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Adapting the ABC Distance Function

Dennis Prangle∗†

Abstract. Approximate Bayesian computation performs approximate inference
for models where likelihood computations are expensive or impossible. Instead
simulations from the model are performed for various parameter values and ac-
cepted if they are close enough to the observations. There has been much progress
on deciding which summary statistics of the data should be used to judge close-
ness, but less work on how to weight them. Typically weights are chosen at the
start of the algorithm which normalise the summary statistics to vary on similar
scales. However these may not be appropriate in iterative ABC algorithms, where
the distribution from which the parameters are proposed is updated. This can sub-
stantially alter the resulting distribution of summary statistics, so that different
weights are needed for normalisation. This paper presents two iterative ABC algo-
rithms which adaptively update their weights and demonstrates improved results
on test applications.

Keywords: likelihood-free inference, population Monte Carlo, quantile
distributions, Lotka–Volterra.

1 Introduction

Approximate Bayesian computation (ABC) is a family of approximate inference meth-
ods which can be used when the likelihood function is expensive or impossible to com-
pute but simulation from the model is straightforward. The simplest algorithm is a
form of rejection sampling. Here parameter values are drawn from the prior distribu-
tion and corresponding datasets simulated. Each simulation is converted to a vector of
summary statistics s = (s1, s2, . . . , sm) and a distance between this and the summary
statistics of the observed data, sobs, is calculated. Parameters producing distances below
some threshold are accepted and form a sample from an approximation to the posterior
distribution.

The choice of summary statistics has long been recognised as being crucial to the
quality of the approximation (Beaumont et al., 2002), but there has been less work on
the role of the distance function. A popular distance function is weighted Euclidean
distance:

d(s, sobs) =

[
m∑
i=1

(
si − sobs,i

σi

)2
]1/2

(1)

where σi is an estimate of the prior predictive standard deviation of the ith summary
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statistic. In ABC rejection sampling a convenient estimate is the empirical standard
deviation of the simulated si values. Scaling by σi in (1) normalises the summaries so
that they vary over roughly the same scale, preventing the distance being dominated
by the most variable summary.

This paper concerns the choice of distance in more efficient iterative ABC algorithms,
in particular those of Toni et al. (2009), Sisson et al. (2009) and Beaumont et al. (2009).
The first iteration of these algorithms is the ABC rejection sampling algorithm outlined
above. The sample of accepted parameters is used to construct an importance density.
An ABC version of importance sampling is then performed. This is similar to ABC
rejection sampling, except parameters are sampled from the importance density rather
than the prior, and the output sample is weighted appropriately to take this change
into account. The idea is to concentrate computational resources on performing simu-
lations for parameter values likely to produce good matches. The output of this step is
used to produce a new importance density and perform another iteration, and so on.
In each iteration the acceptance threshold is reduced, resulting in increasingly accu-
rate approximations. Full details of the Toni et al. (2009) implementation are reviewed
later.

Weighted Euclidean distance is commonly used in these algorithms with σi values
determined in the first iteration. However there is no guarantee that these will normalise
the summary statistics produced in later iterations, as these are no longer drawn from
the prior predictive. This paper proposes two variant iterative ABC algorithms which
update their σi values to appropriate values at each iteration. It is demonstrated that
these algorithms provide substantial advantages in applications. Also, they do not re-
quire any extra simulations to be performed solely for tuning. Therefore even when a
non-adaptive distance performs adequately, there is no major penalty in using the new
approach. (Some additional calculations are required – calculating more σi values and
more expensive distance calculations – but these form a negligible part of the overall
computational cost.)

One of the proposed algorithms has similarities to the iterative ABC methods of
Sedki et al. (2012) and Bonassi and West (2015). These postpone deciding some elements
of the tuning of iteration t until during that iteration. Algorithm 5 also uses this strategy
but for different tuning decisions: the distance function and the acceptance threshold.
Another related paper is Fasiolo and Wood (2015) which contains an illustration of the
difficulty of choosing ABC distance weights non-adaptively.

The remainder of the paper is structured as follows. Section 2 reviews ABC algo-
rithms. This includes some novel material on the convergence of iterative ABC methods.
Full technical details of these convergence results are given in supplementary mate-
rial (Prangle, 2016). Section 3 discusses weighting summary statistics in a particular
ABC distance function. Section 4 details the proposed algorithms. Several examples are
given in Section 5. Finally, Section 6 summarises the work and discusses potential exten-
sions. Computer code to implement the methods of this paper in the Julia programming
language (Bezanson et al., 2012) is available at https://github.com/dennisprangle/
ABCDistances.jl.

https://github.com/dennisprangle/ABCDistances.jl
https://github.com/dennisprangle/ABCDistances.jl
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2 Approximate Bayesian computation

This section sets out the necessary background on ABC algorithms. Several review
papers (e.g. Beaumont, 2010; Csilléry et al., 2010; Marin et al., 2012) give detailed
descriptions of other aspects of ABC, including tuning choices and further algorithms.
Sections 2.1 and 2.2 review ABC versions of rejection sampling and population Monte
Carlo (PMC). Section 2.3 contains novel material on the convergence of ABC algorithms.

