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Latent Space Approaches to Community
Detection in Dynamic Networks

Daniel K. Sewell∗ and Yuguo Chen†

Abstract. Embedding dyadic data into a latent space has long been a popular
approach to modeling networks of all kinds. While clustering has been done using
this approach for static networks, this paper gives two methods of community
detection within dynamic network data, building upon the distance and projection
models previously proposed in the literature. Our proposed approaches capture the
time-varying aspect of the data, can model directed or undirected edges, inherently
incorporate transitivity and account for each actor’s individual propensity to form
edges. We provide Bayesian estimation algorithms, and apply these methods to a
ranked dynamic friendship network and world export/import data.

Keywords: clustering, longitudinal data, Markov chain Monte Carlo, mixture
model, Pólya–Gamma distribution, variational Bayes.

1 Introduction

Researchers are often interested in detecting communities within dyadic data. These
dyadic data are represented as networks with a certain number of actors which can form
amongst themselves relationships/connections called edges. Some examples of such data
include social networks, collaboration networks, biological networks, food-webs, power
grids, linguistic networks. These dyadic data can have directed or undirected edges, have
zero-one or weighted edges and can come in the form of static or dynamic (time-varying)
networks. Clustering these data into communities can lead to better understanding of
the organization of the objects in the network, and, for dynamic networks, how this
organization evolves over time.

Xing et al. (2010) developed a dynamic mixed membership stochastic blockmodel.
This work builds on the stochastic blockmodel (Holland et al., 1983), further developed
into the mixed membership blockmodel (Airoldi et al., 2005). In the work of Xing et al.
(2010), each actor has an individual membership probability (time-varying) vector and,
based on this probability vector, can choose certain roles with which to interact with
other actors. A different approach to be taken in this paper begins with the work of
Hoff et al. (2002) where the actors are embedded either within a latent Euclidean space,
referred to as the distance model, or within a hypersphere, referred to as the projection
model. Handcock et al. (2007) used their distance model and performed community
detection on the latent actor positions. Further, the distance model of Hoff et al. (2002)
was extended by Sewell and Chen (2015b) and Durante and Dunson (2014) to include
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dynamic network data, and Sewell and Chen (2015a, 2016a) extended their dynamic
model to allow for various types of weighted edges.

Applying a latent space model has distinct advantages over other approaches, such
as blockmodeling. Using a latent space approach allows the user to capture local and
global structures. The output yields meaningful visualization of the data, providing rich
qualitative information. Transitivity and reciprocity, two important features of many
networks, is inherently incorporated in the model. In our proposed methodology, the
variation in individual edge propensities, often described by their degree distributions,
is accounted for. Finally, homophily can be easily incorporated into the model just as in
latent space approaches for static networks. That is, exogenous actor attributes can be
incorporated into the linear modeling; these covariates may also be added by extending
the hierarchical model to predict cluster assignments (see Gormley and Murphy, 2010).

This work provides advances beyond the existing literature on latent space network
models by constructing mechanisms to perform community detection on dynamic net-
work data and providing Bayesian estimation methods. Specifically, the primary goals
of our proposed methodology are to determine what communities exist in the network,
which actors belong to these communities and how these actors change communities
over time. The proposed methodology accomplishes these clustering goals while main-
taining a very flexible framework that can handle directed or undirected dyads and
virtually any type of weighted edges, e.g., ranked dynamic network data. Information
is borrowed across time to obtain more accurate clustering estimates. In addition, we
present clustering models based on the two common geometries used in the latent space
literature, Euclidean spaces and hyperspheres. To the authors’ knowledge there is no
existing latent space methodology that achieves these community detection goals for dy-
namic networks with either geometry, and no such methodology even for static networks
which utilize the hypersphere geometry.

The remainder of the paper is as follows. Section 2 gives the model and methodology.
Section 3 gives estimation methods. Section 4 describes a simulation study. Section 5
reports the results from analyzing Newcomb’s fraternity data (Newcomb, 1956) and
world trade data. Section 6 gives a discussion.

2 Models

The data we will analyze are of the form (N , {Et : t ∈ {1, 2, . . . , T}}), where N is the
set of all actors (also called by some authors nodes or vertices), and Et ⊆ {{i, j}, i, j ∈
N , i �= j} is the set of edges at time t. The edges Et can be viewed as an adjacency
matrix Yt with entries yijt denoting the edge from actor i to actor j at time t. The
latent space approach to modeling networks assumes that there is, for each actor at
each time point, a latent position within a network space which represents unobserved
actor attributes. We will assume that at each time point, each actor belongs to one of
a fixed number G of clusters; this cluster assignment may change over time. We will
denote the latent position of actor i at time t as Xit and the cluster assignment for
actor i at time t as Zit, a G dimensional vector in which one element is 1 and the
others are zero. We will also let Xt = (X ′

1t, . . . ,X
′
nt)

′ and Zt = (Z ′
1t, . . . ,Z

′
nt)

′. While
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the dependency structure of the model may vary, we assume throughout the paper that
given the latent positions Xt, Yt and Ys, s �= t, are conditionally independent; in many
cases (such as binary networks) this assumption can be further extended such that yijt
and yi′j′t are conditionally independent given Xt.

In community detection within a latent space approach, we use the decomposition

π({Yt,Xt,Zt}Tt=1) = π({Yt}Tt=1|{Xt}Tt=1)π({Xt,Zt}Tt=1). (1)

The idea here is that the edge probabilities are determined by some underlying attributes
which are captured in the latent variables. Thus if we detect a community in the network
it is because there is a corresponding cluster of attributes. For example, if we see in a
social network a group of close friends, this close group, or community, exists because
these friends are similar in some fundamental ways, i.e., they have attributes that are
clustered together.

2.1 Distance model

Within the context of the distance model, the network is embedded within a latent
Euclidean space, where the probability of edge formation increases as the Euclidean
distance between actors decreases. Let D(Xt) denote the n × n distance matrix con-
structed such that (D(Xt))ij � dijt = ‖Xit −Xjt‖. In general we will assume that the
density of Yt can be written as a function of the distance matrix D(Xt) and some set of
likelihood parameters, which we will denote as θ�. For example, the original likelihood
for binary networks in Hoff et al. (2002) is

P(yijt = 1|Xt, θ�) =
exp{yijtηijt}
1 + exp{ηijt}

, ηijt = α− dijt, (2)

where in this context θ� = {α}. Variants of this likelihood have been proposed, such
as in Sarkar and Moore (2005), Krivitsky et al. (2009), and Sewell and Chen (2015b).
This last was then extended to account for a wide range of weighted networks in Sewell
and Chen (2016a). Other likelihoods may be better suited for various other types of
weighted edges (see, e.g., Sewell and Chen, 2015a).

