ(x) and conversely, as the following example demonstrates.

Example 1. Profile and integrated likelihood regions differ substantially.

Consider the model-prior combination given in Table 1 with sample space X =
{1, 2}, parameter space Θ = {0, 1, 2} and δ ∈ [0, 1/2]. Suppose interest is in ψ =
Ψ(θ) = I{0,1}(θ). For x = 1 the profile likelihood is L(0 | 1) = 1/3, L(1 | 1) = 1/2
independent of δ and so ψprofile(1) = 1. The posterior is π(0 | 1) = δ/2mδ(1), π(1 | 1) =
(1/2− δ)/5mδ(1), π(2 | 1) = 1/6mδ(1) where mδ(1) = 4/15 + 3δ/10 and these posterior
probabilities converge to 0, 3/8 and 5/8 respectively as δ → 0. So the limiting posterior
probabilities for ψ are πΨ(0 | 1) = 5/8, πΨ(1 | 1) = 3/8.
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θ fθ(1) fθ(2) π(θ)
0 1/2 1/2 δ
1 1/5 4/5 1/2− δ
2 1/3 2/3 1/2

Table 1: The model and prior in Example 1.

The relative belief ratio for ψ is given by RBΨ(0 |x) = 1/3m(1), RBΨ(1 |x) = (1/5+
3δ/5)/m(1). From this ψ(1) = 1 if and only if δ ∈ [2/9, 1/2]. In this case, when δ is small
and γ = 3/8, a γ-credible region based on the profile likelihood does not contain the
relative belief estimate ψ(1) = 0 while the corresponding relative belief region does not
contain the profile likelihood estimate. The essential difference here is that the relative
belief estimate has the interpretation that it is the value of ψ for which the data have led
to the greatest increase in belief and no such interpretation is available for the profile
likelihood estimate.

Applying Lemma 1 gives

δ(CΨ,γ(x)) =
ε∗RBΨ(ψ(x)πx)

(1 + ε∗RBΨ(ψ(x) |x))
×{

1− ΠΨ (CΨ,γ(x) |x)
RBΨ(ψ(x) |x)

1− infψ∈CΨ,γ(x) RBΨ(ψ |x)
(1 + ε∗ infψ∈CΨ,γ(x) RBΨ(ψ |x))

}

and this can be close to 1 when RBΨ(ψ(x) |x) is large. So, while CΨ,γ(x) possesses
an optimal robustness property with respect to posterior content, this does not imply
that the posterior content is necessarily robust. This depends on other aspects of the
particular problem which will be discussed.

4 Measuring Robustness Quantitatively

To measure the robustness of an inference to the prior π, when using the ε-contaminated
class, it is natural to look at Gâteaux derivatives of the relevant quantity at π in
various directions Q. The derivative is a measure of the sensitivity of the inference
to small changes in the prior and so is local in nature. When the derivative is large
for some Q, the inference is highly sensitive to the prior chosen and naturally this is
viewed negatively. In this section this behavior of relative belief inferences is analyzed
separately for ε-contaminated classes for the marginal πΨ and the conditional π(· |ψ).

4.1 Sensitivity to the Marginal Prior

Consider the family of priors given by (4) but now restricted to those Q that are also
absolutely continuous with respect to νΨ on Ψ and let q denote the density of Q. The
posterior of ψ based on the contaminated prior is Πε,Ψ(· |x) = (1−εx)ΠΨ(· |x)+εxQ(· |x)
where εx = εmQ(x)/[(1−ε)m(x)+εmQ(x)],mQ(x) =

∫
Ψ
m(x |ψ)Q(dψ) and Q(A |x) =∫

A
(m(x |ψ)/mQ(x))Q(dψ). The relative belief ratio for ψ based on a general Πε equals
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RBε,Ψ(ψ |x) = (1−εx)RBΨ(ψ |x)+εxRBQ,Ψ(ψ |x) and here, using (1), RBQ,Ψ(ψ |x) =
m(x |ψ)/mQ(x) so

RBε,Ψ(ψ |x) = RBΨ(ψ |x)
1− ε(1−mQ (x) /m(x))

. (6)

The following result gives the Gâteaux derivative of the relative belief ratio.

Proposition 4. The Gâteaux derivative of RBΨ(· |x) at ψ in direction Q equals

RBΨ(ψ |x) {1−mQ (x) /m (x)} . (7)

Proof. From (6),

lim
ε→0

RBε
Ψ(ψ |x)−RBΨ(ψ |x)

ε
= RBΨ(ψ |x) lim

ε→0

{
(1−mQ (x) /m(x))

1− ε(1−mQ (x) /m(x))

}
.

The value of (7) can be large simply because RBΨ(ψ |x) is large, so it makes more
sense to look at the relative change. Therefore, for small ε,

|RBε,Ψ(ψ |x)−RBΨ(ψ |x)|
RBΨ(ψ |x) ≈

∣∣∣∣1− mQ(x)

m(x)

∣∣∣∣ ε
implying a small relative change in RBΨ(ψ |x) when mQ(x)/m(x) is not large.

The Gâteaux derivative of the strength of the evidence is now computed.

Proposition 5. The Gâteaux derivative of ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x) at ψ0 in
the direction Q is

mQ (x)

m(x)

{
Q(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x)−
ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x)

}
.

Proof. The strength based on Πε
Ψ satisfies Πε

Ψ(RBε,Ψ(ψ |x) ≤ RBε,Ψ(ψ0 |x) |x) = (1−
εx)ΠΨ(RBε,Ψ(ψ |x) ≤ RBε,Ψ(ψ0 |x) |x) + εxQ(RBε,Ψ(ψ |x) ≤ RBε,Ψ(ψ0 |x) |x). So,
using (6),

Πε
Ψ(RBε,Ψ(ψ |x) ≤ RBε,Ψ(ψ0 |x) |x) = ΠΨ(m(x |ψ) ≤ m(x |ψ0) |x)+

εx {Q(m(x |ψ) ≤ m(x |ψ0) |x)−ΠΨ(m(x |ψ) ≤ m(x |ψ0) |x)} .