2.1 ABC rejection sampling

Consider Bayesian inference for parameter vector θ under a model with density π(y|θ).
Let π(θ) be the prior density and yobs represent the observed data. It is assumed that
π(y|θ) cannot easily be evaluated but that it is straightforward to sample from the
model. ABC rejection sampling (Algorithm 1) exploits this to sample from an approx-
imation to the posterior density π(θ|y). It requires several tuning choices: number of
simulations N , a threshold h ≥ 0, a function S(y) mapping data to a vector of summary
statistics, and a distance function d(·, ·).

Algorithm 1 ABC-rejection

1. Sample θ∗i from π(θ) independently for 1 ≤ i ≤ N .
2. Sample y∗

i from π(y|θ∗i ) independently for 1 ≤ i ≤ N .
3. Calculate s∗i = S(y∗

i ) for 1 ≤ i ≤ N .
4. Calculate d∗i = d(s∗i , sobs) (where sobs = S(yobs)).
5. Return {θ∗i |d∗i ≤ h}.

The threshold h may be specified in advance. Alternatively it can be calculated
following step 4. For example a common choice is to specify an integer k and take h to
be the kth smallest of the d∗i values (Biau et al., 2015).

2.2 ABC-PMC

Algorithm 2 is an iterative ABC algorithm taken from Toni et al. (2009). Very similar
algorithms were also proposed by Sisson et al. (2009) and Beaumont et al. (2009). The
latter note that this approach is an ABC version of population Monte Carlo (Cappé
et al., 2004), so it is referred to here as ABC-PMC. The algorithm involves a sequence
of thresholds, (ht)t≥1. Similarly to h in ABC-rejection, this can be specified in advance
or during the algorithm, as discussed below.

The algorithm samples parameters from the importance density

qt(θ) =

⎧⎪⎨
⎪⎩

π(θ) if t = 1, or t = 2 and h1 = ∞ (2a)
N∑
i=1

wt−1
i Kt(θ|θt−1

i )/

N∑
i=1

wt−1
i otherwise. (2b)

In the first iteration (and sometimes the second, as discussed shortly) qt(θ) is the prior.
Otherwise (2b) is used, which effectively samples from the previous weighted population
and perturbs the result using kernel Kt. Beaumont et al. (2009) show that a good choice
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Algorithm 2 ABC-PMC (with the option of adaptive ht)

Initialisation
1. Let t = 1.

Main loop
2. Repeat following steps until there are N acceptances.

(a) Sample θ∗ from importance density qt(θ) given in equation (2).

(b) If π(θ∗) = 0 reject and return to (a).

(c) Sample y∗ from π(y|θ∗i ) and calculate s∗ = S(y∗).

(d) Accept if d(s∗, sobs) ≤ ht.

Denote the accepted parameters as θt1, . . . , θ
t
N and the corresponding distances as

dt1, . . . , d
t
N .

3. Let wt
i = π(θti)/qt(θ

t
i) for 1 ≤ i ≤ N .

4. (Optional) Let ht+1 be the α quantile of the dti values.
5. Increment t to t+ 1.

End of loop

of the latter is
Kt(θ|θ′) = φ(θ′, 2Σt−1),

where φ is the density of a normal distribution and Σt−1 is the empirical variance matrix
of (θt−1

i )1≤i≤N calculated using weights (wt−1
i )1≤i≤N

As mentioned above, the sequence of thresholds can be specified in advance. However
it is hard to do this well. A popular alternative (Drovandi and Pettitt, 2011a) is to choose
the thresholds adaptively by setting ht at the end of iteration t− 1 to be the α quantile
of the accepted distances (n.b. α < 1 is assumed throughout the paper). An optional
step, step 4, is included in Algorithm 2 to implement this method. Alternative updating
rules for ht have been proposed such as choosing it to reduce an estimate of effective
sample size by a prespecified proportion (Del Moral et al., 2012) or using properties of
the predicted ABC acceptance rate (Silk et al., 2013).

If step 4 is used this leaves h1 and α as tuning choices. A simple default for h1 is ∞,
in which case all simulations are accepted when t = 1. In this case (2b) would give q2(θ)
as simply a modified prior with inflated variance, which is not a sensible importance
density. Therefore (2) takes q2(θ) = π(θ) in this case. This is a minor novelty of this
presentation of the algorithm.