Handcock et al. (2007) clustered static network data by clustering the latent posi-
tions via a normal mixture model. This cannot be directly applied to dynamic network
data since the latent positions must have some sort of temporal dependency imposed.
Therefore we propose applying the model-based longitudinal clustering model given
by Sewell et al. (2016) to the latent positions. Our focus here is the modeling of the
latent positions, which can then be used for whatever likelihood formulation is most
appropriate to the data. We will now describe this model for the latent variables.

We make two assumptions on the latent positions and the cluster assignments. First,
the cluster assignments are assumed to follow a Markov process, i.e.,

Zit|Zi1, . . . ,Zi(t−1)
D
= Zit|Zi(t−1).
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Second, given the current cluster assignment and all previous cluster assignments and
latent positions, we assume the current latent positions depend only on the previous
latent positions and the current cluster assignments, i.e.,

Xit|Xi1, . . . ,Xi(t−1),Zi1, . . . ,Zit
D
= Xit|Xi(t−1),Zit.

The joint density of the latent positions and the cluster assignments is given as

π({Xt}Tt=1, {Zt}Tt=1)

=

n∏
i=1

G∏
g=1

[
β0gN(Xi1|μg,Σg)

]Zi1g

×
T∏

t=2

G∏
h=1

[
G∏

k=1

[
βhkN(Xit|λμk + (1− λ)Xi(t−1),Σk)

]Zitk

]Zi(t−1)h

, (3)

where N(X|μ,Σ) is the normal density with mean vector μ and covariance matrix
Σ evaluated at X. Thus the communities are each modeled as a multivariate normal
distribution in the latent space with mean μg and covariance matrix Σg. Since these refer
to the location and shape of the gth community in the latent network space, we will refer
to μg and Σg as the gth community location and community shape respectively. The
mean of the latent positionXit is then modeled as λμg+(1−λ)Xi(t−1), λ ∈ (0, 1), which
is a blending of the current cluster effect μg with the individual temporal effect Xi(t−1).
Hence we will refer to λ as the blending coefficient. The β0g’s determine the probability
of initially belonging to the gth community and the βhk’s determine the probability of
transitioning from the hth community to the kth community. We will therefore refer to
the vectors β0 = (β01, . . . , β0G) and βh = (βh1, . . . , βhG), h = 1, . . . , G, respectively as
the initial clustering parameter and the transition parameter for group h.

2.2 Projection model

Cox and Cox (1991) and Banerjee et al. (2005) gave many contexts in which there has
been empirical evidence that embedding data onto a hypersphere and/or using cosine
distances is preferable to Euclidean space/distances. Here we continue this tradition
by embedding dynamic network data onto the hypersphere. In this section we assume
the more specific, but most commonly encountered, context of directed binary edges
(the model to be proposed can be simplified for undirected edges). In the projection
model, every actor is embedded within some latent hypersphere; the probability of
an edge forming between two actors depends on the angle, rather than the Euclidean
distance, between them. Thus it is the angle between any two actors that represents the
“closeness” of the actors. Though the latent space is strictly a Euclidean space rather
than a hypersphere, it is more helpful to think of the positions within �p as unit vectors
on a p − 1 dimensional hypersphere with individual edge propensities reflected in the
magnitude of the latent positions.

Our proposed likelihood of the adjacency matrices adapts the likelihood of the pro-
jection model originally proposed by Hoff et al. (2002), and extends Durante and Dunson
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(2014) to allow for directed edges. The specific form of the likelihood is given as

π({Yt}Tt=1|{Xt}Tt=1, θ�) =

T∏
t=1

∏
i �=j

exp{yijtηijt}
1 + exp{ηijt}

, (4)

ηijt = α+ sjX
′
itXjt (5)

= α+ ‖Xit‖ · (sj‖Xjt‖) · cos(φijt), (6)

where φijt is the angle between Xit and Xjt; in this context θ� = {α, s}, where α
reflects a baseline edge propagation rate and s = (s1, . . . , sn) is a vector of actor specific
parameters that reflect how the tendency of the actors to receive edges relates to the
tendency to send edges. We therefore refer to s as the receiver scaling parameters. While
(5) is simpler, (6) makes it clear how the probability of an edge from i to j is made up
of some constant plus the product of the sending effect of i, the receiving effect of j,
and the closeness between i and j in the latent space as measured by the cosine of the
angle between the two actors.

The question remains as to how to perform clustering. With the projection model
the latent positions are embedded within a hypersphere, and thus the clustering must
be done in a fundamentally different way than that done for the distance model. Since
we would expect a group of highly connected actors to have small angles between them
all, we propose clustering based on the angles of the actors’ latent positions.

We first assume that the latent positions follow a hidden Markov model, with the
cluster assignments as the hidden states. That is, the cluster assignments follow a
Markov process (i.e., given Zi(t−1), Zit is conditionally independent of Zi(t−s) for any
s > 1), and given the cluster assignments Zt, the latent positions Xt are assumed to
be conditionally independent of Xs for any s �= t.

The joint density on the latent positions and cluster assignments is given as

π({Xt}Tt=1, {Zt}Tt=1) =
n∏

i=1

G∏
g=1

[
β0gN(Xi1|riug, τ

−1
i Ip)

]Zi1g

×
T∏

t=2

G∏
h=1

[
G∏

k=1

[
βhkN(Xit|riuk, τ

−1
i Ip)

]Zitk

]Zi(t−1)h

, (7)

where Ip is the p × p identity matrix. As with the distance model of Section 2.1, the
communities are modeled as multivariate normal distributions within the latent space.
Here r = (r1, . . . , rn), the radii of the means of the Xit’s, are individual effects rep-
resenting the individual propensities to send edges; hence we refer to r as the sender
propensities. ug is the unit vector corresponding to the direction of the gth community,
and hence we refer to the ug’s as the community directions. τ = (τ1, . . . , τn) are the
precision parameters, and β0 = (β01, . . . , β0G) and βh = (βh1, . . . , βhG), h = 1, . . . , G,
are again respectively the initial clustering parameter and the transition parameter for
group h.

From (7) we can see how the different aspects of the network are captured in the
joint density of {Xt}Tt=1 and {Zt}Tt=1. The clusters are completely determined by the
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community directions ug. Thus if two actors belong to the same cluster then they have
the same mean direction, and therefore the model will deem these two actors as similar
(based on the cosine of their angle). The permanence and transience of the clusters
are captured in the transition parameters βh, h = 1, . . . , G. The individual effects are
captured by the sender propensities r and the receiver scaling parameters s. To see
this more clearly, notice that the square of the individual sending effect (and the scaled
individual receiving effect), ‖Xit‖2, has mean pτ−1

i + r2i ; under the quite reasonable
assumption that ↑ ri �=⇒ ↓ τ−1

i (we would expect the opposite to occur), we see that ri
has a direct effect on the individual effect. The difference in individual i’s sending and
receiving effect is given by the ith receiver scaling parameter si.

