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Estimating the Marginal Likelihood Using
the Arithmetic Mean Identity

Anna Pajor∗

Abstract. In this paper we propose a conceptually straightforward method to
estimate the marginal data density value (also called the marginal likelihood). We
show that the marginal likelihood is equal to the prior mean of the conditional
density of the data given the vector of parameters restricted to a certain subset
of the parameter space, A, times the reciprocal of the posterior probability of the
subset A. This identity motivates one to use Arithmetic Mean estimator based on
simulation from the prior distribution restricted to any (but reasonable) subset of
the space of parameters. By trimming this space, regions of relatively low likeli-
hood are removed, and thereby the efficiency of the Arithmetic Mean estimator
is improved. We show that the adjusted Arithmetic Mean estimator is unbiased
and consistent.

Keywords: Bayesian inference, Bayesian model selection, marginal likelihood.

1 Introduction

The marginal data densities (i.e. the normalizing constants of the posterior distributions
of the model parameters, also called the marginal likelihoods or the integrated likeli-
hoods) are key quantities needed for formal Bayesian model selection and for model
averaging; see, e.g. Zellner (1971). The posterior odds ratio, used for comparing two
competing models, is equal to the product of the prior odds and the Bayes’ factor. In
turn, the Bayes’ factor is defined to be the ratio of marginal likelihoods. The marginal
likelihoods and the prior model probabilities are used to form the posterior model prob-
abilities, which are necessary for Bayesian model averaging and for testing statistical
hypotheses. Therefore the marginal likelihoods are essential in the Bayesian approach.

Let us consider a model in which (i) the space of parameters is denoted by Θ, (ii) p(θ)
is a prior density function of the parameters1 collected in θ ∈ Θ, and (iii) y is a vector
of observations. The marginal data density, p(y), is defined as an integral (calculated
over the whole parameters’ space) of the conditional data density given the vector of
parameters, p(y|θ), with respect to the prior distribution:

p(y) =

∫
Θ

p(y, θ) dθ =

∫
Θ

p(y|θ)p(θ) dθ. (1)

Even in simple models, correct assessment of the marginal likelihood is computationally
challenging. In more complicated models, high-dimensional integration is required to
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estimate marginal data densities. In majority of models, it is not possible to analytically
integrate out parameters from the joint distribution for y and θ, p(y, θ), and a certain
Monte Carlo approximation of p(y) for the observed vector y is needed.

In this paper we propose a conceptually straightforward method to estimate the
marginal data density value. Our proposition is motivated by the problems with the
Harmonic Mean estimator and their solutions proposed by Lenk (2009). By analogy to
the adjusted Harmonic Mean estimator, we propose corrected Arithmetic Mean estima-
tor. Therefore, we start with reviewing ways of estimating the marginal data density by
means of the Harmonic Mean (proposed by Newton and Raftery (1994)). Estimation
of the marginal data density by Harmonic Mean has become one of the most popular
methods due to its simplicity. Under the assumption that the prior distribution of the
vector of parameters is proper, we have

1 =

∫
Θ

p(θ) dθ = p(y)

∫
Θ

1

p(y|θ)p(θ|y) dθ. (2)

Consequently,
1

p(y)
=

∫
Θ

1

p(y|θ)p(θ|y) dθ = Eθ|y

(
1

p(y|θ)

)
, (3)

where Eθ|y(·) denotes the expected value with respect to the posterior distribution of
θ. In (3), the reciprocal of p(y) is expressed as an expected value of the inverse of the
conditional density of the data y given θ with respect to the posterior distribution of
the parameters. In other words, the marginal data density is equal to the posterior
Harmonic Mean of the conditional density of the data. This equation suggests using
the sample Harmonic Mean of the conditional density of y given θ based on draws from
the posterior distribution, p(θ|y). The Harmonic Mean (HM) estimator, proposed by
Newton and Raftery (1994), is given by

p̂HME(y) =

[
1

k

k∑
q=1

1

p(y|θ(q))

]−1

, (4)

where {θ(q)}kq=1
is drawn from the posterior distribution of the parameters by means of

a Markov Chain Monte Carlo (MCMC) method.

Even though the HM estimator is consistent (see Newton and Raftery (1994)), it
has some serious shortcomings. Namely, it can be unstable (see Raftery et al. (2007)),
and it overestimates the marginal data density. Moreover, as pointed by Lenk (2009),
it is characterised by so-called “simulation pseudo-bias”. Lenk (2009) has proposed
several methods for correcting the “pseudo-bias” provided that we can draw from the
posterior distribution restricted to a subset of the space of parameters, of which posterior
probability is close to one. The adjusted HM estimator, proposed by Lenk (2009), is
given by

p̂AHME(y) = P̂ (A)

[
1

k

k∑
q=1

1

p(y|θ(q))

]−1

, (5)
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where P̂ (A) is an assessment of the prior probability of subset A ⊆ Θ, of which the
posterior probability is greater than 1−ε for small ε > 0 (i.e. P (A|y) > 1−ε), see Lenk
(2009). Based on the identity2

p(y) = P (A)

⎡
⎣∫
Θ

IA(θ)

p(y|θ)p(θ|y) dθ

⎤
⎦
−1

, (6)

which is true for any subset A ⊆ Θ such that 0 < P (A) < ∞ and 0 < P (A|y) < +∞,
Pajor and Osiewalski (2013) have shown that Lenk’s correction can be used regardless
of the posterior probability accumulated in the chosen subset of the parameters’ space,
and that some estimators from the adjusted HM estimator class (depending on the
choice of A) can be used in the case of an improper prior. Their analytical result makes
it possible to select A, and consequently to improve numerical properties of the adjusted
Harmonic Mean estimator. It is easy to show that the identity (6) is equivalent to

p(y) =
P (A)

P (A|y)

⎡
⎣∫
Θ

1

p(y|θ)p(θ|y,A) dθ

⎤
⎦
−1

. (7)

Given the subset A ⊆ Θ, the identities (6) and (7) naturally lead to the following
estimators of the marginal data density value (further called as Corrected Harmonic
Mean):

p̂CHME(y) = P̂ (A)

[
1

k

k∑
q=1

IA(θ(q))

p(y|θ(q))

]−1

(8)

and

p̂A,CHME(y) =
P̂ (A)

P̂ (A|y)

[
1

k

k∑
q=1

1

p(y|θA(q))

]−1

, (9)

where {θ(q)}kq=1
and {θA(q)}

k

q=1
are drawn from p(θ|y) and p(θ|y,A), respectively.

The Corrected Harmonic Mean estimator (given by (8)) is still biased, and it overes-
timates the marginal data density. Using the method presented in Xie et al. (2011), we
have showed that even if P (A) is known, the expected value of the Corrected Harmonic
Mean times P (A) is greater than p(y), i.e.

p(y) < Eθ|y

⎛
⎝P (A)

[
1

k

k∑
q=1

IA(θ(q))

p(y|θ(q))

]−1
⎞
⎠ (10)

(see Supplementary Appendix A in Pajor (2016)). The bias results from the presence
of the reciprocal function in (8), which is convex for positive arguments. In order to
overcome the problem of biasedness of the estimator, we propose using the Arithmetic

2IA(θ) is the indicator function which takes on the value 1 when its argument belongs to the set A
and is 0 otherwise.
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Mean instead of the Harmonic Mean. In turn, to reduce an unacceptably high variance
of the Arithmetic Mean estimator, we trim the prior sample to eliminate problematic
regions of the parameter space. Our method belongs to the class of methods which are
based on importance sampling and used to estimate p(y) separately for each model.
Estimation of marginal likelihoods instead of the Bayes factor allows a new model to
be directly compared with other models for which the marginal likelihood has been
calculated.

Obviously, various other numerical methods have been proposed in the literature to
estimate the marginal data density value directly or to compute ratios of two marginal
likelihoods (i.e. Bayes factors); for a review see, e.g. Ardia et al. (2012), Friel and
Wyse (2012). Very popular methods for computing Bayes factors or marginal posterior
probabilities are based on the reversible jump algorithm of Green (1995) and on bridge
sampling methods (see Meng and Wong (1996)). Bartolucci et al. (2006) proposed a
class of estimators of the Bayes factor based on an extension of the bridge sampling
identity of Meng and Wong (1996) and combined with reversible jump sampler.