A practical implementation of Algorithm 2 requires a condition for when to termi-
nate. In this paper the total number of datasets to simulate is specified as a tuning
parameter and the algorithm stops once a further simulation is required. Some alterna-
tive are possible, such as stopping once the algorithm falls below a target value for ht

or the acceptance rate.

Several variations on Algorithm 2 have been proposed which are briefly discussed
in Section 6. Some of these are ABC versions of sequential Monte Carlo (SMC). The
phrase “iterative ABC” will be used to cover ABC-PMC and ABC-SMC.
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2.3 Convergence of ABC-PMC

Conditions C1–C5 ensure that Algorithm 2 converges on the posterior density in an ap-
propriate sense as the number of iterations tends to infinity. This follows from Theorem 1
which is detailed in the supplementary material. Although only finite computational
budgets are available in practice, such convergence at least guarantees that the target
distribution become arbitrarily accurate as computational resources are increased.

C1. θ ∈ R
n, s ∈ R

m for some m,n and these random variables have density π(θ, s)
with respect to Lebesgue measure.

C2. The sets At = {s|d(s, sobs) ≤ ht} are Lebesgue measurable.

C3. π(sobs) > 0.

C4. limt→∞ |At| = 0 (where | · | represents Lebesgue measure).

C5. The sets At have bounded eccentricity.

Bounded eccentricity is defined in the supplementary material. Roughly speaking, it
requires that under any projection of At to a lower dimensional space the measure still
converges to zero.

Condition C1 is quite strong, ruling out discrete parameters and summary statis-
tics, but makes proof of Theorem 1 straightforward. Condition C2 is a mild technical
requirement. The other conditions provide insight into conditions required for conver-
gence. Condition C3 requires that it must be possible to simulate sobs under the model.
Condition C4 requires that the acceptance regions At shrink to zero measure. For most
distance functions this corresponds to limt→∞ ht = 0. It is possible for this to fail. Some
examples encountered by the author in practice follow. One is when datasets close to
sobs cannot be produced under the model of interest. Alternatively, even if sobs can
occur under the model, the algorithm may converge on importance densities on θ under
which it is impossible. This corresponds to concentrating on the wrong mode of the ABC
target distribution in an early iteration. Finally, condition C5 prevents At converging
to a set where some but not all summary statistics are perfectly matched.

Conditions C4 and C5 can be used to check which distance functions are sensible
to use in ABC-PMC, usually by investigating whether they hold when ht → 0. For
example it is straightforward to show this is the case when d(·, ·) is a metric induced by
a norm.

3 Weighted Euclidean distance in ABC

This paper concentrates on using weighted Euclidean distance in ABC. Section 3.1
discusses this distance and how to choose its weights. Section 3.2 illustrates its usefulness
in a simple example.
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3.1 Definition and usage

Consider the following distance:

d(x,y) =

[
m∑
i=1

{ωi(xi − yi)}2
]1/2

. (3)

If ωi = 1 for all i, this is Euclidean distance. Otherwise it is a form of weighted Euclidean
distance.

Many other distance functions can be used in ABC, as discussed in Section 2.3, for
example weighted L1 distance d(x,y) =

∑m
i=1 ωi|xi − yi|. To the author’s knowledge

the only published comparison of distance functions is by McKinley et al. (2009), which
found little difference between the alternatives. Owen et al. (2015) report the same
conclusion but not the details. This finding is also supported in unpublished work by
the author of this paper. Given these empirical results this paper focuses on (3) as it is
a simple choice, but no claims are made for its optimality. Some further discussion on
this is given in Section 6.

Summary statistics used in ABC may vary on substantially different scales. In the
extreme case Euclidean distance will be dominated by the most variable. To avoid this,
weighted Euclidean distance is generally used. This usually takes ωi = 1/σi where σi

is an estimate of the scale of the ith summary statistic. (Using this choice in weighted
Euclidean distance gives the distance function (1) discussed in the introduction.)

A popular choice (e.g. Beaumont et al., 2002) of σi is the empirical standard de-
viation of the ith summary statistic under the prior predictive distribution. Csilléry
et al. (2012) suggest using median absolute deviation (MAD) instead since it is more
robust to large outliers. MAD is used throughout this paper. For many ABC algorithms
these σi values can be calculated without requiring any extra simulations. For example
this can be done between steps 3 and 4 of ABC-rejection. ABC-PMC can be modified
similarly, resulting in Algorithm 3, which also updates ht adaptively. (n.b. All of the
ABC-PMC convergence discussion in Section 2.3 also applies to this modification.)

3.2 Illustration

As an illustration, Figure 1 shows the difference between using Euclidean and weighted
Euclidean distance with ωi = 1/σi within ABC-rejection. Here σi is calculated using
MAD. For both distances the acceptance threshold is tuned to accept half the simula-
tions. In this example Euclidean distance mainly rejects simulations where s1 is far from
its observed value: it is dominated by this summary. Weighted Euclidean distance also
rejects simulations where s2 is far from its observed value and is less stringent about s1.