Note that the parameterization (5) of the likelihood (4) is not identifiable, as s
and Xt can be scaled arbitrarily. The estimation is done within a Bayesian framework,
however, and thus by fixing the hyperparameters corresponding to the priors on the
unknown parameters, the posterior distribution is identifiable.

3 Estimation

Our estimation is done within the Bayesian framework, with the goal of finding the
maximum a posteriori (MAP) estimators of the unknown parameters and latent posi-
tions.

3.1 MCMC for the distance model

We propose a Markov chain Monte Carlo (MCMC) method to obtain posterior modes
to estimate the latent positions and model parameters of the distance model given
in Section 2.1. Specifically, we implement a Metropolis–Hastings (MH) within Gibbs
sampler.

We assign the following priors:

λ ∼ N(0,1)(νλ, ξλ), (8)

μg ∼ N(0, τ2Ip) for g = 1, . . . , G, (9)

Σg ∼ W−1(p+ 1, diag(γ1, . . . , γp)) for g = 1, . . . , G, (10)

τ2 ∼ Γ−1(a, b), (11)

γ� ∼ Γ(c, 1/d) for  = 1, . . . , p, (12)

βh ∼ Dir(1, . . . , 1) for h = 0, 1, . . . , G, (13)

where N(0,1)(μ, σ
2) indicates the normal distribution with mean μ and variance σ2 trun-

cated to the range of (0, 1), W−1(a,B) indicates the inverse Wishart distribution with
degrees of freedom a and scale matrix B, diag(d1, . . . , dK) indicates a K × K diag-
onal matrix with d1, . . . , dK on the diagonal, Dir(a1, . . . , aK) indicates the Dirichlet
distribution with parameters a1 to aK , Γ−1(a, b) indicates the inverse gamma distri-
bution with shape and scale parameters a and b respectively, and Γ(a, b) indicates the
gamma distribution with shape and scale parameters a and b respectively. Additionally,
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there will be some prior π(θ�) on the likelihood parameters θ� that will depend on the
formulation of the likelihood.

With the exception of the latent positions and θ�, these priors are conjugate with
respect to the full conditional distributions; these distributions are given in the sup-
plementary material (Sewell and Chen, 2016b). For the latent positions, MH steps are
necessary. The context specific form of the likelihood will determine whether the like-
lihood parameters θ� can be sampled directly or whether the user needs to implement
MH steps here as well (see Sections 4.1 and 5.1 for examples).

3.2 Variational Bayesian inference for the projection model

Polson et al. (2013) gave a data augmentation scheme for logistic models by utilizing
the Pólya–Gamma distribution. This scheme starts by introducing a random variable
ωijt which, given ηijt, follows PG(1, ηijt), where PG(b, c) denotes the Pólya–Gamma
distribution with parameters b > 0 and c ∈ �. This auxiliary variable ωijt is condition-
ally independent of yijt given ηijt. Polson et al. show that the conditional joint density
of yijt and ωijt can be written as

π(yijt, ωijt|ηijt) =
1

2
e(yijt−1/2)ηijte−ωijtη

2
ijt/2PG(ωijt|1, 0), (14)

where PG(ω|b, c) is the Pólya–Gamma density with parameters b and c evaluated at ω.
This data augmentation leads to tractable forms for the full conditional distributions of
the model parameters and latent positions, leading to efficient and accurate estimation
for binary data using Gibbs sampling (Choi and Hobert, 2013), the EM algorithm (Scott
and Sun, 2013) and, as we will show here, variational Bayes (VB) approaches.

Using Polson et al.’s work we may either implement a Gibbs sampler, as each full con-
ditional distribution belongs to a well known family from which we can sample, or alter-
natively we may implement a mean field VB algorithm. Unlike a MCMC approach which
obtains samples approximately from the posterior distribution, the VB algorithm here
iteratively finds an approximation to the posterior density π({Xt,Zt}Tt=1, θ�, θp|{Yt}Tt=1),
where θp is all the remaining model parameters corresponding to the prior on {Xt,Zt}Tt=1.
Using the mean field VB implies that we are finding a factorized approximation Q of the
posterior which minimizes the Kullback–Liebler divergence between the true posterior
and Q. This factorized form will be given shortly.

VB procedures have been gaining popularity in large part due to their greatly
decreased computational cost in comparison with most sampling methods.
Salter-Townshend and Murphy (2013) applied VB to the static latent space cluster
model for networks given by Handcock et al. (2007) (which is a static form of the dis-
tance model). Within this iterative scheme, the factorized distributions of the latent
positions and many of the model parameters required numerical optimization tech-
niques, as a closed form analytical solution was unavailable. By utilizing the projection
model as described in Section 2.2, however, we can find closed form solutions for each
iteration, thereby reducing the computational cost involved in the estimation algorithm.
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We assign the following priors:

ωijt ∼ PG(1, 0) for t = 1, . . . , T , 1 ≤ i �= j ≤ n, (15)

si ∼ Exp(1) for i = 1, . . . , n, (16)

ri|τi ∼ Γ(1, cτ−1
i ) for i = 1, . . . , n, (17)

τi ∼ Γ(a∗2, b
∗
2) for i = 1, . . . , n, (18)

α ∼ N(0, b∗3), (19)

π(ug) =
Γ(p/2)

2πp/2
for h = 0, 1, . . . , G, (20)

βh ∼ Dir(γ∗
h) for h = 0, 1, . . . , G. (21)

To estimate the posterior π({Xt,Zt}Tt=1, θ�, θp|{Yt}Tt=1), we use the factorized approxi-
mation Q, which looks like

Q(Ω, {Xt}Tt=1, {Zt}Tt=1, α, s, r, τ ,u, {βh}Gh=0)

= q(Ω)q({Xt}Tt=1)q({Zt}Tt=1)q(α)q(s)q(r)q(τ )q(u)q({βh}Gh=0), (22)

where Ω = {ωijt}t,i �=j . Using the priors given above, the factorized distributions on the
right hand side of (22) all belong to well known families of distributions. The exact
forms are given in the supplementary material.

Of interest is the computational time required for our proposed methods, and in par-
ticular how the VB algorithm decreases the computational time required. We recorded
the times required to implement both our VB approach (500 iterations) and the corre-
sponding Gibbs sampler (50,000 samples drawn), letting n be 100, 200, 400, 600, 800,
and 1,000. The times are given graphically in Figure 1. From this we can see that the
VB algorithm shows drastic reduction in computational cost. We will see in Section 4,
however, that the performance of the VB and Gibbs sampler are very similar.