A widely used method of approximating the marginal likelihood is Laplace–Metropo-
lis approximation (see Kass and Raftery (1995), Raftery (1996)). The Laplace–Metropo-
lis method is based on a numerical approximation of the marginal likelihood, obtained
by substituting the posterior density by the Normal density with mean equal to the
posterior mode and covariance matrix equal to the posterior variance matrix, obtained
from posterior simulation output. Unfortunately, the approximation may not be valid
for some models, e.g. mixture models, where asymptotic normality does not hold (see,
e.g. Frühwirth-Schnatter (2006)).

Among the numerical methods used to estimate the marginal likelihood, a very
popular one is the method of Chib (1995). The approach of Chib (1995) is aimed at
estimation of the marginal likelihood from Gibbs sampling output (with the use of Rao–
Blackwellization). The idea was extended by Chib and Jeliazkov (2001) to deal with
cases where the Metropolis–Hastings algorithm is used to generate posterior samples.
The methods require an additional sample using reduced Gibbs or reduced Metropolis–
Hastings sampling, which may be time-consuming when the parameter space is split into
a large number of blocks. Moreover, the numerical accuracy of the estimate depends on
the choice of a specific point of the parameter space.

Friel and Pettitt (2008) proposed the power posterior method, inspired by ideas from
the path sampling, which had been proposed by Gelman and Meng (1998), and based
on samples from a distribution proportional to the likelihood raised to a power t times
the prior density function. A difficulty with this method is that of choosing the optimal
temperature schedule. Recently, Weinberg (2012) proposed a novel approach based on
Lebesgue integration. All estimation methods present advantages and disadvantages.
Unfortunately, no perfect solution exists.

In the following section, we propose a new class of estimators of the marginal like-
lihood. They are based on the Arithmetic Mean of likelihoods calculated only over an
arbitrary subset of the space of model parameters corrected by the reciprocal of the
posterior probability of the subset. We also show that, under some assumptions, new
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estimators (which depend on the choice of a subset of the parameter space) are un-
biased and consistent (see Supplementary Appendix B in Pajor (2016)). In Sections 3
and 4, we present simulation results and data examples showing that the new estima-
tor performs very well in comparison with the Corrected Harmonic Mean, Chib and
Laplace–Metropolis estimators. Finally, we conclude that preliminary experience with
estimators introduced here is very promising.

2 Corrected Arithmetic Mean estimators: methodology

Equation (1) suggests using the sample Arithmetic Mean of the conditional density of
y given θ based on draws from the prior distribution, p(θ). The Arithmetic Mean (AM)
estimator is given by

p̂AME(y) =
1

k

k∑
q=1

p(y|θ(q)), (11)

where {θ(q)}kq=1
is now drawn from the prior distribution of the parameters.

This estimator was mentioned by, e.g. Hammersley and Handscomb (1964) and
Raftery and Banfield (1991), and it was used by McCulloch and Rossi (1992) for logistic
regression models as well as by Lewis and Raftery (1997) for comparing alternative
hierarchical (i.e. random-effects) models. Although this AM estimator is unbiased, it
can have a very high variance (and thus it can be quite inefficient). If the posterior
distribution is much more concentrated than that of the prior, then while sampling from
the prior distribution, we obtain most points in the area, in which the sampling density
of the data (or the likelihood) is close to zero. Hence, the estimate of p(y) depends on
only few points from the area of high value of p(y|θ). Consequently, an incredibly large
simulation sample would be required to obtain adequate result (see Lewis and Raftery
(1997), Raftery (1996)). Moreover, the AM estimator cannot be used for improper priors.
A natural remedy for the inefficiency is to trim the prior sample to eliminate regions of
the parameter space with very low likelihood, similarly as for the Corrected Harmonic
Mean estimator. This motivates us to propose a modification of the Arithmetic Mean
estimator.

Let us assume that A ⊆ Θ, 0 < P (A) < +∞, and 0 < P (A|y) < +∞. Starting from
the identity

P (A|y) =
∫
A

p(θ|y) dθ, (12)

we obtain

P (A|y) =
∫
Θ

IA(θ)
p(y|θ)p(θ)

p(y)
dθ, (13)

and consequently,

p(y) =
1

P (A|y)

∫
Θ

p(y|θ)IA(θ)p(θ) dθ =
Eθ(p(y|θ)IA(θ))

P (A|y) (14)
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or equivalently,

p(y) =
P (A)

P (A|y)

∫
Θ

p(y|θ)p(θ|A) dθ =
P (A)

P (A|y)Eθ(p(y|θ)|A), (15)

where Eθ(·) denotes the expected value with respect to the prior distribution of θ, and
Eθ(·|A) denotes the conditional expected value of θ given A.

Equation (14) says that the marginal density of the data can be expressed as a
product of the reciprocal of the posterior probability of the subset A, P (A|y), and
the expected value of the conditional density of the data times the indicator function
of subset A, p(y|θ)IA(θ). This expected value is calculated with respect to the prior
distribution of the model parameters. Identity (14) naturally leads to the following
estimator of the marginal data density value (further called Corrected Arithmetic Mean
estimator):

p̂CAME(y) =
1

P̂ (A|y)
1

k

k∑
q=1

p(y|θ(q))IA(θ(q)), (16)

where {θ(q)}kq=1
is drawn from the prior distribution, p(θ). The assessment of the pos-

terior probability of the subset A, P̂ (A|y), requires also sampling from the posterior
distribution.

In turn, identity (15) suggests that the marginal likelihood can be approximated
by the product of the ratio of prior to posterior probabilities of the subset A and the
sample Arithmetic Mean of the conditional data density,

p̂A,CAME(y) =
P̂ (A)

P̂ (A|y)
1

k

k∑
q=1

p(y|θA(q)), (17)

based on {θA(q)}kq=1 drawn from the prior distribution, restricted to the subset A, p(θ|A).
Note that we have just defined a new class of estimators indexed by the subset A ⊆ Θ.
Under additional assumptions (first, the subset A is compact; second, the likelihood is
bounded on A; third, P (A|y) is known; fourth, it is possible to generate samples from
the prior distribution), it is easy to show that the Corrected Arithmetic Mean (CAM)
estimator is unbiased and consistent (see Theorem 2 in Supplementary Appendix B
in Pajor (2016) for details). It stems from the fact that the CAM estimator is just a
simple Monte Carlo estimator. In practice, P (A|y) needs to be estimated via posterior
simulation. If it is possible to generate samples forming an ergodic Markov chain whose
equilibrium distribution is the posterior distribution, then the CAM estimator remains
consistent (see Theorem 3 in Supplementary Appendix B in Pajor (2016)). Because of
the opportunity to arbitrarily select the subset A in (16) and (17), the problem with
inefficiency of the Arithmetic Mean (11) can be overcome. Indeed, subset A should be
chosen in the area of large values of p(y|θ). By doing so, the variance of the Arithmetic
Mean can be reduced. Note that, from the numerical point of view, an optimal choice

of A is to have P̂ (A|y) = 1 because then p̂CAME(y) =
1
k

k∑
q=1

p(y|θ(q))IA(θ(q)), and the
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CAM estimator needs additional simulation only from the prior distribution. Moreover,
to evaluate the expected value in (14), importance sampling can be used. Suppose that
there exists an algorithm for generating sample according to the probability density
function s(·) referred as an importance function. Then

Eθ(p(y|θ)IA(θ)) =
∫
Θ

p(y|θ)IA(θ)p(θ)dθ =

∫
Θ

p(y|θ)IA(θ)p(θ)
s(θ)

s(θ)dθ. (18)

This yields the importance sampling estimator of p(y) with importance function s(·),
namely,

p̂CAME(y) =
1

P̂ (A|y)
1

k

k∑
q=1

p(y|θ(q))p(θ(q))IA(θ(q))
s(θ(q))

, (19)

where {θ(q)}kq=1
is drawn from the importance sampling distribution.

The simplicity of the Corrected Arithmetic Mean estimator and its good proper-
ties are its main advantages over other techniques based on importance sampling, e.g.
stabilized version of the Harmonic Mean (see Raftery et al. (2007)), annealed impor-
tance sampling (see Neal (2001)), important-weighted marginal density estimators (see
Chen (1994), Chen (2005)), and others (see, e.g. Meng and Wong (1996), Raftery (1996),
Lewis and Raftery (1997), Han and Carlin (2001), Raftery et al. (2007), Friel and Pettitt
(2008), Lenk (2009), Xie et al. (2011), Weinberg (2012)). Moreover, our new estimators
can be used in the case of an improper prior (under the assumption that A ⊆ Θ is a
set with non-zero and finite prior measure), in which p(θ) is a density function of some
σ-finite measure such that p(y) is non-zero and finite, i.e. the posterior distribution
exists.