This implies that

lim
ε→0

[Πε
Ψ(RBε

Ψ(ψ0 |x) ≤ RBε
Ψ(ψ0 |x) |x)−ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x)]/ε

=
mQ (x)

m(x)
{Q(m(x |ψ) ≤ m(x |ψ0) |x)−ΠΨ(m(x |ψ) ≤ m(x |ψ0) |x)}

=
mQ (x)

m(x)

{
Q(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x)−
ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x)

}
.
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So the strength is robust to choice of the marginal prior πΨ whenever mQ(x)/m(x)
is small.

For both the measure of evidenceRBΨ(ψ0 |x) and its strength, the ratiomQ(x)/m(x)
plays a key role in determining the robustness. The implications of this are discussed in
Section 5. Note that supQ mQ(x)/m(x) = RBΨ(ψ(x) |x) gives the worst case behavior
of this ratio.

It is of interest to contrast these results with those for the commonly used MAP
inferences which are based on the posterior density πΨ(· |x).
Proposition 6. The Gâteaux derivative of the posterior density of ψ in the direction
Q at ψ0 is given by {mQ(x)/m(x)}{q(ψ0 |x)− πΨ(ψ0 |x)}.

Proof. Since πε,Ψ(ψ |x) = (1− εx)πΨ(ψ |x) + εxq(ψ|x) it follows that

lim
ε→0

πε,Ψ (ψ0 |x)− πΨ (ψ0 |x)
ε

=
mQ (x)

m(x)
(q (ψ0 |x)− πΨ (ψ0 |x)).

Note that MAP-based inferences implicitly use πΨ(ψ0 |x) as a measure of the evi-
dence that ψ0 is the true value. Comparing this with the relative belief ratio we see that
for small ε,

|πε,Ψ (ψ0 |x)− πΨ(ψ0 |x)|
πΨ(ψ0 |x)

≈ mQ(x)

m(x)

∣∣∣∣1− q (ψ0 |x)
πΨ (ψ0 |x)

∣∣∣∣ ε
and the relative change in πΨ(ψ0 |x) is dependent on the ratio of the posteriors as well
as mQ(x)/m(x). So if πΨ(ψ0 |x) is small relative to q(ψ0 |x) we will get a big relative
change and this suggests that MAP inferences are much less robust than relative belief
inferences. A similar result is obtained for the Bayesian p-value in Evans and Zou (2001).
Consider also the following example.

Example 2. The MAP and relative belief estimates contrasted.

Suppose x is a sample from a Bernoulli(θ), θ ∼ beta(α, β) with α ≥ 1, β ≥ 1 and
ψ = Ψ(θ) = θp for some p ≤ 1. In this case ψ(x) = x̄p and the MAP estimate is given
by ψMAP (x) = (α−p+nx̄)p/(n+α+β−p−1)p. Note that the relative belief estimate
of ψ is just the appropriate transform of the relative belief estimate of θ. On the other
hand the MAP estimate of θ is (α−1+nx̄)/(n+α+β−2) and ψMAP (x) is not the p-th
power of this. It is the case, however, that the two estimates are essentially equivalent
whenever n is large enough. How large n has to be, however, depends on α, β, p and the
data. For example, when n = 1000, α = 1, β = 1, p = 0.1 and x̄ = 0, then ψ(x) = 0 but
ψMAP (x) = 0.496 even though it would be natural to be quite certain that ψ ≈ 0 in
such a case.

It is clear that ψMAP (x) is much less robust to the prior than ψ(x). For example,
as α → ∞, then ψMAP (x) → 1, for any value of x̄. So if the prior were chosen to
reflect virtual certainty that θ = 1 by choosing α very large, then ψMAP (x) will reflect
this even when this is contradicted by the data x̄. This issue is discussed more fully in
Section 5 where it is seen that prior-data conflict can play a key role in determining
robustness to the prior.
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4.2 Sensitivity to the Conditional Prior

Consider now priors for θ of the form Πε = [(1−ε)Π(· |ψ)+εQ(· |ψ)]×ΠΨ where Q(· |ψ)
is a probability measure on Ψ−1{ψ} absolutely continuous with respect to νΨ−1{ψ} with
density q(· |ψ), for each ψ ∈ Ψ. So the marginal prior of ψ is now fixed and the condi-
tional prior of θ is perturbed. The posterior of ψ based on this prior is Πε,Ψ(· |x) = (1−
εx)ΠΨ(· |x)+εxQΨ(· |x) where QΨ(A |x) =

∫
A
(mQ(x |ψ)/mQ(x))ΠΨ(dψ),mQ(x |ψ) =∫

Ψ−1{ψ} fθ(x)Q(dθ |ψ) and mQ(x) =
∫
Ψ
mQ(x |ψ)ΠΨ(dψ).

The relative belief ratio for ψ based on Πε equals RBε,Ψ(ψ |x) = (1−εx)RBΨ(ψ |x)+
εxRBQ,Ψ(ψ |x) where now RBQ,Ψ(ψ0 |x) = mQ(x |ψ0)/mQ(x). This leads to the fol-
lowing result.

Proposition 7. The Gâteaux derivative of RBΨ(· |x) at ψ0 in the direction Q is
{mQ(x)/m(x)}(RBQ,Ψ(ψ0 |x)−RBΨ(ψ0 |x)).

Proof. Clearly,

lim
ε→0

RBε,Ψ(ψ0 |x)−RBΨ(ψ0 |x)
ε

=
mQ (x)

m(x)
(RBQ,Ψ(ψ0 |x)−RBΨ(ψ0 |x)).

The implications of this result for robustness are discussed in Section 5.

Now consider the robustness of the strength of the evidence.

Proposition 8. If RBΨ(· |x) has a discrete distribution with support containing no
limit points, the Gâteaux derivative of ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x) at ψ0 in the
direction Q equals 0. When RBΨ(· |x) has a continuous distribution under ΠΨ(· |x) with
density g(· |x), the Gâteaux derivative of ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x) at ψ0 in the
direction Q equals {mQ(x)/m(x)}RBQ,Ψ(ψ0 |x)g(RBΨ(ψ0 |x) |x).