3.3 Initialization

Our context involves a high dimensional estimation problem, and so how we initialize
the MCMC or the VB algorithm plays a non-negligible role in the performance. We
performed a small sensitivity analysis of the starting conditions of our algorithms, the
details of which can be found in the supplementary material. The results indicated that
under some conditions the VB algorithm for the projection model can be sensitive to
the initialization scheme, though it did not appear that either of the MCMC algorithms
(the Gibbs sampler for the projection model and the MH within Gibbs sampler for the
distance model) were particularly sensitive. The full details on how we initialized the
algorithms are given in the supplementary material.

3.4 Number of communities

An implicit challenge underlying the previous discourse is that in practice we do not in
general know the number of communities G. We found the strategy given by Handcock
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Figure 1: Run time in minutes for 50,000 draws using the MCMC algorithm (dashed
line, squares) and 500 iterations of the VB algorithm (solid line, circles).

et al. (2007) to be quite successful in our simulation study (see Section 4.3). We briefly
summarize this method and refer the interested reader to the original source for more
details.

Rather than estimating the integrated likelihood π({Yt}Tt=1|G) as would typically
be done, we instead consider the joint distribution of the observed network data and
unobserved latent positions, using our MAP estimator as the fixed values of the latent
positions, i.e., π({Yt}Tt=1, {X̂t}Tt=1|G), where {X̂t}Tt=1 is the MAP estimators of the latent
positions. We can rewrite this as

π({Yt}Tt=1, {X̂t}Tt=1|G) =

∫
π({Yt}Tt=1|{X̂t}Tt=1, θ�)π(θ�)dθ�

∫
π({X̂t}Tt=1|θp)π(θp)dθp,

(23)
where all distributions are implicitly conditioning on G. The two integrals on the right
hand side of (23) can each be estimated via the Bayesian information criterion (BIC),

thus allowing us to find the BIC approximation of 2 log(π({Yt}Tt=1, {X̂t}Tt=1|G)) as

BIC = BIC1 +BIC2,

where

BIC1 = 2 log(π({Yt}Tt=1|{X̂t}Tt=1, θ̂�))− dim(θ�) log
( ∑

t,i �=j

yijt

)
,

BIC2 = 2 log(π({X̂t}Tt=1|θ̂p))− dim(θp) log(nT ).

Rather than using maximum likelihood estimators for θ̂� and θ̂p in computing the
BIC’s, we used the MAP estimators, as was also done in, e.g., Fraley and Raftery
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(2007). We remark that for the projection model, since the posterior modes found by
the VB and the Gibbs sampler perform comparably (see Section 4.1), this BIC model
selection method is still valid for the VB estimates. This is because we only need the
posterior mode, and hence any inaccuracies in the posterior variances/covariances of the
parameters induced by approximating the posterior distribution with the VB factorized
distribution will not affect the BIC criterion. One last note is that we utilized recursive
relations identical or similar to those given in Sewell et al. (2016) in order for the number

of terms required to compute π({Xt}Tt=1|θ̂p) to be linear, rather than exponential, with
respect to T .

4 Simulation study

4.1 Method evaluation

We simulated 200 binary networks, each with n = 100 actors and T = 10 time points.
These 200 data sets were subdivided evenly in two different ways. First, half of the data
sets were generated according to the distance model, the other half via the projection
model. Second, half of the data sets had sticky cluster transition probabilities, letting
the βhh’s take large values (recall that βh is the transition parameter for group h), while
the other half had more transitory transition probabilities, letting the βhh’s to take more
moderate values. In summary, we had 50 data sets from the distance model with sticky
transition probabilities, 50 from the distance model with transitory transitions, 50 from
the projection model with sticky transition probabilities, and 50 from the projection
model with transitory transitions. Details on how the data were generated will be given
shortly.

We compared various methods in four ways. The first was to evaluate how well the
model explains the data used to fit the model. To this end we obtained in-sample edge
predictions and computed the AUC (area under the receiver operating characteristic
curve); a value of one implies a perfect fit, whereas a value of 0.5 implies that the pre-
dictions are random. As a good in-sample fit may be due to overfitting the data, we also
looked at one step ahead predictions. We obtained one step ahead predicted probabil-
ities and computed the correlation with the true one step ahead probabilities. We aim
to stress, however, that prediction is not the primary purpose of this methodology, but
rather to accurately recover hidden communities in the network object. We thus com-
pared the true clustering assignments with the estimated clustering assignments using
two methods. The first is the corrected Rand index (CRI), which can be viewed as a
measure of misclassification. Values close to 1 indicate nearly identical clustering assign-
ments and values near zero indicate what one might expect with two random clustering
assignments. Second, we computed the variation of information (VI) (Meilă, 2003). The
VI is a true metric, and hence a smaller VI value implies that the two clusterings being
compared are closer to being identical.

For each of the 200 simulations we compared six methods. The first two are the VB
algorithm and the Gibbs sampler for the projection model. The third is the distance
model. Here we used the likelihood formulation found in the dynamic latent space model
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of Sewell and Chen (2015b). This likelihood is given as

logit(P(yijt = 1|Xt, βIN , βOUT , si, sj)) = βIN

(
1− dijt

sj

)
+ βOUT

(
1− dijt

si

)
, (24)

where βIN and βOUT are global parameters that reflect the relative importance of
popularity and activity respectively, the si’s are actor specific parameters that reflect
the tendency to send and receive edges, and dijt is the distance between actors i and j
within the latent Euclidean space at time t. Estimation is done by putting a bivariate
normal prior on βIN and βOUT , a Dirichlet prior on the si’s, and incorporating these
parameters in the MH within Gibbs MCMC algorithm of Section 3.1. The fourth and
fifth methods were the clustering models of Handcock et al. (2007) and of Krivitsky
et al. (2009), implemented in the latentnet R package (Krivitsky and Handcock, 2008,
2015). These latter two models cluster static networks via a latent space approach;
to apply them to dynamic networks, clustering was performed at each time point and
then combined sequentially using the relabeling algorithm given in Papastamoulis and
Iliopoulos (2010). Note that these two methods, being static models, cannot be used to
perform one step ahead predictions. Lastly we used the temporal exponential random
graph model (TERGM) (Hanneke et al., 2010), as implemented in the btergm R package
(Leifeld et al., 2015). The terms we specified for the TERGM were the total number
of edges in the network, the number of reciprocated edges, the number of transitive
triples, the number of cyclic triples, in-degrees and out-degrees, the number of lagged
reciprocated edges, and the stability of the network. Note that this method can be
used to determine in-sample predictions and one step ahead predictions, but has no
functionality for determining cluster assignments. All MCMC methods were used to
obtain 50,000 samples.