3 Simulation study

In this section we present simulation studies for three classes of models in which, un-
der some assumptions, the true values of the marginal likelihoods are known (i.e. can
be calculated analytically). We consider two examples presented by Lenk (2009) (the
conjugate normal model and linear regression models) and autoregressive (AR) models.
As regards AR models, we elaborate two cases: first, autoregressive models with con-
jugate inverse Gamma–Normal prior distribution; second, autoregressive models with
covariance stationarity conditions and independent inverse Gamma–Normal prior distri-
butions. In the second class of AR models, unlike the conjugate AR models, close-form
expression for the marginal likelihood does not exist. Thus we calculated the natural
logarithm of Bayes factors in favour of the true (assumed) model compared with other
ones. In addition to the new estimator, the HM, corrected HM, AM, Laplace–Metropolis
(LM), and Chib’s estimators are used. The Laplace–Metropolis estimator is defined as
follows (see Raftery (1996)):

p̂LM (y) = (2π)d/2 det(Ψ)1/2p(y|θ̃)p(θ̃), (20)

where θ̃ is the posterior mode of ln[p(y|θ)p(θ)], Ψ is the negative inverse Hessian of
ln[p(y|θ)p(θ)] evaluated at θ = θ̃, and d is the dimension of θ. In our examples θ̃
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was estimated from the posterior simulation output. Function ln[p(y|θ(q))p(θ(q))] was
computed for each q = 1, . . . , k, and then the value of θ(q) for which it is largest was
taken. Matrix Ψ was approximated by the estimated posterior covariance matrix from
the posterior simulation output (as suggested by Raftery (1996)).

As a “gold standard” for calculating the marginal likelihood, we also consider the
method proposed by Chib (1995), and extended by Chib and Jeliazkov (2001). The
Chib’s method is based on the identity

p(y) =
p(y|θ∗)p(θ∗)

p(θ∗|y) , (21)

leading to the following equation:

ln p(y) = ln p(y|θ∗) + ln p(θ∗)− ln p(θ∗|y), (22)

which holds for any θ∗ ∈ Θ. In practice (for the sake of estimation efficiency), the vector
θ∗ is chosen from the area of high posterior density values. Usually, both the prior p(θ∗)
and likelihood terms p(y|θ∗) can be easily calculated. The estimation of the posterior
probability density function p(θ∗|y) is difficult, but it can be approximated based on
output from an MCMC sampler. This method requires performing reduced Gibbs steps
(or reduced Metropolis–Hastings steps) in addition to the Gibbs sampler (or to the
Metropolis–Hastings algorithm).

3.1 Conjugate normal model

As a very simple example let us consider the conjugate normal model, similar to
Lenk (2009). Let us assume that yt|μ, σ2 ∼ N(μ, σ2), t = 1, 2, . . . , N , and μ|σ2 ∼
N(m0, σ

2/w0), σ
2 ∼ IG(r0/2, s0/2), where N(m0, σ

2/w0) denotes the Normal distribu-
tion with mean m0 and variance σ2/w0, in turn, IG(r0/2, s0/2) stands for the inverse

Gamma distribution with mean s0/2
r0/2−1 for r0 > 2, and variance (s0/2)

2

(r0/2−1)2(r0/2−2) for

r0 > 4. Whereas the conditional posterior distribution for μ is a Normal. i.e.

μ|σ2, y ∼ N(mN , σ2/wN ), where mN =
Nȳ + w0m0

N + w0
, wN = N + w0,

the marginal posterior distribution for σ2 is an inverse Gamma:

σ2|y∼ IG(rN/2, sN/2), where rN = r0+N, sN =

N∑
t=1

(yt − ȳ)2+
Nw0

N + w0
(ȳ−m0)

2+s0,

ȳ is the Arithmetic Mean for sample y.

By integrating out parameters from the joint distribution of parameters and data,
p(y|μ, σ2)p(μ, σ2), the marginal density of the data can be presented in closed form (see
Lenk (2009)) as

p(y) = π−N/2

(
w0

wN

)1/2
Γ(rN/2)s

r0/2
0

Γ(r0/2)s
rN/2
N

. (23)

In Figure 1, we present natural logarithms of consecutive estimates obtained for HM,
CHM and CAM estimators, in the framework of the conjugate normal model for 100
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Figure 1: The Harmonic and Arithmetic Mean estimators in the conjugate normal
model. 10000 iterations in each Monte Carlo procedure were used. 1000 reestimations
for N = 100 observations from a Normal distribution with a mean of 30 and a variance
of 4 were carried out. The prior hyperparameters were:m0 = 0, w0 = 0.05, r0 = 3, s0 = 3
(see Lenk (2009)). The true value of logarithm of likelihood is equal to −217.893,
A = [min{μ(q)},max{μ(q)}]× [min{σ2

(q)},max{σ2
(q)}].

observations generated from a normal distribution with a mean of 30 and a variance
of 4. Similar to Lenk (2009), the prior parameters are as follows:m0 = 0, w0 = 0.05, r0 =
3, s0 = 3. True value of logarithm of likelihood is equal to −217.893 (the horizontal,
dashed line in Figure 1). We report results based on 10000 Monte Carlo simulations,
which were repeated 1000 times. As regards subset A, in this model we assume that it is a
rectangle limited by the range of the Monte Carlo sampler output ({θ(q)}kq=1

drawn from

the posterior distribution, where θ(q) = (μ(q), σ
2
(q))

′), i.e. A = [min{μ(q)},max{μ(q)}]×
[min{σ2

(q)},max{σ2
(q)}]. The prior probability of subset A, P (A), was approximated,

using importance sampling. As a sampling distribution, the inverse Gamma–Normal
truncated to A was used. The mean and variance of the sampling distribution were set
at the mean and variance of the posterior distribution of (μ, σ2)′. The evaluation of p(y)
using (16) requires estimation of P (A|y). We put P̂ (A|y) = 1 and applied MCIS method
with the importance function being an independent inverse Gamma–Normal with the
mean and variance of the posterior distribution (estimated from the MC draws). We can
see from Figure 1 that the natural logarithms of the corrected HM and AM estimators
cover the true value of ln p(y). The spread of estimates is clearly smaller for the CAM
estimator. The prior probability of A, P (A), is approximately 1.17 · 10−4.

In Table 1, average errors (AE) and root mean squared errors (RMSE) in the con-
jugate normal model are presented. In this model ln p(y) can be analytically calculated,
and thus we can compare the true value of ln p(y) with its estimates. As mentioned
above, we consider a few very popular estimators of the marginal likelihood: the Har-
monic Mean, Corrected Harmonic Mean, Arithmetic Mean, Corrected Arithmetic Mean
(newly proposed), Chib, and Laplace–Metropolis estimators. All of the realizations of
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.
true ln p(y) ln HME ln CHME ln AME ln CAME ln ChibE ln LME

N =
50

Mean –116.144 –108.407 –116.69 –116.144 –116.158 –116.144 –116.009
AE – –7.737 0.547 0 0.014 0 –0.135

RMSE – 7.769 0.888 0 0.423 0 0.136

N =
100

Mean –222.402 –213.560 –222.895 –222.402 –222.421 –222.402 –222.334
AE – –8.842 0.492 0 0.018 0 –0.069

RMSE – 8.872 0.996 0 0.783 0 0.069

Table 1: Mean, average error (AE, true – estimated) and root mean squared error
(RMSE) in the conjugate normal model. Results obtained for N = 50 and N = 100
observations from a normal distribution with a mean of 30 and a variance of 4. 1000
datasets were generated. The ln p(y) was estimated with Monte Carlo sampler based
on 10000 iterations. The ln HME denotes the natural logarithm of the Harmonic Mean
estimator, ln CHME – the natural logarithm of the Corrected Harmonic Mean estimator,
ln AME – the natural logarithm of the Arithmetic Mean estimator, ln ChibE – the
natural logarithm of the Chib’s estimator, ln CAME – the natural logarithm of the
Corrected Arithmetic Mean estimator, ln LME – the natural logarithm of the Laplace–
Metropolis estimator.

these estimators are computed on the log scale. The Arithmetic Mean estimator and the
Chib’s method perform best of all considered methods, but it is natural in such a simple
model. Normalizing constants of the conditional posterior distribution for μ and of the
marginal posterior distribution for σ2 are known, therefore the use of the Chib’s method
or the Arithmetic Mean leads to the true value of the marginal likelihood. Consequently,
average errors and RMSE are equal to zero. Because of “simulation pseudo-bias”, the
HM estimator performs worst. The HM estimator has the highest average and root
mean squared errors from all estimators under consideration. It is natural because the
RMSE can be written as a root of a sum of the variance term and the bias term:
RMSE(ln p̂(y)) =

√
E[ln p̂(y)− ln p(y)]2 =

√
V ar(ln p̂(y)) + (E[ln p̂(y)]− ln p(y))2.

