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Hierarchical Shrinkage Priors
for Regression Models

Jim Griffin∗ and Phil Brown†

Abstract. In some linear models, such as those with interactions, it is natural
to include the relationship between the regression coefficients in the analysis. In
this paper, we consider how robust hierarchical continuous prior distributions can
be used to express dependence between the size but not the sign of the regression
coefficients. For example, to include ideas of heredity in the analysis of linear
models with interactions. We develop a simple method for controlling the shrinkage
of regression effects to zero at different levels of the hierarchy by considering the
behaviour of the continuous prior at zero. Applications to linear models with
interactions and generalized additive models are used as illustrations.

Keywords: Bayesian regularization, interactions, structured priors, strong and
weak heredity, generalized additive models, normal-gamma prior,
normal-gamma-gamma prior, generalized beta mixture prior.

1 Introduction

Regression modelling is an important method of understanding the effect of predictor
variables on a response. These effects can be hard to estimate and interpret if the pre-
dictor variables are highly correlated (the problem of collinearity) or there are many
predictor variables. These problems are often addressed by variable selection or regular-
ization which can lead to more interpretable models and better out-of-sample prediction.
If the regression effects are considered related, it is natural to include this information
in the variable selection or regularization to improve inference.

In a Bayesian framework, regression effects can be regularized using zero-mean scale
mixtures of normals to give a wide class of priors for regression coefficients (see e.g.
Polson and Scott, 2011) in which the prior density can be expressed as

π(βi) =

∫
N(0,Ψi) dG(Ψi)

where G is a distribution function with density g (if it exists). Many priors fit into
this class. “Two group” priors, as classified by Polson and Scott (2011), assume that
G is a discrete mixing distribution with two possible values. This class includes the
spike-and-slab prior (Mitchell and Beauchamp, 1988) where G has an atom at zero and
the stochastic search variable selection prior (George and McCulloch, 1993) where G
has atoms at two non-zero values. Alternatively, the class of “one group” priors assume
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that G is absolutely continuous and encourage shrinkage of regression coefficients close
to zero. Examples include the double exponential (Park and Casella, 2008; Hans, 2009)
(leading to the Bayesian Lasso), the normal-gamma (Caron and Doucet, 2008; Griffin
and Brown, 2010) the Bayesian elastic net (Hans, 2011), the horseshoe prior (Carvalho
et al., 2010), the normal-exponential-gamma (NEG) (Griffin and Brown, 2011), the
generalized Beta mixtures (Armagan et al., 2011), the generalized t (Lee et al., 2012)
or double Pareto prior (Armagan et al., 2013) and the exponential power prior (Polson
et al., 2013).

Priors for regression models often assume independence between the regression co-
efficients. This assumption is questionable if there are known or suspected relationships
between the predictor variables. In linear models with interactions, one common classi-
cal heuristic (strong heredity) for variable selection is that a two-way interaction term
can only be included if both main effects terms are included. Chipman (1996) and Chip-
man et al. (1997) use a spike-and-slab prior with strong heredity interpreted as a belief
that the prior probability of inclusion of a two-way interaction coefficient is related to
inclusion of the two associated main effects. Of course, other assumptions could be made
but it is clear that it is often natural to assume a relationship between the usefulness of
the interaction term and the usefulness of the main effects. More generally, a Bayesian
version of the group Lasso (Yuan and Lin, 2006) was developed by Kyung et al. (2010)
and Raman et al. (2009). A different approach is taken by Griffin and Brown (2012)
who defined priors which allow correlation between the effects rather than dependence
through the absolute effect sizes (as implied by the group Lasso). This idea has also
been applied to unifying and robustifying ridge and g-priors for regression in Griffin and
Brown (2013). Structured priors have also been proposed in biological application, e.g.
Yi et al. (2007), Stingo et al. (2011), Li and Zhang (2010) and Rockova and Lesaffre
(2014). Hierarchical shrinkage priors have been also used in other areas such as factor
models (Bhattacharya and Dunson, 2011).