For the data sets generated according to the distance model, we set the blending
coefficient λ = 0.8, the dimension of the latent space p = 2, the total number of clusters
G = 6, and the likelihood parameters βIN = 0.3, and βOUT = 0.7. We set the community
locations μg to be (−0.03, 0), (−0.01, 0), (0.01, 0), (0.03, 0), (0, 0.02), and (0,−0.02).
We drew the community shapes Σg, g = 1, . . . , G, from W−1(13, (1 × 10−5)I2), the
initial clustering parameter β0 ∼ Dir(10, . . . , 10), and for h = 1, . . . , 6, the transition
parameter βh for group h was set to was set to be proportional to(

1

‖μ1 − μh‖
, . . . ,

1

‖μh−1 − μh‖
,

const×max
k �=h

{
1

‖μk − μh‖

}
,

1

‖μh+1 − μh‖
, . . . ,

1

‖μK − μh‖

)
.

For sticky transition probabilities we set the constant in the above equation equal to 20
which yields probabilities from 0.82 to 0.87 of remaining in the same cluster, and for
transitory transition probabilities we set the constant equal to 10 which yields prob-
abilities from 0.70 to 0.77 of remaining in the same cluster. The cluster assignments
{Zt}Tt=1 and latent positions {Xt}Tt=1 were drawn according to (3), and the actor spe-

cific parameters (s1, . . . , sn) ∼ Dir(100
1/‖X1,1‖

maxj(1/‖Xj,1‖) , . . . , 100
1/‖X100,1‖

maxj(1/‖Xj,1‖) ). Finally,

the adjacency matrices were simulated according to (24). This led to an average density
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of the simulated networks (taken over all time points of all simulations) of 0.221 and
0.222 for sticky and transitory transition probabilities respectfully. The average modu-
larity (again averaged over all time points of all simulations) was 0.299 and 0.287 for
sticky and transitory transition probabilities respectfully, giving a measure of how well
separated the clusters are. Specifically, the modularity (originally defined by Clauset
et al., 2004, for undirected networks) as implemented in the igraph package (Csardi and
Nepusz, 2006) is

1

2St

∑
i �=j

(
Y ∗
ijt −

kitkjt
2St

)
1{Z′

itZjt=1},

where St is the number of edges in the network at time t, Y ∗
t is the n × n symmetric

adjacency matrix constructed by setting Y ∗
ijt = Y ∗

jit = (Yijt + Yjit)/2, and kit is the
average of the in degree and out degree for actor i at time t. For comparison, an Erdős–
Rényi graph with comparable density has on average a modularity of 0.076, and a
network consisting of 5 fully connected subgraphs, each of which are fully disconnected,
has a modularity of 0.8 (and a density of 0.19).

For the data sets generated according to the projection model, we set the total num-
ber of clusters G = 6, the dimension of the latent space p = 3, the baseline propagation
rate α = −5, the initial clustering parameter β0 = (1/6, . . . , 1/6) and the community
directions

(u1, . . . ,u6) =

[
−15 30 60 105 45 45
0 0 0 0 60 −60

]
,

where ug are given in the spherical coordinate angles in degrees. For h = 1, . . . , 6, the
transition parameter βh was set to be proportional to (exp(const ·u′

hu1), . . . , exp(const ·
u′
hu6)). For sticky transition probabilities we set the constant above equal to 8 which

yields probabilities from 0.68 to 0.96 of remaining in the same cluster, and for transitory
transition probabilities we set the constant equal to 5 which yields probabilities from
0.52 to 0.83 of remaining in the same cluster. For i = 1, . . . , 100, we simulated the
receiver scaling parameters si ∼ N(1, 0.15), the sender propensities ri ∼ N(2.3, 0.052),
and set the precision parameters τi = 175/r2i . The cluster assignments {Zt}Tt=1 and
latent positions {Xt}Tt=1 were drawn according to (7). Finally, the adjacency matrices
were simulated according to (4) and (5). This led to an average modularity of 0.305 and
0.279 for sticky and transitory transition probabilities respectfully. The average density
of the simulated networks was 0.183 and 0.191 for sticky and transitory transition
probabilities respectfully.

Table 1 gives the simulation results. The AUC values show that the TERGM fits
the data poorly, but all the other methods fit rather comparably. However, looking at
the CRI and VI we see that the static methods are overfitting the model; that is, they
are providing good predicted probabilities for the observed data used to fit the model
but are not doing so well at capturing the underlying truth. The correlation between
the estimated one step ahead probabilities and the true probabilities are much higher
for our methods than for the TERGM. Note that both the projection model and the
distance model provide good predictive performance regardless of the true geometry of
the latent space and regardless of the cluster transition probability matrix. Once we
start looking at the CRI and the VI, which is of primary importance with respect to the
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True model Transitions Fitted model AUC (in sample) Correlation (one step ahead) CRI VI

Projection Sticky Projection (VB) 0.889 (0.00579) 0.987 (0.00376) 0.987 (0.00967) 0.0560 (0.0284)
Projection Sticky Projection(MCMC) 0.885 (0.00601) 0.975 (0.00401) 0.984 (0.00889) 0.0676 (0.0265)
Projection Sticky Distance 0.875 (0.00623) 0.933 (0.0155) 0.954 (0.0182) 0.150 (0.0491)
Projection Sticky Handcock et al. 0.876 (0.00664) NA 0.799 (0.0893) 0.518 (0.192)
Projection Sticky Krivitsky et al. 0.899 (0.00543) NA 0.806 (0.0866) 0.485 (0.185)
Projection Sticky TERGM 0.619 (0.0154) 0.270 (0.114) NA NA

Projection Transitory Projection (VB) 0.884 (0.00444) 0.980 (0.0130) 0.981 (0.0767) 0.0741 (0.193)
Projection Transitory Projection(MCMC) 0.880 (0.00458) 0.962 (0.0153) 0.977 (0.0743) 0.0862 (0.187)
Projection Transitory Distance 0.870 (0.00458) 0.922 (0.0222) 0.944 (0.0692) 0.183 (0.170)
Projection Transitory Handcock et al. 0.871 (0.00497) NA 0.520 (0.109) 1.36 (0.328)
Projection Transitory Krivitsky et al. 0.895 (0.00392) NA 0.528 (0.113) 1.31 (0.335)
Projection Transitory TERGM 0.618 (0.0144) 0.261 (0.0749) NA NA

Distance Sticky Projection (VB) 0.862 (0.00523) 0.858 (0.0287) 0.876 (0.0404) 0.436 (0.102)
Distance Sticky Projection(MCMC) 0.855 (0.00585) 0.863 (0.0275) 0.903 (0.0428) 0.349 (0.104)
Distance Sticky Distance 0.863 (0.00575) 0.928 (0.0303) 0.981 (0.0542) 0.0821 (0.129)
Distance Sticky Handcock et al. 0.861 (0.00518) NA 0.733 (0.141) 0.798 (0.406)
Distance Sticky Krivitsky et al. 0.879 (0.00520) NA 0.719 (0.1334) 0.861 (0.391)
Distance Sticky TERGM 0.601 (0.0146) 0.293 (0.0663) NA NA