Proof. Since

ΠΨ(RBε,Ψ(ψ |x) ≤ RBε,Ψ(ψ0 |x) |x)

= ΠΨ

(
(1− εx)RBΨ(ψ |x) + εxRBQ,Ψ(ψ |x)

≤ (1− εx)RBΨ(ψ0 |x) + εxRBQ,Ψ(ψ0 |x)
|x

)
,

then, for all ε > 0 such that εx ≤ 1,

ΠΨ(RBε,Ψ(ψ |x) ≤ RBε,Ψ(ψ0 |x) |x)

≤ ΠΨ

(
RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) +

εx
1− εx

RBQ,Ψ(ψ0 |x) |x
)

and for all ε < 0,

ΠΨ(RBε,Ψ(ψ |x) ≤ RBε,Ψ(ψ0 |x) |x)

≥ ΠΨ

(
RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) +

εx
1− εx

RBQ,Ψ(ψ0 |x) |x
)
.
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When RBΨ(· |x) has a discrete distribution with support containing no limit points,
then the lower and upper bounds equal ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x) for all ε
small enough and the result follows. When RBΨ(· |x) has a continuous distribution
with density g(· |x), then

lim
ε→0

ΠΨ(RBε,Ψ(ψ0 |x) ≤ RBε,Ψ(ψ0 |x) |x)−ΠΨ(RBΨ(ψ |x) ≤ RBΨ(ψ0 |x) |x)
ε

= {mQ (x) /m(x)}RBQ,Ψ(ψ0 |x)g(RBΨ(ψ0 |x) |x).

From this it is seen that in the discrete case the strength is insensitive to local
changes in the prior.

Consider the continuous case. When there is strong evidence either for or against
ψ0, then RBΨ(ψ0 |x) will be in the right or left tail correspondingly of the posterior
distribution of RBΨ(· |x) and so g(RBΨ(ψ0 |x) |x) will tend to be small. As such the
strength will be robust to small changes in the prior provided mQ(x)/m(x) is not
large. When there is not strong evidence however, then g(RBΨ(ψ0 |x) |x) could be large
and, if mQ(x)/m(x) is not small, then the strength is not robust. This underscores a
recommendation in Baskurt and Evans (2013) that in the continuous case the parameter
be discretized when assessing the evidence and its strength. For this, when ψ is real-
valued, let δ > 0 be the difference between two ψ values that is deemed to be of practical
importance. The prior and posterior distributions of ψ discretized to the intervals [ψ0+
(2i−1)δ/2, ψ0+(2i+1)δ/2) for i ∈ Z are then used to assess the hypothesis corresponds
to the interval [ψ0 − δ/2, ψ0 + δ/2). By Proposition 8 the strength is then insensitive to
small changes in the prior.

It is perhaps not surprising that the robustness behavior of the relative belief ratio
and its strength is more complicated when considering the effect of the conditional
prior than with the marginal prior. The optimality results concerning robustness to the
marginal prior underscore this.

5 Robustness and Prior-Data Conflict

The existence of a prior-data conflict means that the data support certain values of
ψ = Ψ(θ) being the true value but the prior places little or no mass there. While
various measures can be used to determine whether or not such a conflict has occurred,
a logical approach is based on the factorization of the joint probability measure for (θ, x)
given by Π × Pθ = Π(· |T ) × MT × P (· |T ), where T is a minimal sufficient statistic,
Π(· |T ) is the posterior probability measure for θ, MT is the prior predictive probability
measure of T and P (· |T ) is the conditional probability measure of the data given T . The
measure P (· |T ) is then available for computing probabilities relevant to checking the
model {fθ : θ ∈ Θ}, the measure MT is available for computing probabilities relevant
to checking the prior and Π(· |T ) is the relevant probability measure for computing
probabilities for θ. A statistical analysis then proceeds by checking the model, perhaps
via a tail probability based on a discrepancy statistic, and then proceeding to check the
prior, if the data does not contradict the model. If both the model and prior are not
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contradicted by the data, then we can proceed to inference about θ. The logic behind
this sequence lies in part with the fact that it makes little sense to check a prior if
the model fails. Furthermore, separating the check of the prior from that of the model
provides more information in the event of a conflict arising, as it is then possible to
identify where the failure lies, namely, with the model or with the prior.

In Evans and Moshonov (2006) this factorization was adhered to and the tail prob-
ability

MT (mT (t) ≤ mT (T (x))) (8)

was advocated for checking the prior where mT is the density of MT with respect to
some support measure. So if (8) is small, then the observed value T (x) of the minimal
sufficient statistic lies in the tails of MT and there is an indication of a prior-data
conflict. In Evans and Jang (2011b) the validity of this approach was firmly established
by the proof that (8) converges to Π(π(θ) ≤ π(θtrue)) under i.i.d. sampling and some
additional weak conditions. Furthermore, it was shown how to modify (8) so as to achieve
invariance under choice of the minimal sufficient statistic. Also, Evans and Moshonov
(2006) argued that (8) should be replaced by MT (mT (t) ≤ mT (T (x)) |U(T (x))) for any
maximal ancillary U(T ) as the variation in T due to U(T ) has nothing to do with θ
and so reflects nothing about the prior. The tail probability (8) is a check on the full
prior and Evans and Moshonov (2006) also developed methods for checking factors of
the prior so a failure in the prior could be isolated to a particular aspect.

First, however, consider the case when Ψ(θ) = θ and interest is in the robustness
of inferences to the whole prior. From the results in Section 4.1, it is seen that the ra-
tio mQ(x)/m(x) = mQ,T (T (x))/mT (T (x)), where mQ,T (T (x)) =

∫
Θ
fθ,T (T (x))Q(dθ),

plays a key role in determining the local sensitivity in the direction given by Q, of the
inferences for given observed data x. This depends on Q and the worst case is given by

sup
Q

mQ,T (T (x))

mT (T (x))
= sup

Q

∫
Θ
fθ,T (T (x))Q(dθ)

mT (T (x))
= RB(θ(x) |x)

and note that θ(x) is the maximum likelihood estimator (MLE) in this case as well as
the relative belief estimate. Notice that when (8) is small, so there is an indication of a
prior-data conflict existing, then mT (T (x)) is relatively small when compared to other
values of mT (t) which are not influenced by the data. This implies that the prior is
having a big influence relative to the data and so a lack of robustness can be expected.