Which of these distances is preferable depends on the relationship between the sum-
maries and the parameters. For example if s1 were the only informative summary, then
Euclidean distance would preferable. In practice, this relationship may not be known.
Weighted Euclidean distance is then a sensible choice as both summary statistics con-
tribute to the acceptance decision.
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Algorithm 3 ABC-PMC with adaptive ht and d(·, ·)
Initialisation

1. Let t = 1 and h1 = ∞.
Main loop

2. Repeat following steps until there are N acceptances.

(a) Sample θ∗ from importance density qt(θ) given in equation (2).

(b) If π(θ∗) = 0 reject and return to (a).

(c) Sample y∗ from π(y|θ∗i ) and calculate s∗ = S(y∗).

(d) Accept if d(s∗, sobs) ≤ ht (if t = 1 always accept).

3. If t = 1:

(a) Calculate (σ1, σ2, . . .), a vector of MADs for each summary statistic, calcu-
lated from all the simulations in step 2 (including those rejected).

(b) Define d(·, ·) as the distance (3) using weights (ωi)1≤i≤m where ωi = 1/σi.

Denote the accepted parameters as θt1, . . . , θ
t
N and the corresponding distances as

dt1, . . . , d
t
N .

4. Let wt
i = π(θti)/qt(θ

t
i) for 1 ≤ i ≤ N .

5. Let ht be the α quantile of the dti values.
6. Increment t to t+ 1.

End of loop

This heuristic argument supports the use of weighted Euclidean distance in ABC
more generally. One particular case is when low dimensional informative summary statis-
tics have been selected, for example by the methods reviewed in Blum et al. (2013). In
this situation all summaries are known to be informative and should contribute to the
acceptance decision.

Note that in Figure 1 the observed summaries sobs lie close to the centre of the set of
simulations. When some observed summaries are hard to match by model simulations
this is not the case. ABC distances could now be dominated by the summaries which are
hardest to match. How to weight summaries in this situation is discussed in Section 6.

4 Methods: Iterative ABC with an adaptive distance

The previous section discussed normalising ABC summary statistics using estimates of
their scale under the prior predictive distribution. This prevents any summary statistic
dominating the acceptance decision in ABC-rejection or the first iteration of Algo-
rithm 3, where the simulations are generated from the prior predictive. However in later
iterations of Algorithm 3 the simulations may be generated from a very different distri-
bution so that this scaling is no longer appropriate. This section presents two versions
of ABC-PMC which avoid this problem by updating the distance function at each itera-
tion. Normalisation is now based on the distribution of summary statistics generated in
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Figure 1: An illustration of distance functions in ABC rejection sampling. The points
show simulated summary statistics s1 and s2. The observed summary statistics are
taken to be (0, 0) (black cross). Acceptance regions are shown for two distance functions,
Euclidean (red dashed circle) and weighted Euclidean with MAD reciprocals as weights
(blue solid ellipse). These show the sets within which summaries are accepted. The
acceptance thresholds have been tuned so that each region contains half the points.

the previous (Algorithm 4) or current (Algorithm 5) iteration. The proposed algorithms
are presented in Sections 4.1 and 4.2.

An approach along these lines has the danger that the summary statistic acceptance
regions at each iteration no longer form a nested sequence of subsets converging on the
point s = sobs. To avoid this, the proposed algorithms only accept a simulated dataset
at iteration t if it also meets the acceptance criteria of every previous iteration. This
can be viewed as sometimes modifying the tth distance function to take into account
information from previous iterations. Section 4.3 discusses convergence in more depth.

4.1 First proposed algorithm

Algorithm 4 is a straightforward modification of Algorithm 3 which updates its distance
function at each iteration using scales derived from the previous iteration’s simulations.
The first iteration accepts everything so no distance function is required. This acts as an
initial tuning step. Note that scales are based on both accepted and rejected simulations
from the previous iteration. This is because using just the accepted simulations would
mean the scales are sometimes mainly determined by the previous acceptance rule,
restricting the scope for adaptation.

Storing all simulated s∗ vectors to calculate scale estimates in step 3 of Algorithm 4
can be impractical. In practice storage is stopped after the first few thousand sim-
ulations, and scale estimation is done using this subset. Other tuning details of Algo-
rithm 4 – the choice of perturbation kernel Kt and the rule to terminate the algorithm –
are implemented as described earlier for ABC-PMC.

4.2 Second proposed algorithm

Algorithm 4 normalises simulations in iteration t based on scales derived in the pre-
ceding iteration.This could be inappropriate if two consecutive iterations sometimes
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Algorithm 4 ABC-PMC with adaptive ht and dt(·, ·)
Initialisation

1. Let t = 1 and h1 = ∞.
Main loop

2. Repeat following steps until there are N acceptances.

(a) Sample θ∗ from importance density qt(θ) given in equation (2).