Distance Transitory Projection (VB) 0.853 (0.00667) 0.845 (0.0338) 0.820 (0.0751) 0.583 (0.202)
Distance Transitory Projection(MCMC) 0.846 (0.00702) 0.834 (0.0272) 0.864 (0.0731) 0.455 (0.197)
Distance Transitory Distance 0.851 (0.00644) 0.882 (0.0351) 0.889 (0.122) 0.364 (0.295)
Distance Transitory Handcock et al. 0.851 (0.00572) NA 0.418 (0.115) 1.78 (0.371)
Distance Transitory Krivitsky et al. 0.872 (0.00585) NA 0.421 (0.102) 1.73 (0.311)
Distance Transitory TERGM 0.597 (0.0140) 0.224 (0.0378) NA NA

Table 1: Simulation results from data generated according to the distance and projection models with both sticky and transitory
cluster transition probabilities. The median values are reported, with standard deviations in parentheses. The AUC corresponds
to the data used to fit the model, the Correlation (one step ahead) values correspond to the correlation between the estimated
probabilities and the true probabilities, the CRI and VI are the corrected Rand index and variation of information respectively
between the true and estimated cluster assignments.
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Figure 2: The Variation of Information (VI) values from the simulation study are given
here graphically, separated by the underlying true geometry (distance/projection) and
the type of transition (sticky/transitory).

goals of the proposed work, we notice several things. First, when using the projection
model, the VB and the Gibbs sampler yield very similar performance. Second, when
the geometry of the latent space is misspecified, our proposed models still perform
quite well and in fact perform similarly to the correctly specified model. Lastly, we
note that the performance of the static methods deteriorate when the probabilities of
changing clusters increase. The VI values are also given graphically in Figure 2, visually
demonstrating the performance disparities between the dynamic and static methods.

4.2 Sensitivity study

It is not obvious how to choose the values of the hyperparameters from Section 3. In the
above simulation study as well as in Section 5, we used an automatic selection method
for these hyperparameters, the details of which can be found in the supplementary
material. It is important, however, to determine how sensitive the estimation procedures
are to the choice of hyperparameters. To this end we analyzed 100 data sets simulated
according to the projection model and 100 according to the distance model, in each case
fitting the data using the model with the correct geometry. Each set of 100 data sets
was evenly divided between sticky and transitory cluster transition probabilities. For
each simulation we evaluated the clustering performance using CRI and VI.
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For each simulation we set the hyperparameters in the following way. For the dis-
tance model, we drew νλ ∼ Unif(0.5, 1) and fixed ξλ = 1, fixed a = 3 and drew
b ∼ Unif(0.01, 0.05), fixed c = 1.001 and drew d ∼ N(10, 2.52). For the projection
model, we drew c ∼ Γ(20, 0.5), a∗2 ∼ N(600, 1002), and b∗2 ∼ Γ(1, 0.05), and fixed
b∗3 = 100.

Table 2 provides the results from this sensitivity analysis. From this we see that
the projection models still perform quite well, although the Gibbs sampler for the pro-
jection model has a larger standard deviation of the performance measures. What we
should immediately notice is the appalling performance of the distance model when
ξλ = 1. Upon closer inspection we noticed that the parameter estimates of the blending
coefficient λ were in nearly all cases very close to zero, which means that the model was
not using much of the cluster information to predict the latent positions. As a remedy,
we altered this part of the sensitivity analysis, drawing νλ ∼ Unif(0.7, 0.95) and fixing
ξλ = 5 × 10−4, thereby setting a very low prior probability that λ is small. With this
alteration we see from Table 2 that the clustering performance is quite satisfactory.
In summary, the estimation methods are not particularly sensitive to the selection of
hyperparameters with the exception of those associated with λ.

Transitions Fitted model CRI VI
Sticky Distance (ξλ = 1) 0.0169 (0.0104) 3.42 (0.0756)
Sticky Distance (ξλ = 5× 10−4) 0.981 (0.0427) 0.0921 (0.113)
Sticky Projection (VB) 0.989 (0.00844) 0.0477 (0.0263)
Sticky Projection (MCMC) 0.976 (0.194) 0.0904 (0.635)

Transitory Distance (ξλ = 1) 0.0218 (0.0341) 3.382 (0.129)
Transitory Distance (ξλ = 5× 10−4) 0.917 (0.139) 0.322 (0.362)
Transitory Projection (VB) 0.980 (0.136) 0.0734 (0.353)
Transitory Projection (MCMC) 0.962 (0.219) 0.126 (0.681)

Table 2: Simulation results testing prior sensitivity for data generated according to
the distance and projection models with both sticky and transitory cluster transition
probabilities. The median values are reported, with standard deviations in parentheses.

4.3 BIC model selection

The last simulation study evaluates the BIC method described in Section 3.4. Due to
the increased computational cost to fit the model for several values of G, we generated
15 data sets each from the distance model and the projection model (30 total). We
fitted both the distance and projection models to each data set for G ∈ {3, . . . , 9}, and
selected the G with the optimal BIC value.

One important comment is that the BIC method of Section 3.4 is not appropriate to
select the geometry of the latent space, i.e., choose whether we should use the distance
or the projection model. Instead we used the deviance information criterion (DIC)
(Spiegelhalter et al., 2002) to make this distinction. We originally attempted to use
DIC to choose both the geometry and the number of clusters, but DIC performed



366 Community Detection in Dynamic Networks

Figure 3: Simulation results testing the BIC method of selecting the number of clustersG
(horizontal axis). The vertical axis represents the average rankings over 15 simulations
(for each model), where low values indicate better BIC values. The true number of
clusters is 6.

extremely poorly at determining G. DIC was, however, perfect at selecting the geometry
(in this simulation study) once the optimal number of clusters had been chosen (via
BIC). Therefore based on this simulation study, we recommend to the practitioner the
admittedly inelegant procedure of first using the BIC (as described in Section 3.4) to
choose G for each geometry, and then using DIC to compare these two models with
differing geometries.

Figure 3 provides the results. As mentioned above, DIC perfectly selected the geom-
etry, and so we only present the BIC values for the model with the correctly specified
geometry for varying G. Specifically, Figure 3 gives the average ranking of the BIC
values, where low rankings indicate better BIC values. From this we see that the true
number of clusters (6) is frequently chosen as the optimal number of clusters, and values
of G far from the truth rank poorly.

5 Data analysis

5.1 Newcomb’s fraternity data

Newcomb (1956) discussed data collected on 17 male college students who were previ-
ously unknown to each other. These 17 students, as part of Newcomb’s study, agreed
to live together for sixteen weeks (though the data set excludes the ninth week due to
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school vacation). For each week, every student ranks the other 16 students from 1 (most
favored) to 16 (least favored).