This phenomenon is well-illustrated in the following examples where ancillaries play
no role because of Basu’s theorem.

Example 3. Location normal model.

Suppose that x = (x1, . . . , xn) is a sample from the N(μ, 1) distribution with μ ∼
N(μ0, σ

2
0). Then MT is given by T (x) = x̄ ∼ N(μ0, 1/n+σ2

0). When Q is the N(μ1, σ
2
1)

distribution, then MQ,T is given by x̄ ∼ N(μ1, 1/n+ σ2
1). This implies that

mQ,T (T (x))

mT (T (x))
=

√
1/n+ σ2

0

1/n+ σ2
1

exp

{
−1

2

[ (
1/n+ σ2

1

)−1
(x̄− μ1)

2 −(
1/n+ σ2

0

)−1
(x̄− μ0)

2

]}
(9)
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μ1 σ2
1 mQ(x)/m(x) μ1 σ2

1 mQ(x)/m(x)
−3.0 1 0.0065 0.5 0.5 1.3474
−2.0 1 0.0905 0.5 1.0 1.0000
−1.0 1 0.4832 0.5 2.0 0.7254
1.0 1 0.7917 0.5 3.0 0.5975
2.0 1 0.2428 0.5 50.0 0.1488
3.0 1 0.0287 0.5 100.0 0.1053

Table 2: The ratio mQ(x)/m(x) in Example 3 when there is no conflict.

μ1 σ2
1 mQ(x)/m(x) μ1 σ2

1 mQ(x)/m(x)
−3.0 1 1.88× 10−8 0.5 0.5 0.0053
−2.0 1 9.97× 10−8 0.5 1.0 1.0000
−1.0 1 2.00× 10−4 0.5 2.0 14.2070
1.0 1 4.90× 10−1 0.5 3.0 32.5842
2.0 1 5.75× 101 0.5 50.0 58.2823
3.0 1 2.61× 102 0.5 100.0 43.9565

Table 3: The ratio mQ(x)/m(x) in Example 3 when there is conflict.

and, as a function of (μ1, σ
2
1) this is maximized when μ1 = x̄, σ2

1 = 0. Notice that this
supremum converges to ∞ as x̄ → ±∞ and such values correspond to prior-data conflict
with respect to the N(μ0, σ

2
0) prior.

Now, consider a numerical example. A sample of size n = 20 was generated from
the N(0, 1) distribution obtaining x̄ = 0.2591. When the base prior is N(0.5, 1) then
(8) equals 0.8141 and accordingly there is no indication of any prior-data conflict. Also,
supQ(mQ(x)/m(x)) = 4.7109 which seems modest as it describes the worst case robust-
ness behavior. In Table 2 some values ofmQ(x)/m(x) are recorded whenQ is aN(μ1, σ

2
1)

distribution for various values of μ1 and σ2
1 as these might be expected to be realistic

directions in which to perturb the base prior. In all cases the value of mQ(x)/m(x) is
quite modest and the maximum value of (9) is 1.0534. Overall it can be concluded here
that the analysis is robust to local perturbations of the prior.

Now consider an example where there is prior-data conflict. In this case a sample of
n = 20 is generated from a N(4, 1) distribution obtaining x̄ = 4.0867 and the same base
prior is used. The value of (8) is 0.0005 and so there is a strong indication of prior-data
conflict. Furthermore, supQ(mQ(x)/m(x)) = 2096.85 which certainly indicates a lack of
robustness. In Table 3 some values of mQ(x)/m(x) are recorded when Q is a N(μ1, σ

2
1)

distribution for various values of μ1 and σ2
1 . It is seen that the value of mQ(x)/m(x)

can be relatively large and the maximum value of (9) is 468.86. So it can be concluded
that the analysis based on the model, prior and observed data, will not be robust to
local perturbations of the prior when there is prior-data conflict.

Example 4. Bernoulli model.

Suppose that x = (x1, . . . , xn) is a sample from a Bernoulli(θ) and the prior is
θ ∼beta(α0, β0) for some choice of (α0, β0). A minimal sufficient statistic is T (x) =
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α1 β1 mQ(x)/m(x) α1 β1 mQ(x)/m(x)
20 5 32647.89 5 1 21523.28
15 5 25729.50 5 25 0.12
10 5 15010.95 5 22 0.41
5 5 3996.37 5 20 1.00
1 5 125.87 5 16 6.77

Table 4: The ratio mQ(x)/m(x) in Example 4 when there is conflict.

∑n
i=1 xi ∼ binomial(n, θ) and then

mT (t) =

(
n

t

)
Γ(α0 + β0)

Γ(α0)Γ(β0)

Γ(t+ α0)Γ(n− t+ β0)

Γ(n+ α0 + β0)
.

Also,

sup
Q

(mQ(x)/m(x)) =
Γ(α0)Γ(β0)

Γ(α0 + β0)

Γ(n+ α0 + β0)

Γ(t+ α0)Γ(n− t+ β0)
x̄nx̄(1− x̄)n(1−x̄).

To illustrate the relationship between prior-data conflict and robustness, consider
a numerical example. Suppose that α0 = 5 and β0 = 20. Generating a sample of
size n = 20 from the Bernoulli(0.25) gave the value nx̄ = 3. In this case (8) equals
0.7100 and there is no indication of any prior-data conflict. Also, supQ(mQ(x)/m(x)) =
1.4211 which indicates that the inferences will be generally robust to small deviations.
If mQ(x)/m(x) is computed for various Q, where Q is a beta(α1, β1), then in all cases it
is readily seen that this ratio is quite reasonable in value as indeed it is bounded above
by 1.4211.

A sample of n = 20 was also generated from a Bernoulli(0.9) with the same prior
being used. In this case nx̄ = 17 and (8) equals 6.2×10−6, so there is a strong indication
of prior-data conflict. Also, supQ(mQ(x)/m(x)) = 46396.43 which indicates that the
inferences will be generally not be robust to small deviations. Table 4 provides some
values of mQ(x)/m(x) for Q given by a beta(α1, β1) for various choices of (α1, β1) and
there are several large values.