(b) If π(θ∗) = 0 reject and return to (a).

(c) Sample y∗ from π(y|θ∗i ) and calculate s∗ = S(y∗).

(d) If t = 1 accept. Otherwise accept if di(s∗, sobs) ≤ hi for all 2 ≤ i ≤ t.

3. Calculate (σt
1, σ

t
2, . . .), a vector of MADs for each summary statistic, calculated

from all the simulations in step 2 (including those rejected).
4. Define dt+1(·, ·) as the distance (3) using weights (ωi)1≤i≤m where ωi = 1/σi.

Denote the accepted parameters as θt1, . . . , θ
t
N and the corresponding distances

under dt+1(·, ·) as dt+1
1 , . . . , dt+1

N .
5. Let wt

i = π(θti)/qt(θ
t
i) for 1 ≤ i ≤ N .

6. Let ht+1 be the α quantile of the dt+1
i values.

7. Increment t to t+ 1.
End of loop

generate simulations from markedly different distributions. Algorithm 5 addresses this
problem.

A naive approach would be to start iteration t by tuning dt(·, ·) using an additional
set of simulations based on parameters drawn from the current importance distribution.
However this imposes an additional cost. Instead the algorithm makes a single large set
of simulations. These are first used to construct the tth distance function. Then the best
N simulations are accepted and used to construct the next importance distribution.

A complication is deciding how many simulations to make for this large set. There
must be enough that N of them are accepted. However the distance function defining
the acceptance rule is not known until after the simulations are performed. The solution
implemented is to continue simulating untilM = �N/α� simulations pass the acceptance
rule of the previous iteration. Let A be the set of these simulations and B be the others.
Next the new distance function is constructed (based on A∪B) and the N with lowest
distances (from A) are accepted. The tuning parameter α has a similar interpretation
to the corresponding parameter in Algorithms 3 and 4: the acceptance threshold in
iteration t is the α quantile of the realised distances from simulations in A.

Using this approach means that, as well as adapting the distance function, another
difference with Algorithms 3 and 4 is that selection of ht is delayed from the end of
iteration t − 1 to part-way through iteration t (and therefore h1 does not need to be
specified as a tuning choice). If desired, this novelty can be used without adapting the
distance function. Such a variant of Algorithm 3 was tried on the examples of this paper,
but the results are omitted as performance is very similar to Algorithm 3.
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Given the same importance density and acceptance rule, an iteration of Algorithm 5
requires the same expected number of simulations as Algorithms 3 and 4. In this sense
their costs are the same. In practice, the algorithms select their importance density and
acceptance rules differently so this comparison of their computational costs is limited.
Section 5 contains empirical comparisons in terms of the mean squared error for a given
number of simulations.

Algorithm 5 ABC-PMC with adaptive ht and dt(·, ·)
Initialisation

1. Let t = 1.
Main loop

2. Repeat following steps until there are M = �N/α� acceptances.

(a) Sample θ∗ from importance density qt(θ) given in equation (2).

(b) If π(θ∗) = 0 reject and return to (a).

(c) Sample y∗ from π(y|θ∗i ) and calculate s∗ = S(y∗).

(d) If t = 1 accept. Otherwise accept if di(s∗, sobs) ≤ hi for all i < t.

Denote the accepted parameters as θ∗1 , . . . , θ
∗
M and the corresponding summary

vectors as s∗1, . . . , s
∗
M .

3. Calculate (σt
1, σ

t
2, . . .), a vector of MADs for each summary statistic, calculated

from all the simulations in step 2 (including those rejected).
4. Define dt(·, ·) as the distance (3) using weights (ωt

i)1≤i≤m where ωt
i = 1/σt

i .
5. Calculate d∗i = dt(s∗i , sobs) for 1 ≤ i ≤ M .
6. Let ht be the Nth smallest d∗i value.
7. Let (θti)1≤i≤N be the θ∗i vectors with the smallest d∗i values (breaking ties ran-

domly).
8. Let wt

i = π(θti)/qt(θ
t
i) for 1 ≤ i ≤ N .

9. Increment t to t+ 1.
End of loop

The comments at the end of Section 4.1 on tuning details and storing s∗ vectors
also apply to Algorithm 5.

4.3 Convergence

This section shows that conditions for the convergence of Algorithms 4 and 5 in practice
are essentially those described in Section 2.3 for standard ABC-PMC plus one extra

requirement: et =
maxi w

t
i

mini wt
i
is bounded above.