In this context Yt is the tth n × n adjacency matrix whose ith row, denoted yit, is
how the ith actor ranks the other n− 1 actors. Without loss of generality, assume that
the rankings go, in order of most favored to least favored, from 1 to n − 1. Then we
let oit = (oi1t, oi2t, . . . , oi(n−1)t) denote the (n − 1) × 1 vector which is the ordering of
the rank vector yit (e.g., if y1t = (0, 4, 3, 1, 2) then o1t = (4, 5, 3, 2)). We assume that,
conditioning on (Xt,Ψ), yit is independent of yi′t, i �= i′.

The likelihood we will use is that used by Sewell and Chen (2015a), given as

P(Yt|Xt, s) =
n∏

i=1

n−1∏
j=1

soijt exp(−dioijtt)∑n−1
�=j soi�t exp(−dioi�tt)

, (25)

where again s = (s1, . . . , sn) are actor specific parameters which indicate an actor’s
social reach, and for identifiability

∑n
i=1 si = 1. This is a Plackett–Luce model (Plackett,

1975), and as such satisfies Luce’s Choice axiom which can be characterized by having
actor i rank actor j over actor k with the same probability whether or not actor  is
included in the set to be ranked. See Sewell and Chen (2015a) for further motivation
and details of this model. As this likelihood depends on the latent positions through
the distances D(Xt)’s, we implement the distance model of Section 2.1. This flexible
framework allows us to detect communities through the latent positions of the students.
Estimation is done by putting a Dirichlet prior on s and incorporating these parameters
in the MH within Gibbs MCMC algorithm of Section 3.1.

For G = 2, . . . , 9, we ran 100,000 iterations of the MCMC algorithm of Section 3.1,
thus having a maximum of nine clusters. For each of the 8 chains, we used a short
MCMC chain (the same chain for each G) following the model with no clustering of
Sewell and Chen (2015a) to initialize the latent positions {Xt}Tt=1 and the actor specific
likelihood parameters s, and for the remaining prior parameters we used the generalized
EM algorithm given by Sewell et al. (2016).

The BIC method described in Section 3.4 led us to choose five communities. These
BIC values ranged from −13,531 to −13,066. The MCMC chain converged relatively
quickly, as is seen in Figure 4a, which provides a trace plot of the posterior value for
all 100,000 samples. Adjacent in Figure 4b is the ACF plot, which shows that the
correlation decays at a reasonable rate, and, together with Figure 4a indicates that
we had good mixing. Geweke’s diagnostic test, as implemented in the coda R package
(Plummer et al., 2006), yielded a p-value of 0.611 using a burn in of 5,000, implying
convergence.

The goodness of fit was evaluated using the pseudo-R2 value described in Sewell and
Chen (2015a). The pseudo-R2 takes values in the interval [0, 1), where a higher value
implies a better fit of the data. After analyzing the data, we obtained a pseudo-R2 value
of 0.575. This is slightly less than that obtained by Sewell and Chen (0.622), which we
feel satisfied with since we are imposing more structure via the clustering on the prior
of the latent positions; that is, though we are imposing more structure on the prior of
the latent positions, we are not losing much in terms of model fit.
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Figure 4: Diagnostic plots for MCMC estimation corresponding to the fraternity data.

This data set has been analyzed many times since its genesis, and several of these
analyses have focused at least in part on community detection. Nakao and Romney
(1993), when analyzing Newcomb’s fraternity data, created similarity matrices for each
time point and then performed multidimensional scaling to obtain latent network po-
sitions, visually determining the communities. Moody et al. (2005) used various visu-
alization methods and also commented on some clustering that were noticed via visual
inspection. Sewell and Chen (2015a) provided a detailed analysis of Newcomb’s frater-
nity data which included a post-hoc analysis of the subgroup formation.

An important advantage of our proposed approach over these ad hoc or post hoc
methods is the ability to compute the posterior probabilities of pairwise membership
to the same cluster; that is, we can quantify the uncertainty of our hard clustering
assignments. With the MCMC output these quantities can easily be computed, and
hence we can determine if the previously described results are reasonable according to
our analysis. Figure 5 depicts the pairwise posterior probabilities of two actors belonging
to the same cluster at week 7 (chosen for a stabilized representation of the dynamic
cluster memberships). Dark shaded regions indicate high probabilities, and light regions
indicate low probabilities. If a method estimates that two actors belong to the same
cluster, then a square (our proposed method), triangle (Nakao and Romney), circle
(Moody et al.), or an asterisk (Sewell and Chen) is given in the appropriate cell. Note
that all methods other than the proposed do not assign clusters to all actors in the
network. From this figure we see that there is often agreement on pairs belonging to the
same cluster for most of the very high pairwise probabilities; there is also most often
agreement on pairs not belonging to the same cluster for the low pairwise probabilities.
For the numerical values of the pairwise posterior probabilities for week 7 as well as for
all other weeks, see the supplementary material.

Figure 6 shows the latent space with the MAP estimators of the latent positions,
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Figure 5: Pairwise probabilities of actors belonging to the same cluster at week 7.
Actors (rows/columns) are ordered according to the MAP estimates of the communities.
Different methods’ estimates are given by the methods’ corresponding shapes in the
appropriate cell. Shown are our proposed MAP estimates (square) as well as those from
Nakao and Romney (triangle), Moody et al. (circle), and Sewell and Chen (asterisk).
Note that all methods other than the proposed do not assign clusters to all actors in
the network.

thus showing the overall structure of the subgroups of the network. All actors at all time
points are shown here. Figure 7 shows the latent positions at weeks 1, 7, and 15. The
community structure stabilized at around week 4, where it did not change at all until
week 12, and only slightly until week 14. We can characterize our five communities,
referencing these groups using the shapes given in Figures 6 and 7. The � community
matches well with communities discovered by Nakao and Romney, Sewell and Chen,
and the main community discovered by Moody et al.. Once all the members eventually
joined this community within the first few weeks (none departed the community), it
remained constant for the remainder of the study until student 14 joined the final week.
The • community seemed to be the opposite, in that it was the most transient. Similar
to the • community, the © community was also fairly transient, with many students
leaving and some joining throughout the study. The + community was characterized by
students joining and remaining in the community, and in this manner was similar to the
� community. The + community was also the most popular group in terms of rankings
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received, unlike the � community which was more isolated and not very popular, and
matches well with a community discovered by Sewell and Chen. The  community
evolved into the least popular group (until the least popular student, 16, formed his
own community the last two weeks), consisting of several of those students Nakao and
Romney termed “outliers,” and several of the students that Sewell and Chen described
as having departed the main communities.

Figure 6: Latent positions of all actors at all time points in the fraternity data. The
contour lines correspond to the normal distributions which characterize the five com-
munities. The symbols correspond to the community assignments given.