In this paper, we concentrate on hierarchical priors for regression problems where
relationships between the predictor variables can be assumed and regression coefficients
can be arranged in levels. Regression coefficients in higher levels will usually add addi-
tional complexity to the model and so need to be, both, more aggressively shrunk to
zero to avoid over-fitting and dependent on the importance of regression coefficients at
lower levels. Specifically, we consider priors in which regression coefficients at one level
depend on a subset of the effect sizes at lower levels. This is a fairly general structure
which can include different grouping structures (see e.g. Yuan and Lin, 2006; Jacob
et al., 2009) in a simple way, whilst also expressing much more complicated structures.
The methodology gives a general and relatively simple way of controlling the shrinkage
at different levels of the hierarchy.

Our methods are distinguished from earlier approaches to hierarchical structure
through:

(i) use of a continuous prior distribution (the one group problem) that does not attach
an extra premium on regression coefficients being exactly zero as would arise from
some implementations of spike-and-slab priors as in (Chipman, 1996) and some
citations above;
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(ii) use of Bayesian tools unlike Bien et al. (2013) or Yuan et al. (2009);

(iii) use of flexible and possibly heavy tailed priors, unlike Chipman et al. (1997) or
Yi et al. (2007);

(iv) providing a simple method to control shrinkage at various levels of the hierarchy.

The paper is organized as follows. Section 2 explains the use of normal-gamma
and normal gamma-gamma (or generalized beta mixture) priors. Section 3 considers
hierarchical priors for regression models and develops a simple way to understand the
shrinkage at different levels. Section 4 briefly describes computational strategies for
inference in models using these priors. Section 5 includes applications of hierarchical
shrinkage priors to linear models with interactions, general additive models and general
additive models with interactions. A discussion follows in Section 6. The Supplementary
Material (Griffin and Brown, 2016) contains, (A) a proposition which aids graphing
through standardisation and (B) proofs of the theorems.

2 Continuous priors for sparse regression

The normal linear regression model for an (n×1)-dimensional vector of responses y and
an (n× p)-dimensional design matrix X is

y = α1 +Xβ + ε (1)

where ε ∼ N(0, σ2In), 1 is a (n × 1)-dimensional vector of 1’s, α is an intercept and β
is a (p × 1)-dimensional vector of regression coefficients. We assume that the variables
have been measured on comparable scales (or transformed to comparable scales). The
prior is assumed to have the form p(α, σ2, β) ∝ σ−2 p(β), which is scale-invariant for α
and σ2, and we will concentrate on the choice of p(β).

A common prior for β assumes independence conditional on Ψ = (Ψ1, . . . ,Ψp) and

βj ∼ N(0,Ψj), j = 1, . . . , p. (2)

The parameter Ψj is the conditional variance of βj and smaller values of Ψj imply that
the prior favours smaller values of |βj |. The value of Ψj can be seen as measuring the
importance of the j-th variable with larger values of Ψj representing more importance.

In this paper, we will consider two specific priors. Firstly, the normal-gamma prior
(Caron and Doucet, 2008; Griffin and Brown, 2010) has the form

βj ∼ N(0,Ψj), Ψj ∼ Ga(λ, γ).

Here λ is a shape parameter and γ the rate parameter and the prior variance is
V[βj ] = E(Ψj) =

λ
γ with exponential tails. Secondly, for a heavier tailed alternative, the

generalized beta mixture prior distribution (Armagan et al., 2011) can be expressed as
a hierarchical extension of the normal-gamma prior

βj ∼ N(0,Ψj), Ψj ∼ Ga(λ, γj), γj ∼ Ga(c, d). (3)
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Figure 1: Shrinkage profiles for an NG prior with λ = 0.1, (solid line), λ = 1 (dot-dashed
line) and λ = 5 (dashed line) with γ = 1/SE2.

and the prior variance is V[βj ] = λd
c−1 if c > 1. We will refer to this distribution

as the normal-gamma-gamma (λ, c, d) prior distribution to emphasize the link to the
normal-gamma distribution. The hyperparameters have simple interpretations: d is a
scale parameter, λ controls the behaviour of the distribution close to zero and c controls
the tail behaviour of the distribution. The marginal density of βj is not available in
closed form but the marginal distribution of Ψj is a gamma-gamma distribution which
has the density

g(Ψj) =

(
1

d

)λ
Γ(λ+ c)

Γ(λ)Γ(c)
Ψλ−1

j

(
1 +

Ψj

d

)−(λ+c)

.