Now consider the case when θ = (θ1, θ2) ∈ Θ1 × Θ2 so the prior factors as π(θ) =
π2(θ2 | θ1)π1(θ1). Presumably the conditional prior π2(· | θ1) and the marginal prior π1

are elicited and the goal is inference about some ψ = Ψ(θ). It is then preferable to check
the prior by checking each individual component for prior-data conflict as this leads to
more information about where a conflict exists when it does.

In general, it is not clear how to check the individual components but in certain
contexts a particular structure holds that allows for this. Suppose that all ancillaries
are independent of the minimal sufficient statistic and so can be ignored. The more
general situation is covered in Evans and Moshonov (2006).

As discussed in Evans and Moshonov (2006), suppose there is a statistic V (T ) such
that the marginal distribution of V (T ) is dependent only on θ1. Such a statistic is
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referred to as being ancillary for θ2 given θ1. Naturally we want V (T ) to be a maximal
ancillary for θ2 given θ1. An appropriate tail probability for checking π1 is then given
by

MV (T )(mV (T )(v) ≤ mV (T )(V (T (x)))), (10)

as MV (T ) does not depend on π2(· | θ1). A natural order is to check π1 first and then
check π2(· | θ1) for prior-data conflict, whenever no prior-data conflict is found for π1.
The appropriate tail probability for checking π2(· | θ1) is given by

MT (mT (t |V (T (x))) ≤ mT (T (x) |V (T (x))) |V (T (x))). (11)

Note that this is assessing whether or not π2(· | θ1) is a suitable prior for θ2 among those
θ1 values deemed to be suitable according to the prior π1. If (11) were to be used before
(10), then it would not be possible to assess if a failure was due to where π1 was placing
the bulk of its mass or was caused by where the conditional priors were placing their
mass. Notice that

mQ,T (T (x))

mT (T (x))
=

mQ,T (T (x) |V (T (x)))

mT (T (x) |V (T (x)))

mQ,V (T )(V (T (x)))

mV (T )(V (T (x)))
, (12)

so prior-data conflict with either π1 or π2(· | θ1) could lead to large values of the ratio
on the left for certain choices of Q. When only the conditional prior of θ2 given θ1 is
perturbed, then mQ,V (T )(V (T (x))) = mV (T )(V (T (x))).

Letting fθ1,V denote the density of V, then

mQ,V (T )(V (T (x)))

mV (T )(V (T (x)))

=

∫
Θ1

fθ1,V (V (T (x)))

mV (T )(V (T (x)))
Q1(dθ1) ≤ RB1(θ1(V (T (x))) |V (T (x)))

where RB1(· |V (T (x))) gives the relative belief ratios for θ1 based on having observed
V (T (x)). The right-hand side gives the worst-case behavior of the second factor in (12).

Now consider the robustness of relative belief inferences for a general ψ = Ψ(θ). The
following result generalizes Propositions 4 and 7 as we consider a general perturbation to
the prior, namely, Πε = (1−ε)Π+εQ and the proof is the same as that of Proposition 7.

Proposition 9. The Gâteaux derivative of RBΨ(· |x) at ψ in the direction Q is

{mQ(x)/m (x)}(RBQ,Ψ(ψ |x)−RBΨ(ψ |x)).

The factor RBQ,Ψ(ψ |x)−RBΨ(ψ |x) can be big simply because we choose a prior Q
that is very different than Π. For example, RBΨ(ψ |x) may be big (small) because there
is considerable evidence in favor of (against) ψ being the true value and we can choose
a prior Q that doesn’t (does) place mass near ψ. As such, it makes sense to standardize
the derivative by dividing by this factor and this leaves the robustness determined again
by mQ(x)/m(x).
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Suppose now that Q and Π have the same marginal for ζ = Ξ(θ). Then, mQ(x) =
m(x)

∫
Ξ

∫
Ξ−1{ζ} RB(θ |x)Q(dθ |ψ)ΠΞ(dζ) ≤ m(x)

∫
Ξ
RB(θζ(x) |x)ΠΞ(dζ) where

θζ(x) = arg sup{RB(θ |x) : Ξ(θ) = ζ}. Therefore,

mQ(x)

m (x)
≤

∫
Ξ

RB(θζ(x) |x)ΠΞ(dζ) (13)

and the right-hand side gives the worst-case behavior of the first factor in (12) when
Ξ(θ) = θ1, which is related to prior-data conflict with the prior on θ2.

The following is a standard example where priors are specified hierarchically.

Example 5. Location-scale normal model.

Suppose that x = (x1, . . . , xn) is a sample from the N(μ, σ2) distribution with
μ |σ2 ∼ N(μ0, τ

2
0σ

2), σ−2 ∼ gammarate(α0, β0) (X ∼ gammarate(α0, β0) when the den-
sity of X equals f(x) = Γ−1(α0)β

α0
0 xα0−1e−β0x when x > 0 and 0 otherwise). Then

T (x) = (x̄, ||x − x̄1||2) is a minimal sufficient statistic for the model. Note that the
prior is chosen by eliciting values for μ0, τ

2
0 , α0, β0 and so there is interest in how

sensitive inferences are to perturbations in each component separately. The posterior
distribution of (μ, σ2) is given by μ |σ2, T (x) ∼ N(μx, (n + 1/τ20 )

−1σ2), σ−2 |T (x) ∼
gammarate(α0 + n/2, β(x̄, s2)) where μx = (n + 1/τ20 )

−1(nx̄ + μ0/τ
2
0 ) and β(x̄, s2) =

β0 + (n− 1)s2/2 + n(x̄− μ0)
2/2(nτ20 + 1) with s2 = ||x− x̄1||2/(n− 1).