Thus, more biased estimators have higher values of the RMSE. The Corrected Arith-
metic Mean estimator has smaller absolute values of average error than the Laplace–
Metropolis estimator, but the latter has smaller root mean squared errors. The results
demonstrate that our proposed estimator can be better than the CHM estimator.

3.2 Linear regression models

Simulation properties of our new estimator can be easily checked in linear regression
models. Such a model can be written in the following standard notation:

y = Xβ + ε, (24)

where X is an N × K matrix of regressors, β is a K × 1 vector of parameters. More-
over, we assume that ε ∼ N(0, σ2IN ) with a conjugate family of distributions, β|σ2 ∼
NK(b0, σ

2V0), σ
2 ∼ IG(r0/2, s0/2), and with prior hyperparameters, b0 = 0, V0 = 7IK ,

r0 = 2, s0 = 1. Values of regressors are generated from a standard normal distribution.
Moreover, to simulate datasets we generated samples of size N = 25, 100, 200, data
points from model (24) withK = 3, 20, 40, 100, ε ∼ N(0, IN ), and β = (5, 1,−2, 1, 1, . . . ,



A. Pajor 271

1)′. It has been shown that the joint posterior density for β and σ2 also has in-
verse Gamma–Normal form. The posterior distribution for β conditional on σ2 and
the marginal posterior distribution of σ2 are as follows:

β|σ2, y ∼ NK(b1, σ
2V1), (25)

σ2|y ∼ IG

(
N + r0

2
,
y′y − b′1V

−1
1 b1 + b′0V

−1
0 b0 + s0

2

)
, (26)

where V1 = (X ′X + V −1
0 )−1 and b1 = V1(X

′y + V −1
0 b0). The natural logarithm of the

marginal data density value can be expressed as

ln p(y) = ln a− r0 +N

2
ln

(
1 +

1

s0
(y −Xb0)

′(IN +XV0X
′)−1(y −Xb0)

)
, (27)

where ln a = −N
2 ln(πs0) − 1

2 ln det(IN + XV0X
′) + lnΓ

(
r0+N

2

)
− ln Γ

(
r0
2

)
(see, e.g.

Appendix to Lenk (2009)).

Results obtained using various estimators of the log-marginal likelihood are pre-
sented in Table 2. First of all, for the CHM estimator we assume that the subset A is
an intersection of the parameter space where the conditional density function p(y|θ) ex-
ceeds the smallest value of p(y|θ) evaluated at pseudo-random sample {θ(q)}kq=1 from the
posterior distribution and the hypercuboid limited by the range of the sampler output:
A = ⊗

i
[min{θi(q)},max{θi(q)}] ∩ {θ : p(y|θ) ≥ L}, where {θi(q)} is the ith component of

the vector {θ(q)}, i = 1, . . . ,K + 1, L = min{p(y|θ(q)), q = 1, . . . , k}, θ(q) = (β′
(q), σ

2
(q))

′.

Moreover, the CHM estimator is computed using three methods of “simulation
pseudo-bias” assessments. Namely, to approximate P (A), similar to Lenk (2009), we
use Monte Carlo Importance Sampling: Importance Sampling with Uniform distribu-
tion as an importance one, MCIS with Normal distribution, and MCIS with independent
inverse Gamma–Normal distribution. The first two are based on Lenk’s proposition and
his fragments of code (available in supplemental materials for Lenk (2009)). In the
latter method, specifications of mean and variance of importance distribution are eval-
uated with MC draws from posterior distributions of β and σ2. In turn, for the CAM
estimator we assume that the subset A is a hypercuboid limited by the range of the
posterior sampler output, A = ⊗

i
[min{θi(q)},max{θi(q)}]. Consequently, P̂ (A|y) = 1 and

the prior simulation support is in regions where the likelihood is significant. To simulate
datasets, samples of size N = 100 data points from the model (24) were generated. The
Monte Carlo sampler was run for 10000 iterations. The true and estimated marginal
data density values are presented in Table 2 and Figure 2.

In Table 2, we also present average errors and root mean squared errors. The Cor-
rected Arithmetic Mean estimator performs best. For this estimator the average errors
and RMSE are the smallest. Although three importance sampling distributions gener-
ate different estimates produced by the same CHM estimator, each of them is worse
than the estimates produced by the CAM estimator with the inverse Gamma–Normal
density as the importance function. Moreover, it seems that the CAM estimator has (as
compared to the Harmonic Mean) a clearly less spread distribution (see Figure 2). Note
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K = 3 K = 3 K = 20 K = 40 K = 100
N = 25 N = 100 N = 100 N = 100 N = 200

average of the true ln p(y) –44.94 –154.18 –200.59 –251.47 –579.63

average error (true-estimated)
ln HME –6.555 –9.428 –51.045 –100.925 –290.307
ln CHME; MCIS: Uniform 0.656 0.634 1.241 –84.385 –229.304
ln CHME; MCIS: Normal 0.042 1.757 2.241 1.219 4.235
ln CHME; MCIS: inverse Gamma–
Normal

0.674 0.635 1.161 1.453 1.773

ln LME –1.509 –1.155 –5.701 –9.198 –12.260
ln AME 1.248 9.600 — — —
ln CAME; MCIS: inverse Gamma–
Normal

0.001 0.001 0.003 0.012 0.116

RMSE
ln HME 6.602 9.458 51.070 100.951 290.326
ln CHME; MCIS: Uniform 0.905 0.884 1.584 84.871 229.368
ln CHME; MCIS: Normal 1.183 1.848 2.712 2.624 5.338
ln CHME; MCIS: inverse Gamma–
Normal

0.941 0.888 1.494 1.791 2.084

ln LME 1.509 1.155 5.712 9.233 12.377
ln AME 2.329 12.247 — — —
ln CAME; MCIS: inverse Gamma–
Normal

0.009 0.008 0.025 0.073 0.395

Table 2: Average error and root mean squared error in the linear regression model.
Results obtained for simulated data from linear regression models. 1000 datasets were
generated. The ln p(y) was estimated with Monte Carlo sampler based on 10000 it-
erations. The true value of ln p(y) was analytically calculated. The ln HME denotes
the natural logarithm of the Harmonic Mean estimator, ln CHME – the natural log-
arithm of the Corrected Harmonic Mean estimator, ln AME – the natural logarithm
of the Arithmetic Mean estimator, ln CAME – the natural logarithm of the Corrected
Arithmetic Mean estimator, ln LME – the natural logarithm of the Laplace-Metropolis
estimator.

that for K ≥ 20 the AM estimator is inefficient (an overflow or an underflow occur). It is
so because the posterior distribution is much more concentrated than that of the prior.
By trimming the space of parameters to the subset A, we eliminate very low likelihood
regions, and consequently we reduce the variance of the estimator.

As regards the Chib’s method, for any vector θ∗ = (β∗, σ2∗) the posterior density
can be decomposed as p(θ∗|y) = p(β∗|σ2∗, y)p(σ2∗|y), where the first term is a density
function of a Normal distribution, and the second is a density function of an inverse
Gamma one, see (24) and (26). Consequently, the Chib’s method reduces itself to the
use of (27).