As the network was completely nascent at the first week, it is hardly a surprise
that there are quite a number of actors that switch communities, especially during the
beginning of the study. Our model was able to capture this evolution of the network,
unlike clustering algorithms which assume constant cluster assignments over time. In all
there were 15 transitions, 8 of which were during the first three transition periods, and
5 of which were during the last two transition periods. This implies that the subgroup
formation of the social network was fairly stable after week four, though the stability
of the network faltered at the end of the semester; this last comment regarding the
deterioration of the network stability also corroborates statements made by various
other researchers (e.g., Nakao and Romney, 1993; Krivitsky and Butts, 2012; Sewell
and Chen, 2015a).
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Figure 7: Latent positions of the fraternity data at weeks 1, 7, and 15. The contour
lines correspond to the normal distributions which characterize the five communities.
The symbols correspond to the community assignments given.

5.2 World trade data

We consider world trade data with the goals of determining trade blocs and gleaning
what information we can from these blocs. We look at annual export and import data
between countries during the years 1964 to 1976 (so T = 13). A (directed) trade relation
is established from country i to country j, i.e., Yijt = 1, if country i exports some non-
negligible amount of goods to country j during year t. During this time, for a variety of
reasons a few countries are not constant throughout, and so we only include the n = 111
countries which exist throughout the entirety of the study period. Thus we have thirteen
111 × 111 binary adjacency matrices. As this is primarily a pedagogical example, we
chose these years to strike a balance between a large number of time points with a
large number of countries. The data we used were obtained through the Economic Web
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Institute at http://www.economicswebinstitute.org/worldtrade.htm, originally obtained
through the IMF Direction of Trade Yearbook.

To detect trade blocs within the binary trade relations data, we implemented both
the distance model and the projection model, letting G take values from 2 to 9. Using
the procedure described in Sections 3.4 and 4.3, we selected the projection geometry
with four clusters; the BIC values for the projection model ranged from −35,838 to
−34,448. Figure 8a provides a trace plot of the posterior value of all 100,000 samples,
and Figure 8b provides the ACF plot. From these we see evidence of convergence and
good mixing. Geweke’s diagnostic test yielded a p-value of 0.210 using a burn in of
35,000, implying convergence.

Figure 8: Diagnostic plots for MCMC estimation corresponding to the world trade data.

Figure 9 shows the posterior mode of the latent positions of all countries at all
time points (nT points plotted), where the four communities have been labeled along
segments from the origin to the communities’ centers. For ease of viewing we have plotted
the countries based only on their directional unit vectors, disregarding the magnitudes
of the vectors which correspond to the individual effects.

Most of the blocs are relatively densely interconnected, as seen in Table 3. The ex-
ception is Bloc 1, a global trade bloc with nations representing all inhabited continents,
which is loosely interconnected. This community is also the most transitory, as seen in
Table 4 which gives the estimated values of β0 and βh, h = 1, . . . , 4. It is intuitive that
these two things should coincide, in that trade blocs that are not actively trading with
each other should be more likely to lose member nations to other trade blocs. Bloc 2
is the largest bloc averaging 49 nations per year, and involves with very few exceptions
only eastern hemisphere nations, indicating that geography may be playing a role in
the formation of trade blocs. Bloc 3 consists of the U.S.S.R., several eastern European
countries, and most of Latin America. This gives quantitative evidence in favor of claims
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Figure 9: Estimates of latent locations (plotting the unit vectors indicating direction and
ignoring the magnitude of the vectors that correspond to individual effects) of countries
in the international export/import data. The four communities have been labeled along
segments from the origin to the communities’ centers.

1 2 3 4
1 0.10 0.14 0.08 0.07
2 0.14 0.25 0.15 0.12
3 0.08 0.15 0.24 0.05
4 0.07 0.12 0.05 0.19

Table 3: Densities within each of the four communities and between each community,
averaged over all time points. These densities are computed by dividing the total number
of edges by the total possible number of edges.

g
1 2 3 4

0 0.305 0.394 0.217 0.084
1 0.952 0.034 0.013 0.001
2 0.002 0.983 0.009 0.006
3 0.011 0.005 0.983 0.002
4 0.004 0.004 0.004 0.989

Table 4: Estimates of initial clustering parameter (first row) and transition parameters
(last four rows).

of close ties between U.S.S.R. and Latin America and the Soviet influence in the west-
ern hemisphere (e.g., Blasier, 1988). Bloc 4 is a community that is indicative of a very
interesting vestigial effect from French colonization. Of the countries that belonged to
bloc 4, France and her former colonies constitute 2/3 of them. French colonial policy
required her colonies to import only from or through France, export only to France, and
to ship using French vessels (Grier, 1999). That France and her former colonies behave
similarly as participants in world trade gives evidence that colonial policy established a
longer term trend.
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6 Discussion

Community detection is an important topic in network analysis. We have extended
the commonly used distance and projection latent space models to incorporate cluster-
ing of dynamic network data, utilizing the temporal information to build the model.
This model can handle directed or undirected dynamic network data, and can also be
used to model a wide range of weighted network data. We have also given the first, to
our knowledge, clustering model corresponding to the projection model in Hoff et al.
(2002), Durante and Dunson (2014), and others. This model also can handle directed
or undirected dynamic network data, and the VB algorithm we have described provides
computationally fast estimation of the model.

While the VB algorithm using the projection model for binary networks is relatively
fast, the corresponding Gibbs sampler we have also implemented is time intensive for
larger networks, as seen in Figure 1. However, this burden could potentially be alleviated
by adapting the likelihood approximation method first derived by Raftery et al. (2012)
for binary networks. For the distance model, we expect that creating a VB algorithm
would be non-trivial and context specific; we therefore leave that for future research.

In this paper we have discussed a method of selecting the number of clusters and
the latent space geometry. However, a difficult topic we have not yet addressed is the
selection of the dimension of the latent space. Durante and Dunson (2014) developed a
non-parametric approach to this problem in a simpler setting, which may inspire similar
type strategies to select the dimensionality of the latent space in our context. A very
useful area of future research then would be to construct a unifying model selection
method to determine the latent space geometry, the dimension of the latent space, and
the number of clusters.

One last comment is that the clustering models that have been proposed are based
on the assumption that actors within a cluster are more likely to form edges than actors
in different clusters. While this is, we expect, the most common context, there may
be certain scenarios in which this is not the case. Instead there may be varying roles
that the actors can take on, and these roles do not necessitate that each role is well
interconnected, that is, actors in the same community may not be densely connected
to each other. In such a case a blockmodel approach would be more appropriate to
modeling the data.

Supplementary Material

Supplementary Material for “Latent Space Approaches to Community Detection in
Dynamic Networks” (DOI: 10.1214/16-BA1000SUPP; .pdf).
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