Consider first inferences for ψ = Ψ(θ) = σ2 and note that V (T (x)) = ||x −
x̄1||2 is ancillary given ψ and its distribution depends on ψ. Therefore, the prior on
σ2 is checked first using the prior predictive for V (T (x)). An easy calculation gives
that the prior distribution of s2 = V (T (x))/(n − 1) is (β0/α0)F (n − 1, 2α0) and
this specifies (10). While the results of Section 4.1 apply here, consider the behav-
ior of the relative belief ratio RB1(σ

2 |V (T (x))) which is based on only observing
V (T (x)) rather than T (x). By Proposition 4 this has Gâteaux derivative depending
on mQ,V (T )(V (T (x)))/mV (T )(V (T (x))). Notice, however, that relative belief ratios ac-
cumulate evidence in a simple way. For any statistic V (T (x)), then

RBΨ(ψ |T (x)) = πΨ(ψ |T (x))
πΨ(ψ)

=
πΨ(ψ |V (T (x)))

πΨ(ψ)

πΨ(ψ |T (x))
πΨ(ψ |V (T (x)))

where the first factor gives the evidence obtained after observing V (T (x)) and the sec-
ond factor gives the evidence obtained after observing T (x) having already observed
V (T (x)). So RB1(σ

2 |x) = RB1(σ
2 |V (T (x)))[RB1(σ

2 |T (x))/RB1(σ
2 |V (T (x)))] with

the same interpretation for the factors. As such, a lack of robustness of
RB1(σ

2 |V (T (x))), which can be connected to prior-data conflict through (10), implies
a lack of robustness for RB1(σ

2 |x).
When no prior-data conflict is obtained for the prior on σ2, then it makes sense

to look for prior-data conflict with the prior on μ which is typically the parameter of
primary interest. So now consider perturbations to the prior on μ and the relationship to
prior-data conflict with this prior. The conditional distribution of T (x) given V (T (x))
is given by the conditional prior predictive of x̄ given s2 which is distributed as μ0 +
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α1 β1
mQ,V (T )(V (T (x)))

mV (T )(V (T (x))) α1 β1
mQ,V (T )(V (T (x)))

mV (T )(V (T (x)))

5 1 0.05 1 5 0.07
5 2 0.38 2 5 0.25
5 4 0.99 4 5 0.81
5 10 0.34 10 5 0.53

Table 5: The ratio mQ,V (T )(V (T (x)))/mV (T )(V (T (x))) in Example 5 when there is no
conflict with the prior on σ2.

σ̃tn+2α0−1 where σ̃2 = {τ20 (nτ20 +1)(2β0+(n−1)s2)+1}/{nτ20 (n+2α0−1)} specifying
(11). Furthermore, for (13), Ξ(θ) = σ2 and θσ2(x) = (x̄, σ2) with

RB((x̄, σ2) |x)

=
(nτ20 + 1)

1
2

βα0
0

Γ(α0)

Γ(α0 + n/2)
(β(x̄, s2))α0+

n
2

(
1

σ2

)n
2

exp

{
− (n− 1)s2

2σ2

}

and so ∫ ∞

0

RB((x̄, σ2) |x)Π1(dσ
−2) = (nτ20 + 1)

1
2

(
β(x̄, s2)

β0 + (n− 1)s2/2

)α0+
n
2

.

Now consider a number of numerical examples where the base prior is always spec-
ified by μ0 = 0, τ20 = 1, α0 = 5 and β0 = 5. The behavior of the two factors in (12) is
examined when there is no prior-data conflict and when there is.

A sample of size n = 20 was generated from the N(0, 1) distribution obtaining
x̄ = −0.1066, s2 = 0.9087. So there should be no prior-data conflict with the prior
on σ2. Indeed, (10) equals 0.7626 so there is no indication of any problems with the
prior on σ2. Values of mQ,V (T )(V (T (x)))/mV (T )(V (T (x))) are recorded in Table 5 when
the marginal prior on σ2 is perturbed by a gammarate(α1, β1) distribution for various
values of α1 and β1. In all cases, the ratio is small and indicates robustness to local
perturbations of the prior on σ2. Note that the worst case behavior, over all possible
directions, is given by the maximized relative belief ratio for σ2 based on V (T (x)) which
occurs at σ2 = s2 and equals

RB1(s
2 |V (T (x)))

=
Γ(α0)

Γ(α0 + (n− 1)/2)
β−α0
0 e−

n−1
2 (s2)−

n−1
2

(
(n− 1)s2

2
+ β0

)n−1
2 +α0

.

In this case RB1(s
2 |V (T (x))) = 1.7479.

Next a sample of size n = 20 from the N(0, 25) was generated obtaining x̄ =
0.0950, s2 = 23.9593. So there is clearly prior-data conflict with the prior on σ2. This
is reflected in the value of (10) which equals 0.64 × 10−5. Table 6 shows that there is
a serious lack of robustness. The worst case behavior is given by RB1(s

2 |V (T (x))) =
40484.68.
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α1 β1
mQ,V (T )(V (T (x)))

mV (T )(V (T (x))) α1 β1
mQ,V (T )(V (T (x)))

mV (T )(V (T (x)))

5 1 0.00 1 5 5517.42
5 2 0.01 2 5 1245.26
5 4 2.34 4 5 13.78
5 10 23.51 10 5 0.00

Table 6: The ratio mQ,V (T )(V (T (x)))/mV (T )(V (T (x))) in Example 5 when there is
conflict with the prior on σ2.

α1 β1
mQ,V (T )(V (T (x))

mV (T )(V (T (x)) α1 β1
mQ,V (T )(V (T (x))

mV (T )(V (T (x))

5 1 0.03 1 5 0.09
5 2 0.29 2 5 0.31
5 4 0.92 4 5 0.86
5 10 0.44 10 5 0.38

Table 7: The ratio mQ,V (T )(V (T (x)))/mV (T )(V (T (x))) in Example 5 when there is
conflict with the prior on μ but not with the prior on σ2.

It is also relevant to consider what happens concerning the robustness of inferences
about σ2 when there is prior-data conflict with the prior on μ but not with the prior
on σ2. A sample of n = 20 was generated from the N(10, 1) distribution obtaining
x̄ = 9.7041, s2 = 1.0082, so there is clearly prior-data conflict with the prior on μ but
not with the prior on σ2. The value of (10) equals 0.6460 which gives no reason to doubt
the relevance of the prior on σ2. Table 7 shows that mQ,V (T )(V (T (x)))/mV (T )((T (x)))
is small and indicates robustness to local perturbations of the prior on σ2. The worst
case behavior is given by RB1(s

2 |V (T (x))) = 1.7218. This reinforces the claim that the
tail probabilities (10) and (11) are measuring different aspects of the data conflicting
with the prior.