In more detail, conditions ensuring convergence of Algorithms 4 and 5 can be taken
from Theorem 1 in the supplementary material. These are the same as those given
for other ABC-PMC algorithms in Section 2.3 with the exception that the acceptance
region At is now defined as {s|di(s, sobs) ≤ hi for all i ≤ t}. Two conditions behave
differently under this change: C4 and C5.
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Condition C4 states that limt→∞ |At| = 0 i.e. Lebesgue measure tends to zero. The
definition of At for Algorithms 4 and 5 ensures |At| is decreasing in t. However it may
not converge to zero. Reasons for this are the same as why condition C4 can fail for
standard ABC-PMC, as described in Section 2.3.

Condition C5 is bounded eccentricity (defined in the supplementary material) of
the At sets. Under distance (3) this can easily be seen to correspond to et having
an upper bound. This is not guaranteed by Algorithms 4 and 5, but it can be im-
posed, for example by updating ωt

i to ωt
i + δmaxi ω

t
i after step 4 for some small

δ > 0. However this was not found to be necessary in any of the examples of this
paper.

5 Examples

This section presents three examples comparing the proposed and existing ABC-PMC
algorithms: a simple illustrative normal model, the g-and-k distribution and the Lotka–
Volterra model.

5.1 Normal distribution

Suppose there is a single parameter θ with prior distribution N(0, 1002). Let s1 ∼
N(θ, 0.12) and s2 ∼ N(0, 12) independently. These are respectively informative and
uninformative summary statistics. Let sobs,1 = sobs,2 = 0.

Figures 2 and 3 illustrate the behaviour of ABC-PMC for this example using Algo-
rithms 2 (with adaptive choice of ht), 4 and 5. For ease of comparison the algorithms
use the same random seed, and the distance function and first threshold value h1 for
Algorithms 2 and 4 are specified to be those produced in the first iteration of Algo-
rithm 5. The effect is similar to making a short preliminary run of ABC-rejection to
make these tuning choices. All algorithms use N = 2000 and α = 1/2. (Empirical tests
show that α ≈ 1/2 minimises mean squared error for all algorithms in this and the
following examples.)

Under the prior predictive distribution the MAD for s1 is in the order of 100
while that for s2 is in the order of 1. Therefore the first acceptance region in Fig-
ure 2 is a wide ellipse. Under Algorithm 2 the subsequent acceptance regions are
smaller ellipses with the same shape and centre. The acceptance regions for Algo-
rithms 4 and 5 are similar for the first few iterations. After this, enough has been
learnt about θ that the simulated summary statistics have a different distribution,
with a reduced MAD for s1. Hence s1 is given a larger weight, while the MAD and
weight of s2 remain roughly unchanged. Thus the acceptance regions change shape
to become narrower ellipses, which results in a more accurate estimation of θ, as
shown by the comparison of mean squared errors (MSEs) in Figure 3. Note that Algo-
rithm 5 adapts its weights more quickly than Algorithm 4 and hence achieves a smaller
MSE.
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Figure 2: An illustration of ABC-PMC for a simple normal model using Algorithms 2
(non-adaptive distance function), 4 and 5 (adaptive distance functions). Top row: sim-
ulated summary statistics (including rejections) Bottom row: acceptance regions (note
different scale to top row). In both rows colour indicates the iteration of the algorithm.

Figure 3: Mean squared error of the parameter for a simple normal example using
Algorithms 2, 4 and 5.

5.2 g-and-k distribution

The g-and-k distribution is a popular test of ABC methods. It is defined by its quantile
function:

A+B

[
1 + c

1− exp(−gz(x))

1 + exp(−gz(x))

]
[1 + z(x)2]kz(x), (4)
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where z(x) is the quantile function of the standard normal distribution. Following the
literature (Rayner and MacGillivray, 2002), c = 0.8 is used throughout. This leaves
(A,B, g, k) as unknown parameters.

The g-and-k distribution does not have a closed form density function making
likelihood-based inference difficult. However simulation is straightforward: sample x ∼
Unif(0, 1) and substitute into (4). The following example is taken from Drovandi and
Pettitt (2011b). Suppose a dataset is 10,000 independent identically distributed draws
from the g-and-k distribution and the summary statistics are a subset of the order statis-
tics: those with indices (1250, 2500, . . . , 8750). (As in Fearnhead and Prangle, 2012, a fast
method is used to simulate these order statistics without sampling an entire dataset.)
The parameters are taken to have independent Unif(0, 10) priors.

To use as observations, 100 datasets are simulated from the prior predictive distri-
bution. Each is analysed using Algorithms 3, 4 and 5. All analyses uses a total of 106

simulations and tuning parameters N = 1000 and α = 1/2. Table 1 shows root mean
squared errors for the output of the algorithms, averaged over all the observed datasets.
These show that the adaptive algorithms, 4 and 5, are more accurate overall for every
parameter, and perform very similarly to each other.