3.3 Autoregressive models

While the previous examples illustrated good properties of the new estimator in mod-
els with closed-form marginal density of the data, the following examples pertain to
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Figure 2: Estimates of the log-marginal likelihood (ln p(y)) in linear model with K =
100. Simulation study of linear model using 200 simulated data points, N = 200. 10000
Monte Carlo iterations for estimation were used. The true value ln p(y) is analytically
calculated. The ln HME denotes the natural logarithm of the Harmonic Mean estimator,
ln CHME – the natural logarithm of the Corrected Harmonic Mean estimator, ln CAME
– the natural logarithm of the Corrected Arithmetic Mean estimator.

models in which analytical derivation of marginal posterior densities by integrating out
parameters from a joint distribution (which determines the normalizing constant of the
posterior distribution) may not be possible. We consider the autoregressive models of
order p,

yt = β0 + β1yt−1 + · · ·+ βpyt−p + εt, t = 1, . . . , N, (28)

with ε = (ε1, ε2, . . . , εN )′ ∼ N(0, σ2IN ), independent inverse Gamma–Normal prior dis-
tribution (i.e. β ∼ Np+1(b0, V0), σ

2 ∼ IG(r0/2, s0/2)), and with stationarity conditions
for {yt}. In AR(p) models with independent prior distributions, the joint posterior den-
sity for β and σ2 does not take a standard form, but the full conditional distributions
are standard:

β|σ2, y ∼ NK(bN , VN )IS(β), (29)

σ2|β, y ∼ IG

(
N + r0

2
,
(y −Xβ)′(y −Xβ) + s0

2

)
, (30)

where VN = (X ′X/σ2 + V −1
0 )−1, bN = VN (X ′y/σ2 + V −1

0 b0), S is the subset of pa-
rameter space for β, where stationarity conditions of {yt} are satisfied. Thus, the Gibbs
sampler can be used to simulate from the joint posterior distribution (by simulation
from these Normal and inverse Gamma distributions). Similar to the linear regression
model for the CAM estimator, we assumed that the subset A constitutes an intersec-
tion of the parameter space and the hypercuboid limited by the range of the posterior
sampler output, A = ⊗

i
[min{θi(q)},max{θi(q)}] ∩ S, whereas for the CHM estimators:

A = ⊗
i
[min{θi(q)},max{θi(q)}] ∩ {θ : p(y|θ) ≥ L} ∩ S, L = min{p(y|θ(q)), q = 1, . . . , k},

i = 1, . . . ,K + 1, θ(q) = (β′
(q), σ

2
(q))

′. A sample of size N = 100 data points was gen-

erated from model (28) with ε ∼ N(0, 0.01IN ), p = 2, 5, 15, β = (0.1, 0.4,−0.3)′ or
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AR(p) model p = 2 p = 5 p = 15 p = 2 p = 5 p = 15

TRUE ln p(y) Mean 93.295 80.009 87.494 RMSE 0 0 0
SD 0 0 0 AE 0 0 0

ln HME Mean 95.042 81.318 89.068 RMSE 1.830 1.398 1.656
SD 0.544 0.488 0.515 AE 1.747 1.309 1.574

ln CHME Mean 92.903 79.666 86.579 RMSE 0.599 0.545 1.301
MCIS: Uniform SD 0.453 0.424 0.925 AE –0.393 –0.343 –0.915
ln CHME Mean 92.397 80.021 89.317 RMSE 1.040 0.599 2.127
MCIS: Normal SD 0.524 0.599 1.094 AE –0.898 0.012 1.823
ln CHME Mean 92.901 79.664 87.126 RMSE 0.603 0.546 0.564
MCIS: IG–N SD 0.544 0.423 0.428 AE –0.395 –0.345 –0.368
ln LME Mean 94.448 82.192 92.327 RMSE 1.153 2.184 4.840

SD 0.016 0.049 0.261 AE 1.153 2.183 4.833
ln AME Mean 93.295 80.007 87.493 RMSE 0.077 0.051 0.060

SD 0.077 0.051 0.060 AE –0.0005 –0.002 –0.003
ln CAME Mean 93.294 80.008 87.490 RMSE 0.008 0.010 0.020
MCIS: IG–N SD 0.008 0.010 0.019 AE –0.001 –0.001 –0.003

Table 3: Results obtained in AR(p) models with conjugate inverse Gamma–Normal
priors, y held fixed for each p. SD – standard deviation, RMSE – root mean squared
error, AE – average error (true – estimate). ln p(y) was calculated via its analytical
expression, given in (23), IG–N – inverse Gamma–Normal.

β = (0.1, 0.4, 0.03, . . . , 0.03,−0.3)′ (depending on p). Prior hyperparameters were as-
sumed to be r0 = 4, s0 = 0.1, V0 = diag(v0,ii), v0,ii = 0.1i−2, and b0 = (0.1, 0.4,−0.3)′

or b0 = (0.1, 0.4, 0.03, . . . , 0.03,−0.3)′. The prior hyperparameters are chosen so that
the prior probability of stationarity conditions is not too small. Consequently, we can
directly draw from the prior distribution.

It is worth noting that for a conjugate prior distribution, i.e. β|σ2 ∼ Np+1(b0, σ
2V0)

and σ2 ∼ IG(r0/2, s0/2), this model is a special case of the normal linear model with

y = (y1, y2, . . . , yN )′ and X =

⎡
⎢⎢⎢⎣

1 y0 . . . y1−p

1 y1 . . . y2−p

...
...

. . .
...

1 yN−1 . . . yN−p

⎤
⎥⎥⎥⎦ .

Therefore, in the conjugate AR models, the joint posterior density for β = (β0, β1, . . . ,
βp)

′ and σ2 takes a well known form: a product of an inverse Gamma and a (condi-
tional) Normal. Thus, the natural logarithm of the marginal data density value can
be calculated from (27). In Table 3, we present the main characteristics of estimates
of ln p(y), obtained with the use of the proposed estimator and a collection of popular
methods. In normal autoregressive models with conjugate prior distributions (where the
marginal data density value is available analytically) among considered estimators, the
CAM estimator performs best because it is characterised by smallest root mean squared
errors and average errors. Note that the CAM estimator has substantially smaller aver-
age errors than the CHM (with three different methods of estimation P (A)). Thus, the
newly proposed estimator has better simulation properties than that proposed by Lenk
(2009). Moreover, the CAM estimator is good for even small samples.
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AR(p) models p = 2 p = 5 p = 15 p = 2 p = 5 p = 15

TRUE ln p(y) – – – – – –
ln HME Mean 95.918 80.891 87.133 RMSE 4.243 3.554 3.775

SD 0.727 0.797 0.623 AE 4.180 3.464 3.723
ln CHME Mean 91.141 76.880 82.608 RMSE 0.832 0.853 1.450
MCIS: Uniform SD 0.580 0.655 1.209 AE –0.597 –0.547 –0.802
ln CHME Mean 89.728 75.837 90.683 RMSE 2.104 1.725 8.428
MCIS: Normal SD 0.620 0.669 4.257 AE –2.010 –1.590 7.273
ln CHME Mean 91.138 76.858 82.897 RMSE 0.844 0.880 0.717
MCIS: IG–N SD 0.594 0.671 0.501 AE –0.600 –0.569 –0.513
ln LM Mean 92.858 79.472 87.572 RMSE 1.120 2.046 4.168

SD 0.018 0.049 0.236 AE 1.120 2.045 4.162
ln AME Mean 91.564 77.628 85.517 RMSE 0.624 0.378 2.113

SD 0.599 0.321 0.169 AE –0.174 0.201 2.106
ln CAME Mean 91.722 77.398 83.374 RMSE 0.018 0.031 0.044
MCIS: IG–N SD 0.008 0.01 0.019 AE –0.016 –0.029 –0.037
ln ChibE(1) Mean 91.738 77.427 83.410 RMSE 0 0 0
posterior maximum SD 0.002 0.006 0.014 AE 0 0 0
ln ChibE(2) Mean 91.738 77.428 83.422 RMSE 0.001 0.005 0.018
posterior mean SD 0.002 0.003 0.004 AE 0.000 0.001 0.012

Table 4: Mean, standard deviation, root mean squared error and average error of the
natural logarithm of estimates obtained in AR(p) models with independent inverse
Gamma–Normal priors and stationarity conditions, y held fixed for each p. SD – stan-
dard deviation, RMSE – root mean squared error relative to ln ChibE(1), AE – average
error relative to ln ChibE(1) (ln ChibE(1) – estimate), IG–N – inverse Gamma–Normal.
ln p(y) is not available analytically.