Now consider perturbations to the prior on μ with the prior on σ2 fixed. A sample
of n = 20 was generated from a N(0, 1) obtaining x̄ = −0.1066, s2 = 0.9087 so there
is clearly no prior-data conflict with either component. This is reflected in the value
of (11) which equals 0.9150. Table 8 shows that the first factor mQ,T (T (x) |V (T (x)))/
mT (T (x) |V (T (x))) in (12) is small when the conditional prior on μ is perturbed by
N(μ1, τ

2
1 ) priors and thus demonstrates robustness to perturbations in these directions.

The worst case behavior is given by
∫∞
0

RB((x̄, σ2) |x)Π1(dσ
−2) = 4.6099 which is

comparatively small.

μ1 τ21
mQ,T (T (x) |V (T (x)))
mT (T (x) |V (T (x))) μ1 τ21

mQ,T (T (x) |V (T (x)))
mT (T (x) |V (T (x)))

−2 1 0.17 0 2 0.51
−1 1 0.66 0 3 0.34
1 1 0.54 0 4 0.26
2 1 0.12 0 5 0.21

Table 8: The ratio mQ,T (T (x) |V (T (x)))/mT (T (x) |V (T (x))) in Example 5 when there
is no conflict with the prior on σ2 or with the prior on μ.
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μ1 τ21
mQ,T (T (x) |V (T (x)))
mT (T (x) |V (T (x))) μ1 τ21

mQ,T (T (x) |V (T (x)))
mT (T (x) |V (T (x)))

−2 1 0.87 0 2 0.51
−1 1 0.96 0 3 0.34
1 1 0.98 0 4 0.26
2 1 0.90 0 5 0.21

Table 9: The ratio mQ,T (T (x) |V (T (x)))/mT (T (x) |V (T (x))) in Example 5 when there
is conflict with the prior on σ2 but not with the prior on μ.

μ1 τ21
mQ,T (T (x) |V (T (x)))
mT (T (x) |V (T (x))) μ1 τ21

mQ,T (T (x) |V (T (x)))
mT (T (x) |V (T (x)))

−2 1 0.01 0 2 117,584
−1 1 0.10 0 3 5,611,980
1 1 10.83 0 4 26,012,609
2 1 132.09 0 5 55,478,630

Table 10: The ratiomQ,T (T (x) |V (T (x)))/mT (T (x) |V (T (x))) in Example 5 when there
is no conflict with the prior on σ2 but there is with the prior on μ.

Table 9 gives some values of mQ,T (T (x) |V (T (x)))/mT (T (x) |V (T (x))) when a sam-
ple of n = 20 was generated from a N(0, 25), obtaining x̄ = 0.0950, s2 = 23.9593. So
in this case there is prior-data conflict with the prior on σ2 but not with the prior on
μ. The value of (11) equals 0.9150 which gives no indication of prior-data conflict with
the prior on μ. The tabulated values also indicate no serious robustness concerns as
does

∫∞
0

RB((x̄, σ2) |x)Π1(dσ
−2) = 4.5838. This also reinforces the claim that the tail

probabilities (10) and (11) are measuring different aspects of the data conflicting with
the prior.

Table 10 gives some values of mQ,T (T (x) |V (T (x)))/mT (T (x) |V (T (x))) when a
sample of n = 20 was generated from a N(10, 1) obtaining x̄ = 9.7941, s2 = 1.0082. So in
this case there is prior-data conflict with the prior on μ but not with the prior on σ2. The
value of (11) equals 0.1691×10−9 which gives a clear indication of prior-data conflict with
the prior on μ. In this case the tabulated values indicate a clear lack of robustness with
respect to the prior on μ. Also,

∫∞
0

RB((x̄, σ2) |x)Π1(dσ
−2) = 8,046,933,962 indicates

that the worst case behavior with respect to robustness is terrible.

Note that RB(θ(x) |x) and the similar ratios discussed in this section, do not mea-
sure robustness directly through the values they assume. Rather, the results of this
section show that, when prior-data conflict exists, these ratios tend to be larger than
when there is no prior-data conflict. Since these values influence relevant derivatives, this
indicates an increased sensitivity to the choice of the prior when such a conflict arises.
As such these ratios are not to be interpreted as measures of surprise as discussed in
Section 4.7.2 of Berger (1985).

6 Conclusions

Several optimal robustness results have been derived here for relative belief inferences.
These results provide support for these inferences for estimation and hypothesis assess-
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ment. Even though relative belief inferences have optimal robustness properties with
respect to choice of prior, this does not guarantee that they are robust in practice. The
issue of practical robustness in a given problem is seen to be connected with whether
or not there is prior-data conflict. With no prior-data conflict the inferences are robust
to small changes in the prior, at least in the sense measured here. This adds support
to the point-of-view that checking for prior-data conflict is an essential aspect of good
statistical practice.

It is interesting that the worst case behavior of the measure of sensitivity is associated
with the maximized value of a relative belief ratio. The actual maximum value attained
is meaningless, however, as there is no way to calibrate this as opposed to calibrating
the relative belief ratio at a fixed value via the strength. The relative belief estimate
is consistent, however, and the relative belief ratio at this value will, at least in the
continuous case, converge to infinity. So large values would seem to be associated with
high evidence in favor. What has been shown here is that large values can be associated
with prior-data conflict and a lack of robustness rather than providing high evidence.
When prior-data conflict is encountered the prior can be modified, following Evans and
Jang (2011c), to avoid this. While objections can be raised to taking such a step, it
seems necessary if we want to report a valid characterization of the evidence obtained.
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Birkhäuser. MR2427002. doi: http://dx.doi.org/10.1007/978-0-8176-4679-0.
706