A B g k
Algorithm 3 0.335 0.501 0.880 0.163
Algorithm 4 0.083 0.371 0.532 0.126
Algorithm 5 0.081 0.373 0.523 0.126

Table 1: Root mean squared errors of each parameter in the g-and-k example, averaged
over analyses of 100 simulated datasets.

More detail is now given for a particular observed dataset, simulated under parame-
ter values (3, 1, 1.5, 0.5). Figure 4 shows the estimated MSE of each parameter for each
iteration of the three algorithms. The adaptive algorithms, 4 and 5, performs better
throughout for the g and k parameters. For this dataset all the algorithms perform sim-
ilarly for the location and scale parameters A and B, which have smaller MSE values.
Table 2 demonstrates that the main difference in the final estimated posteriors is that
Algorithm 3 has higher variances for the g and k parameters.

Figure 5 shows some of the distance function weights produced by the algorithms.
Algorithm 3 places low weights on the most extreme order statistics, as they are highly

A B g k
Algorithm 3 2.98 (0.012) 0.98 (0.028) 1.52 (0.086) 0.50 (0.081)
Algorithm 4 2.98 (0.012) 0.97 (0.025) 1.56 (0.048) 0.53 (0.035)
Algorithm 5 2.98 (0.012) 0.98 (0.024) 1.56 (0.046) 0.53 (0.033)

Table 2: Estimated marginal posterior means and standard deviations (in brackets) of
each parameter in the g-and-k example, for analysis of a particular simulated dataset.
The values are taken from the final iteration of each algorithm. (n.b. All the estimated
posteriors are roughly normal.)
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Figure 4: Mean squared error of each parameter from Algorithms 3, 4 and 5 for the
g-and-k example.

variable in the prior predictive distribution. This is because the prior places significant
weight upon parameter values producing very heavy tails. However by the last iteration
of Algorithms 4 and 5 such parameter values have been ruled out. The algorithm there-
fore assigns larger weights which provide access to the informational content of these
statistics.

5.3 Lotka–Volterra model

The Lotka–Volterra model describes two interacting populations. In its original ecolog-
ical setting the populations represent predators and prey. However it is also a simple
example of biochemical reaction dynamics of the kind studied in systems biology. This
section concentrates on a stochastic Markov jump process version of this model with
state (X1, X2) ∈ Z

2 representing prey and predator population sizes. Three transitions
are possible:

(X1, X2) → (X1 + 1, X2) (prey growth)
(X1, X2) → (X1 − 1, X2 + 1) (predation)
(X1, X2) → (X1, X2 − 1) (predator death)

These have hazard rates θ1X1, θ2X1X2 and θ3X2 respectively. Simulation is straight-
forward by the Gillespie method. Following either a transition at time t, or initiation at
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Figure 5: Summary statistic weights used in Algorithms 3, 4 and 5 for the g-and-k
example, rescaled to sum to 1.

t = 0, the time to the next transition is exponentially distributed with rate equal to the
sum of the hazard rates at time t. The type of the next transition has a multinomial
distribution with probabilities proportional to the hazard rates. For more background
see for example Owen et al. (2015), from which the following specific inference problem
is taken.

The initial conditions are taken to be X1 = 50, X2 = 100. A dataset is formed of
observations at times 2, 4, 6, . . . , 32. Both X1 and X2 are observed plus independent
N(0, σ2) errors, where σ is fixed at exp(2.3). The unknown parameters are taken to be
log θ1, log θ2 and log θ3. These are given independent Unif(−6, 2) priors. The vector of
all 32 noisy observations is used as the ABC summary statistics.

A single simulated dataset is analysed (shown in Figure 8). This is generated from
the model with θ1 = 1, θ2 = 0.005, θ3 = 0.6. ABC analysis is performed using Al-
gorithms 3, 4 and 5. A total of 50,000 simulations are used in each algorithm. The
tuning parameters are N = 200 and α = 1/2. Any Lotka–Volterra simulation reach-
ing 100,000 transitions is terminated and automatically rejected. This avoids extremely
long simulations, such as exponential prey growth if predators die out. These incomplete
simulations are excluded from the MAD calculations, but this should have little effect
as they are rare.