Table 4 contains means, standard deviations, root mean squared errors and aver-
age errors (relative to ln ChibE(1)) of the natural logarithm of estimates obtained in
AR(p) models with independent inverse Gamma–Normal priors and under stationarity
conditions. Unlike the conjugate AR model a closed-form expression for the marginal
likelihood does not exist. Therefore, the root mean squared errors and average errors
are determined relative to the Chib’s method calculated at the posterior maximum. The
Gibbs sampler was run for 10000 iterations. Results of the initial draw were adopted as
equal to maximum likelihood estimates. We assume b0 = (0.1, 0.4, 0.03, . . . , 0.03,−0.3)′

in the case of the AR(p) structure used, and b0 = (0.1, 0.4, 0.03, . . . , 0.03)′ for AR(p−1)
as well as for AR(p + 1) structures. The vector of the data used, y, in stationarity
AR models and in the conjugate autoregressive model remains the same. For each
p ∈ {2, 5, 15} we estimate three models: AR(p) (which is true) and AR(p− 1) as well as
AR(p+ 1) (which are false). We use 1000 replications for each model.

As regards of the Chib’s method, the joint posterior density of (β∗, σ2∗) can be
decomposed as follows: p(θ∗|y) = p(σ2∗|y)p(β∗|σ2∗, y), where (β∗, σ2∗) is chosen to be
the posterior mean of (β, σ2) or to be the maximum of the posterior probability density
function. Because the full-conditional densities, including their normalizing constants,
are known (see (29) and (30)), the conditional density p(β∗|σ2∗, y) is available directly,
while the ordinate p(σ2∗|y) is estimated from the draws of the Gibbs run (by averaging
full-conditional densities).
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p = 2 p = 2 p = 5 p = 5 p = 15 p = 15

vs p = 3 vs p = 1 vs p = 6 vs p = 4 vs p = 16 vs p = 14

AR(p) models with conjugate inverse Gamma–Normal prior
TRUE 1 1 1 1 1 1
ln HME 0.989 0.989 0.993 0.984 0.994 0.987
ln CHME; MCIS: Uniform 0.992 0.992 0.998 0.994 0.993 0.989
ln CHME; MCIS: Normal 0.994 0.994 0.990 0.993 0.996 0.988
ln CHME; MCIS: IG–N 0.993 0.993 0.997 0.994 0.999 0.995
ln LME 1.000 1.000 0.995 1.000 0.998 0.999
ln AME 1.000 1.000 0.998 0.998 0.999 0.999
ln CAME; MCIS: IG–N 1.000 1.000 1.000 1.000 1.000 1.000

AR(p) models with independent inverse Gamma–Normal prior and covariance stationarity
ln HME 0.957 0.968 0.961 0.967 0.976 0.964
ln CHME; MCIS: Uniform 0.971 0.973 0.963 0.968 0.962 0.911
ln CHME; MCIS: Normal 0.969 0.967 0.941 0.973 0.102 0.463
ln CHME; MCIS: IG–N 0.971 0.972 0.964 0.967 0.979 0.972
ln LME 0.969 0.996 0.955 0.992 0.979 0.979
ln AME 0.982 0.973 0.965 0.977 0.992 0.977
ln CAME; MCIS: IG–N 0.982 0.987 0.982 0.982 0.978 0.975
ln ChibE(1); posterior maximum 0.982 0.987 0.982 0.982 0.978 0.974
ln ChibE(2); posterior mean 0.982 0.987 0.982 0.982 0.978 0.975

Table 5: Frequency of indications of the correct AR(p) structure based on logarithm of
Bayes factors for the true AR(p) structure against others. Datasets for which analytically
calculated Bayes factors indicate true specification are considered. Results obtained for
simulated data from autoregressive models. 1000 datasets were generated. In AR(p)
models with independent inverse Gamma–Normal (IG–N) prior, ln p(y) was estimated
with Gibbs sampler based on 10000 iterations. The Chib’s method was calculated at
posterior means and at the numerical approximations of the maximum of the posterior
probability density function. In the case of AR(p) models with the conjugate inverse
Gamma–Normal prior, the true value of ln p(y) was analytically calculated; moreover,
direct MC samples from the posterior distributions were used.

We can see from Table 4 that the Chib’s estimators have the smallest dispersion
measured by standard deviation. The average values of the natural logarithm of the
CAM estimates are closer to those of the Chib’s.

Due to the fact that in models with independent prior distributions the p(y) can-
not be derived analytically, we calculated Bayes factors for the true (assumed for the
purpose of simulation) AR(p) model against neighbouring (false) models, AR(p ± 1).
The results are summarized in Table 5 where frequencies of indications of the correct
structure are presented. In the AR(p) models with conjugate inverse Gamma–Normal
prior distributions, the CAM estimator favours the true specifications in all cases. The
LM and AM estimators perform as the second best methods. In AR(p) models with in-
dependent inverse Gamma–Normal prior distributions, once again the LM, AM, CAM,
and Chib’s estimators perform best. Even though the number of iterations is fairly small
and the HM estimator is biased (i.e. the marginal likelihoods are overestimated), this
leads to the correct conclusion about model selection in over 95.7% of cases. The HM
and CHM estimators provide worse estimates of the Bayes factors than does the CAM
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estimator. Once again, the CAM estimator performs very well, being as good as the
Chib’s method.

4 Empirical examples

4.1 Non-nested linear regression models

We now present a classical example for Bayesian model selection considered among
others in Carlin and Chib (1995), Han and Carlin (2001), Bartolucci et al. (2006), Friel
and Pettitt (2008), where different methods for estimating the Bayes factor between two
non-nested competing linear regression models have been compared. Based on n = 42
specimens of radiata pine, the maximum compressive strength parallel to the grain
(yt) is described related to specimen’s density (xt) or to its density adjusted for resin
content (zt). The data set is taken from Williams (1959). Two competing models are
the following:

M1: yt = α+ β(xt − x̄) + εt, t = 1, 2, . . . , n, {εt} ∼ iiN(0, σ2
ε),

M2: yt = γ + δ(zt − z̄) + ηt, t = 1, 2, . . . , n, {ηt} ∼ iiN(0, σ2
η).

In order to facilitate comparisons with other methods, we use the same prior spec-
ification as in articles cited above, i.e. N(185, 104) for β and δ, N(3000, 106) for α
and γ, and IG(6/2, 3002/2) for σ2

ε and σ2
η. We also assume prior independence among

all the parameters. As regards subset A, used for both CAM and CHM estimators, it
is assumed to be an intersection of the parameter space, where the conditional density
function p(y|θ) exceeds the smallest value of p(y|θ) evaluated at pseudo-random sample
{θ(q)}kq=1 from the posterior distribution and the cuboid limited by the range of the
Gibbs sampler output.

We estimated the marginal likelihoods for M1 and M2 models, and we computed the
Bayes factor in favour of model M2, i.e. B21. Each estimate was calculated 100 times, so
the bias, standard and relative errors of the estimates could be computed. The Chib’s
method was calculated at posterior means and at the numerical approximations of the
maximum of the posterior probability density function – analogously to the example
shown in Section 3.3.

The aim of this example is to compare estimates obtained by using the Corrected
Arithmetic Mean with those obtained by the methods proposed by Bartolucci et al.
(2006), Friel and Pettitt (2008). The Gibbs sampler was run for 40000 iterations, of
which the first 10000 are treated as burn-in and are discarded. The results are displayed
in Table 6, where the mean, average errors, standard errors, root mean squared errors,
and relative RMSE for the Bayes factor are presented. To compute RMSE and relative
RMSE, following Han and Carlin (2001), Friel and Pettitt (2008) and Bartolucci et al.
(2006), we used B21 = 4862 computed by Green and O’Hagan (1998).