Liseo, B. (1996). “A note on the concept of robust likelihoods.” Metron, LIV: 25–38.
709, 712

http://www.ams.org/mathscinet-getitem?mr=1256845
http://dx.doi.org/10.1016/0378-3758(92)00152-T
http://dx.doi.org/10.1016/0378-3758(92)00152-T
http://www.ams.org/mathscinet-getitem?mr=1294607
http://dx.doi.org/10.1016/0167-7152(94)90016-7
http://www.ams.org/mathscinet-getitem?mr=2267713
http://dx.doi.org/10.1002/cjs.5550340109
http://arxiv.org/abs/arXiv.1104.3258
http://www.ams.org/mathscinet-getitem?mr=2803740
http://dx.doi.org/10.1016/j.spl.2011.02.025
http://dx.doi.org/10.1016/j.spl.2011.02.025
http://www.ams.org/mathscinet-getitem?mr=2917964
http://dx.doi.org/10.1214/11-STS357
http://www.ams.org/mathscinet-getitem?mr=2282210
http://dx.doi.org/10.1016/j.spl.2011.02.025
http://dx.doi.org/10.1016/j.spl.2011.02.025
http://www.ams.org/mathscinet-getitem?mr=2471286
http://dx.doi.org/10.1214/07-EJS126
http://www.ams.org/mathscinet-getitem?mr=2023214
http://dx.doi.org/10.1142/9781860949531_0008
http://dx.doi.org/10.1142/9781860949531_0008
http://www.ams.org/mathscinet-getitem?mr=0448362
http://www.ams.org/mathscinet-getitem?mr=0356322
http://www.ams.org/mathscinet-getitem?mr=2427002
http://dx.doi.org/10.1007/978-0-8176-4679-0


728 Optimal Robustness and Prior-Data Conflict

Marshall, E. C. and Spiegelhalter, D. J. (2007). “Identifying outliers in Bayesian hi-
erarchical models: a simulation-based approach.” Bayesian Analysis, 2: 409–444.
MR2312289. doi: http://dx.doi.org/10.1214/07-BA218. 707

O’Hagan, A. (2003). “HSS model criticism (with discussion).” In Highly Structured
Stochastic Systems. Oxford University Press. MR2082418. 707

Piccinato, L. (1984). “A Bayesian property of likelihood sets.” Statistica, 2: 197–204.
MR0759306. 708, 709

Presanis, A. M., Ohlssen, D., Spiegelhalter, D. J., and Angelis, D. D. (2013). “Con-
flict diagnostics in directed acyclic graphs, with applications in Bayesian evidence
synthesis.” Statistical Science, 28: 376–397. MR3135538. doi: http://dx.doi.org/
10.1214/13-STS426. 707

Rios Insua, D. and Ruggeri, F. (2000). Robust Bayesian Analysis. Springer-Verlag.
MR1795206. doi: http://dx.doi.org/10.1007/978-1-4612-1306-2. 707

Royall, R. M. and Tsou, T. (2003). “Interpreting statistical evidence by using imper-
fect models: robust adjusted likelihood functions.” Journal of the Royal Statistical
Society. Series B., 65(2): 391–404. MR1983754. doi: http://dx.doi.org/10.1111/
1467-9868.00392. 707

Rudin, W. (1974). Real and Complex Analysis, New York: McGraw-Hill, second edition.
MR0344043. 706

Ruggeri, F. and Wasserman, L. (1993). “Infinitesimal sensitivity of posterior dis-
tributions.” The Canadian Journal of Statistics, 21(2): 195–203. MR1234761.
doi: http://dx.doi.org/10.2307/3315811. 707

Scheel, I., Green, P. J., and Rougier, J. C. (2011). “A graphical diagnostic for
identifying influential model choices in Bayesian hierarchical models.” Scandina-
vian Journal of Statistics, 38(3): 529–550. MR2833845. doi: http://dx.doi.org/
10.1111/j.1467-9469.2010.00717.x. 707

Sivaganesan, S., Berliner, M., and Berger, J. O. (1993). “Optimal robust credible sets for
contaminated priors.” Statistics and Probability Letters, 18(5): 383–388. MR1247450.
doi: http://dx.doi.org/10.1016/0167-7152(93)90032-E. 707

Tjur, T. (1974). Conditional Probability Distributions. Institute of Mathematical Statis-
tics, University of Copenhagen. MR0345151. 706

Wasserman, L. (1989). “A robust Bayesian interpretation of likelihood regions.” An-
nals of Statistics, 17(3): 1387–1393. MR1015159. doi: http://dx.doi.org/10.1214/
aos/1176347277. 707, 710

http://www.ams.org/mathscinet-getitem?mr=2312289
http://dx.doi.org/10.1214/07-BA218
http://www.ams.org/mathscinet-getitem?mr=2082418
http://www.ams.org/mathscinet-getitem?mr=0759306
http://www.ams.org/mathscinet-getitem?mr=3135538
http://dx.doi.org/10.1214/13-STS426
http://dx.doi.org/10.1214/13-STS426
http://www.ams.org/mathscinet-getitem?mr=1795206
http://dx.doi.org/10.1007/978-1-4612-1306-2
http://www.ams.org/mathscinet-getitem?mr=1983754
http://dx.doi.org/10.1111/1467-9868.00392
http://dx.doi.org/10.1111/1467-9868.00392
http://www.ams.org/mathscinet-getitem?mr=0344043
http://www.ams.org/mathscinet-getitem?mr=1234761
http://dx.doi.org/10.2307/3315811
http://www.ams.org/mathscinet-getitem?mr=2833845
http://dx.doi.org/10.1111/j.1467-9469.2010.00717.x
http://dx.doi.org/10.1111/j.1467-9469.2010.00717.x
http://www.ams.org/mathscinet-getitem?mr=1247450
http://dx.doi.org/10.1016/0167-7152(93)90032-E
http://www.ams.org/mathscinet-getitem?mr=0345151
http://www.ams.org/mathscinet-getitem?mr=1015159
http://dx.doi.org/10.1214/aos/1176347277
http://dx.doi.org/10.1214/aos/1176347277

	Introduction
	Relative Belief Inferences
	Optimal Robustness with Respect to the Marginal Prior
	Measuring Robustness Quantitatively
	Sensitivity to the Marginal Prior
	Sensitivity to the Conditional Prior

	Robustness and Prior-Data Conflict
	Conclusions
	References