Figure 6 shows the MSEs resulting from the analyses. The adaptive algorithms,
4 and 5, have similar outputs. Both produce smaller errors than Algorithm 3 for all
parameters after roughly 10,000 simulations. Table 3 demonstrates that the main dif-
ference in the final estimated posteriors is that Algorithm 3 has higher variances.
Figure 7 shows the weights used throughout Algorithm 3 and those used in the fi-
nal iteration of the others. Again the adaptive algorithms are similar to each other
but different to Algorithm 3. Figure 8 explains this by showing a sample of simu-
lated datasets on which these weights are based. Under the prior predictive distri-
bution (shown in the top row), at least one population usually quickly becomes ex-
tinct, illustrating that the prior distribution concentrates on the wrong system dy-
namics and so is unsuitable for choosing distance weights for later iterations of the
algorithm.
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Figure 6: Mean squared error of each parameter (i.e. log θ1, log θ2, log θ3) from ABC-
PMC output for the Lotka–Volterra example.

log θ1 log θ2 log θ3
Algorithm 3 -0.048 (0.15) -5.15 (0.21) -0.48 (0.22)
Algorithm 4 -0.021 (0.10) -5.24 (0.11) -0.56 (0.13)
Algorithm 5 -0.021 (0.10) -5.24 (0.11) -0.55 (0.12)

Table 3: Estimated marginal posterior means and standard deviations (in brackets) of
each parameter in the Lotka–Volterra example, for analysis of a particular simulated
dataset. The values are taken from the final iteration of each algorithm. The true values
are 0,−5.30 and −0.51. (n.b. All the estimated posteriors are roughly normal.)

6 Discussion

This paper has presented two ABC-PMC algorithms with adaptive distance functions.
The algorithms adapt the structure to ABC-PMC by using the output of existing simula-
tion steps to adapt their distance functions. Therefore they have a similar computational
cost for the same number of iterations. Furthermore, their convergence properties are
similar to ABC-PMC. Several examples have been shown where the new algorithms
improve performance. This is because in each example the scale of the summary statis-
tics varies significantly between prior and posterior predictive distributions. Of the two
algorithms, Algorithm 4 is simpler to implement, involving only a small modification to
standard ABC-PMC, and has essentially the same performance to Algorithm 5 in two of
the three examples. Algorithm 5 performs better in the example of Section 5.1, suggest-
ing it is preferable in situation where continual adaptation is required. The remainder
of this section discusses possibilities to extend this work.

Several variations on ABC-PMC have been proposed in the literature. The adaptive
distance function idea introduced here can be used in most of these. This is particu-
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Figure 7: Summary statistic weights used in ABC-PMC for the Lotka–Volterra example,
rescaled to sum to 1.

larly simple for ABC model choice algorithms (e.g. Toni et al., 2009). Here, instead of
proposing θ∗ values from an importance density, (m∗, θ∗) pairs are proposed, where m∗

is a model indicator. This could be implemented in Algorithms 4 and 5 while leaving
the other details unchanged. Drovandi and Pettitt (2011a), Del Moral et al. (2012) and
Lenormand et al. (2013) propose ABC-SMC algorithms which update the population of
(θ, s) pairs between iterations in different ways to ABC-PMC. In all of these it seems
possible to update distance functions using the strategies of Algorithms 4 and 5. How-
ever some of these variations would require further convergence results beyond those
given in the supplementary material.

Several aspects of Algorithms 4 and 5 could be modified. One natural alternative is
to use Mahalanobis-style distance functions dt(x,y) = [(x − y)TW t(x − y)]1/2 where
W t is an estimate of the precision matrix. Scenarios exist in which this performs much
better than weighted Euclidean distance, (3) (Sisson, personal communication). However
exploratory work found it gave similar or worse performance for the examples in this
paper. Distance (3) is preferred here for this reason, and also because its weights are
easier to interpret and there are more potential numerical difficulties in estimating a
precision matrix. Nonetheless, for other problems it may be worth considering both
alternatives.

Another reason it may be desirable to modify the distance function (3) is if some
summary statistic, say si, has an observed value far from most simulated values. In
this case |sobs,i − si| can be much larger than σi, and so si can dominate the distances
used in this paper. It is tempting to downweight si so that the others summaries can
also contribute. Finding a good way to do this without ignoring si altogether is left for
future work.

Algorithms 4 and 5 update the distance function at each iteration. There may be
scope for similarly updating other tuning choices. It is particularly appealing to try



306 Adapting the ABC Distance Function

Figure 8: Observed dataset (black points) and samples of 20 simulated datasets (coloured
lines) for the Lotka–Volterra example. The top row shows simulations from step 2 of
the first iteration of Algorithm 3. The bottom row shows simulations from step 2 of the
last iteration of Algorithm 5. These are representative examples of the simulations used
to select the weights shown in Figure 7. Simulations for Algorithm 4 are not shown but
are qualitatively similar to the bottom row.

to improve the choice of summary statistics as the algorithm progresses (as suggested

by Barnes et al., 2012). Summary statistics could be selected at the same time as the
distance function based on the same simulations, for example by a modification of the

regression method of Fearnhead and Prangle (2012). Further work would be required
to ensure the convergence of such an algorithm.
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Supplementary Material

Adapting the ABC distance function: Supplementary Material
(DOI: 10.1214/16-BA1002SUPP; .pdf).
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