As can be seen from Table 6, the CAM estimator performs very well, having an effi-
ciency very similar to (even quite better than) the Chib’s marginal likelihood method. Of
course, in these models the Chib’s method is not difficult to use because full conditional
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Estimator Mean Average Standard RMSE Relative median

error deviation error (%)
HME 5511.66 –649.66 3142.15 3208.61 65.99 4838.11
CHME; MCIS: Uniform 5139.91 –277.91 2241.80 2258.96 46.46 4738.65
CHME; MCIS: Normal 5555.32 –693.32 4359.21 4414.00 90.79 4420.21
CHME; MCIS: inverse Gamma–
Normal

4962.57 –100.57 2262.99 2265.22 46.59 4528.62

LME 4857.72 4.28 55.58 55.74 1.15 4853.49
AME; prior 4869.86 –7.86 612.69 612.74 12.60 4858.44
CAME; MCIS: inverse
Gamma–Normal

4861.45 0.55 7.98 8.00 0.16 4861.89

ChibE (posterior maximum) 4861.02 0.98 8.89 8.94 0.18 4861.78
ChibE (posterior mean) 4860.89 1.14 9.55 9.62 0.20 4861.17

Friel and Pettitt (2008), p. 601:
Serial MCMC 4852.00 10 132 – – –
Population MCMC 4840.00 22 154 – – –

Bartolucci et al. (2006), p. 49:
Rao-Blackwellized Rev. Jump: 4864.8 –2.8 204.5 – 4.21 –
optimal bridge function (1): 4864.3 –2.3 204.4 – 4.20 –
optimal bridge function (2): 4848.9 13.10 246.3 – 5.07 –

Table 6: Comparison of the Bayes factor estimators for non-nested linear regression mod-
els. Average error, RMSE and relative error are calculated relative to B21 = 4862. The
Chib’s method was evaluated at posterior means and at the numerical approximations
of the maximum of the posterior probability density function.

distributions are standard and easy to sample from. Performance of the Harmonic and
Corrected Harmonic Mean estimators is the poorest, but it is possible that the CHM
estimator could be improved by selecting better importance functions. It is very impor-
tant to stress that our method leads to estimate of B21 with better efficiency to that of
the power posterior methods, presented by Friel and Pettitt (2008). Biases and standard
errors for estimates B21, obtained by using power posterior methods, are several times
greater than those obtained by using our Corrected Arithmetic Mean. The bias and the
standard error for estimates of the Bayes factor, obtained by using the serial MCMC
approach, are equal to 10 and 132, respectively. Also, we can compare our results with
those presented by Bartolucci et al. (2006). According to their results, the estimators of
B21 based on an extension of the bridge sampling identity perform worse than the CAM
estimator. The standard errors for these estimates range from 204.5 to 246.3 (being over
25-fold higher than those for the CAM estimator), and the relative errors range from
4.20% to 5.07%, being over 26-fold higher than for the CAM estimator.

4.2 Mixture models for galaxy data

Now we will show that using our new estimator can help one to handle difficult problems
with multimodal posterior distributions. Thus, in this section our method of approxima-
tion of the marginal likelihood is applied to one-dimensional Gaussian mixture models
for so-called “galaxy data”. The dataset consists of the velocities (in 103 km/s) of 82
distant galaxies, diverging from our own galaxy, presented by Postman et al. (1986) and
analysed with the use of different mixture models by a number of researches, including,
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for example, Roeder (1990), Carlin and Chib (1995), Chib (1995), Phillips and Smith
(1996), Raftery (1996), Richardson and Green (1997), Neal (1999), Liang and Wong
(2001), Steele et al. (2006), and many others.3 A Gaussian mixture model that we ap-
ply in our examples is considered by Chib (1995). In the model with d components,
the conditional probability density function of independent and identically distributed
observations, yt, t = 1, 2, . . . , n, is as follows:

p(y|θ) =
n∏

t=1

d∑
i=1

ωiφ(yt|μi, σ
2
i ), (31)

where y = (y1, . . . , yn) is a vector of observations, ω = (ω1, . . . , ωd) is a probability
vector, elements of which add up to one, φ(yt|μi, σ

2
i ) is a probability density of nor-

mal distribution with mean μi and variance σ2
i , θ = (μ1, . . . , μd, σ

2
1 , . . . , σ

2
d, ω1, . . . , ωd)

′

summarizes all unknown model parameters. Similar to Chib (1995) it is assumed that
all elements of θ are mutually independent and have the following prior distributions:
μi ∼ N(μ0, σ

2
0), σ2

i ∼ IG(r0/2, s0/2), ω ∼ Dirichlet(α1, . . . , αd), where μ0 = 20,
σ2
0 = 100, r0 = 6, s0 = 40, αi = 1, i = 1, . . . , d. As pointed out in Chib (1995),

the prior hyperparameters are chosen so that these prior distributions reflect weak prior
information about the parameters. The posterior distribution is given by

p(θ|y) ∝ p(θ)

n∏
t=1

d∑
i=1

ωiφ(yt|μi, σ
2
i ), (32)

where p(θ) is the density function of the vector of parameters.

The posterior distribution has d! symmetric modes because the prior distribution is
exchangeable and the likelihood function is invariant to the permutation of the compo-
nent labels (see Frühwirth-Schnatter (2001)). The symmetry of the posterior distribu-
tions of the parameters causes several numerical problems (e.g. lack of label-switching).
To simulate from the posterior distribution, Chib (1995) used the augmented Gibbs
sampler. However, the Gibbs sampler can be inefficient as a numerical tool to visit all d!
symmetric modes in the posterior distribution. There exist different Bayesian solutions
for the problem (see, e.g. Celeux et al. (2000), Stephens (2000), Berkhof et al. (2003),
Marin et al. (2005), Chung et al. (2004), Jasra et al. (2005), Frühwirth-Schnatter (2006)).
In this paper we used a simple and effective algorithm proposed by Frühwirth-Schnatter
(2001), the permutation sampling combined with the Gibbs sampler.

Similar to Chib (1995) the mixture model can be expressed in terms of independent
and identically distributed latent variables associated with observations, zt, t = 1, . . . , n,
that take values in a discrete space {1, 2, . . . , d}, such that Pr(zt = i|θ) = ωi and
p(yt|zt = i, θ) = φ(yt|μi, σ

2
i ). It implies that

p(yt|θ) =
d∑

i=1

p(yt, zt = i|θ) =
d∑

i=1

p(yt|zt = i, θ) Pr(zt = i|θ) =
d∑

i=1

φ(yt|μi, σ
2
i )ωi,

which leads to the mixture model in (32).

3The original dataset consists of 83 observations, but one of them (a velocity of 5607 km/s) does
not appear in the dataset analysed by Roeder (1990) and others.
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As pointed out in Chib (1995), data-augmentation simplifies posterior simulation
via Gibbs sampling from the full conditional distributions of ω = (ω1, . . . , ωd), σ

2 =
(σ2

1 , . . . , σ
2
d), μ = (μ1, . . . , μd) and z = (z1, . . . , zn). Let Ti = {t : zt = i} be the set

of indices of observations which are classified into the ith population and let ni =
n∑

t=1
I{i}(zt) denote the number of observations assigned to the ith population. Then, the

full conditional distributions are standard:

zt|θ, y ∼ Pr(zt = i|θ, y) = ωiφ(yt|μi, σ
2
i )

d∑
i=1

ωiφ(yt|μi, σ2
i )

, i = 1, . . . , d, t = 1, . . . , n, (33)

μ|z, σ2, ω, y ∼ Nd(μ̃, Σ̃μ), (34)

where μ̃ = (μ̃1, . . . , μ̃d) with μ̃i = (σ−2
0 + σ−2

i ni)
−1(σ−2

0 μ0 + σ−2
i ni

∑
t∈Ti

yt), Σ̃μ =

diag(σ̃2
μ,1, . . . , σ̃

2
μ,d), σ̃

2
μ,i = (σ−2

0 + σ−2
i ni)

−1, diag(σ̃2
μ,1, . . . , σ̃

2
μ,d) denotes a diagonal

matrix with σ̃2
μ,1, . . . , σ̃

2
μ,d on the diagonal;

σ2
i |σ2

−i, z, μ, ω, y ∼ IG

(
ni + r0

2
,
δi + s0

2

)
, i = 1, . . . , d, (35)

where δi =
∑
t∈Ti

(yt − μi)
2, σ2

−i = (σ2
1 , . . . , σ

2
i−1, σ

2
i+1, . . . , σ

2
d) is the vector σ2 with its

ith component removed;

ω|z, μ, σ2, y ∼ Dirichlet(α1 + n1, . . . , αd + nd). (36)

In models with an additional assumption that the variance σ2
i remains constant

across components, the full conditional distribution of σ2 is

σ2|z, μ, ω, y ∼ IG

(
n+ r0

2
,
δ + s0

2

)
, (37)

where δ =
d∑

i=1

∑
t∈Ti

(yt − μi)
2.

Because the Gibbs sampler may not explore the whole unconstrained parameter
space, but tends to stick to one posterior mode with occasional switches among other
posterior modes (as a consequence, some of the posterior modes are hardly ever or just
never “visited”), the random permutation sampler (introduced by Frühwirth-Schnatter
(2001)) is applied.

Similar to Raftery (1996), models with two, three, and four components are con-
sidered. In addition, mixture models with equal and unequal variances are taken into
account. Results obtained using various simple estimators of the log-marginal likelihood
are presented in Tables 7 and 8. Each method was repeated 100 times, thus 100 estimates
was obtained for each procedure. As in the previous example, for the CHM and the CAM
estimators, we assume that the subset A is an intersection of the parameter space, where
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unequal variance models equal variance models
number of components d = 2 d = 3 d = 4 d = 2 d = 3 d = 4
ln HME Mean –229.842 –221.481 –221.615 –236.056 –220.213 –219.841

SD 2.055 1.101 0.734 0.961 0.817 0.786
ln CHME; Mean –234.963 –227.321 –227.079 –240.461 –227.594 –226.531
MCIS:IG–N–D SD 1.546 0.795 0.538 0.903 0.552 0.590
ln LME Mean –226.382 –211.976 –210.820 –236.133 –216.273 –213.497

SD 0.561 0.108 0.145 0.106 0.021 0.097
ln AME Mean –233.315 –227.723 –227.454 –239.825 –228.111 –227.115

SD 1.005 1.296 1.191 0.284 1.768 1.569
ln CAME; Mean –232.890 –227.098 –227.000 –239.765 –226.824 –226.428
MCIS:IG–
N–D

SD 0.192 0.649 0.962 0.051 0.260 0.805

ln ChibE Mean –231.894 –225.659 –225.209 –238.566 –224.837 –224.036
max lnL SD 0.737 0.212 0.271 1.115 1.119 1.054
ln ChibE Mean –231.940 –225.692 –225.141 –238.565 –224.904 –223.352
post. mode SD 0.094 0.027 0.091 1.117 1.192 1.095
ln AME*: –232.891 –226.775 –226.608 –239.768 –226.812 –226.069
Neal (1999): – –226.791 – –239.764 –226.803 –

Table 7: Results for Galaxy Data. ln p(y) was estimated with the Gibbs sampler based on
30000 iterations. The Chib’s method was calculated at one of the posterior modes and
at the numerical approximations of the maximum of the posterior probability density
function. ln AME* was computed based on 108 points drawn from the prior distribution.
Results reported by Neal (1999) are also included.

the conditional density function p(y|θ) exceeds the smallest value of p(y|θ) evaluated at
pseudo-random sample {θ(q)}kq=1 from the posterior distribution, and the hypercuboid
limited by the range of the sampler output, A = ⊗

i
[min{θi(q)},max{θi(q)}]∩{θ : p(y|θ) ≥

min{p(y|θ(q)), q = 1, . . . , k}}. Consequently, P̂ (A|y) = 1, and the prior simulation sup-
port is in regions where the likelihood is significant. To estimate p(y) using (16), we
applied the MCIS method with the importance function being the independent inverse
Gamma–Normal and Dirichlet with the mean and variance of the posterior distribution
(estimated from the MCMC draws). Similarly, to approximate P (A) we use the Monte
Carlo Importance Sampling with independent inverse Gamma–Normal and Dirichlet
distributions. The Gibbs sampler with random permutations was run for 31000 iter-
ations, the first 1000 being discarded as burn-in.4 In case of the Chib’s method, the
natural logarithm of the posterior density function, ln p(θ∗|y), was computed from the
decomposition

ln p(θ∗|y) = ln p(ω∗|μ∗, σ2∗, y) + ln p(σ2∗|μ∗, y) + ln p(μ∗|y), (38)

where the vector θ∗ was calculated, based on posterior simulation output as (i) a pos-
terior mode of ln[p(y|θ)p(θ)], and (ii) a numerical approximate maximum likelihood
value. Unsatisfactory results were obtained when the Chib’s estimator was applied at
the posterior means. In order to calculate components of (38), reduced Gibbs runs
were used. The value of the posterior density function at θ∗ was estimated through
Rao–Blackwellization using reduced samples of size 30000. Since p(y) is unknown, we

4The numerical procedure is much more time consuming than for other examples, thus the number
of burn-in iterations was reduced to 1000.
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unequal variance models equal variance models
number of components d = 2 d = 3 d = 4 d = 2 d = 3 d = 4
ln HME RMSE 3.677 5.407 5.047 3.833 6.650 6.278

AE –3.049 –5.294 –4.994 –3.711 –6.599 –6.228
ln CHME; RMSE 2.584 0.964 0.715 1.139 0.957 0.749
MCIS:IG–N–D AE 2.071 0.545 0.470 0.694 0.782 0.461
ln LME RMSE 6.533 14.800 15.790 3.636 10.540 12.573

AE –6.509 –14.799 –15.789 –3.635 –10.540 –12.572
ln AME RMSE 1.090 1.606 1.460 0.290 2.194 1.886

AE 0.423 0.948 0.845 0.058 1.299 1.046
ln CAME; RMSE 0.210 0.724 1.038 0.050 0.260 0.882
MCIS:IG–
N–D

AE –0.012 0.322 0.392 –0.003 0.011 0.358

ln ChibE RMSE 1.240 1.139 1.425 2.201 2.271 2.290
max lnL AE –0.997 –1.116 –1.399 –1.201 –1.976 –2.033
ln ChibE RMSE 0.958 1.083 1.470 1.641 2.250 2.930
post. mode AE –0.953 –1.083 –1.467 –1.203 –1.908 –2.718

Table 8: Performance of different estimators of the marginal likelihood in Gaussian
mixture models. Results for Galaxy Data. The Chib’s method was calculated at one
of the posterior modes and at the numerical approximations of the maximum of the
posterior probability density function.

estimated it by the Arithmetic Mean estimator using 108 draws from the prior distri-
bution. For the sake of comparison, results reported by Neal (1999) are also included in
Table 7.

In Table 8, average errors (AE) and root mean squared errors (RMSE) obtained
in equal and unequal variance models are presented. Closed-form expression for the
marginal likelihood does not exist, therefore root mean squared errors and average er-
rors are calculated relative to ln AME*. As can be seen from the results in Table 8,
our new estimator performs best. The CAM estimator appears to work very well, being
better than the Chib’s method. It has the smallest average errors and RMSE. Due to
multimodality of the posterior distributions, the Laplace–Metropolis estimator (here
used in a naive manner) is the least accurate across all models. Despite the simula-
tion pseudo-bias, the Harmonic Mean estimator works better than the LM estimator.
Finally, it is important to stress that the CAM estimator can be easily implemented be-
cause it requires only additional draws from inverse the Gamma–Normal and Dirichlet
distributions, centered at the posterior means.

5 Discussion

In the paper a new class of estimators of the marginal data density is proposed. The idea
of the estimators is based on correction of the arithmetic mean estimator by trimming
the prior sample to certain subset A ⊆ Θ. We show that under following assumptions:

1. The subset A is compact;

2. A is a set with non-zero and finite prior as well as posterior measures;

3. The likelihood is bounded on A;
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4. It is possible to generate samples forming an ergodic Markov chain whose equilib-
rium distribution is the posterior distribution;

5. Random samples can be generated from the prior distribution (or from the im-
portance sampling distribution);

the new estimators are consistent. Moreover, the CAM estimators can be used in the
case of an improper prior when the posterior distribution is proper. In simulation we
focus on simple models where the marginal data density, p(y), is known. Comparison
of the true value of the marginal likelihood with its estimates obtained with the use
of different estimators points to higher accuracy of the method proposed in this pa-
per. The operational characteristics of our estimator were also illustrated using two
very popular data examples. The first involved a choice between two non-nested re-
gression models for specimens of radiata pine. The second example involved mixture
Gaussian models for galaxy data. These results demonstrate that the AM estimators
are promising. The properties of the new estimators depend on the choice of the sub-
set A. At present there is no answer to the question: “What is the most appropriate
subset A?”. The challenge will be to choose the subset A so as to minimize variance
of the estimator. Simulation studies and empirical examples considered in the paper
demonstrate that the choice of A as an intersection of the parameter space (with the
additional restriction that the likelihood function exceeds the smallest value of the like-
lihood evaluated at pseudo-random sample from the posterior distribution) and the
hypercuboid limited by the range of the posterior sampler output is effective in the
sense of a relatively small simulation sample being sufficient to obtain acceptable re-
sults.

Supplementary Material

Supplementary Material of “Estimating the Marginal Likelihood Using the Arithmetic
Mean Identity” (DOI: 10.1214/16-BA1001SUPP; .pdf).
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