This prior will be written Ψj ∼ GG(λ, c, d); and corresponds to the inverted-beta-2
distribution of Raiffa and Schlaifer (1961, Section 7.4.2). The monotone transformation
Ψj

Ψj+d has a beta distribution with parameters λ and c implying that the median of Ψj

is d if λ = c. This is a useful characterisation if c ≤ 1 and the mean does not exist.
In particular, this is true for the horseshoe prior (Carvalho et al., 2010) which occurs
if λ = c = 1/2. Several of the absolutely continuous priors for regression coefficients
described in Section 1 can be written as special cases of the normal-gamma-gamma
distribution including the NEG distribution which arises when λ = 1 and the normal-
gamma distribution which arises if c/d = μ as c → ∞.

Results for linear regression models which express the posterior expectation and
variance in terms of the least squares estimate of β and the variance of its sampling
distribution (for n > p) have been derived by several authors including Griffin and
Brown (2010) and Polson and Scott (2012). We consider a linear regression model with

one regressor and write E[β|β̂] = (1− S(t))β̂ where β̂ is the least squares estimate of β

with standard error SE and S(t) is a function of the t-statistic, t = β̂/SE. The function
0 ≤ S(t) ≤ 1 is referred to as the shrinkage profile since it measures the amount that
the least squares estimate is shrunk to zero. We say that a regression coefficient is more
aggressively shrunk to zero if S(t) is closer to one for small t.

Figure 1 show shrinkage profiles for a normal-gamma prior with different values of λ.
Smaller values of λ increasingly favour more aggressive shrinkage of small least squares
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estimates. This is intuitively reasonable since this parameter controls the shape of the
distribution of Ψi at small values. A normal-gamma-gamma prior will also give similar
results. Consequently, we define an adaptive shrinkage parameter for a prior distribution
in terms of the prior density of Ψi as sup{z|p(Ψi) = O(Ψz−1

i ) as Ψi → 0} where p(Ψi)
is the prior density of Ψi which characterises the range of S(t). This will be simply λ
in the case of both the normal-gamma and normal-gamma-gamma prior distributions.

3 Hierarchical shrinkage priors

3.1 Motivating examples

Before looking at shrinkage within a general hierarchical structure, it is useful to set the
context by considering two statistical models: the linear models with interactions and
the generalized additive model. These illustrate the need for priors which can express
relationships between regression coefficients with different levels of adaptive shrinkage
for some regression coefficients.

Linear models with interaction terms

Variable selection and regularization methods for linear models with interactions have
received attention in the literature (Chipman, 1996; Chipman et al., 1997; Yuan et al.,
2007). The model assumes that response yi which is observed with covariatesXi1, . . . , Xip

can be expressed as

yi = α+

p∑
j=1

Xijβj +

p∑
j=1

j−1∑
k=1

XijXikδjk + εi, for i = 1, . . . , n (4)

where εi ∼ N(0, σ2). It is often considered natural to make the inclusion of an interaction
contingent on the inclusion of main effects. Chipman et al. (1997) formalize this idea
using two forms of the heredity principle. Strong heredity states that an interaction
can only be included if both main effects are included. Weak heredity states that an
interaction can be included if at least one main effects is included. The use of strong
or weak heredity suggests beliefs which are inconsistent with an assumption of prior
independence between the regression coefficients. It is also natural to assume that, a
priori, the signs of the interactions are not related to the signs of the main effects
with the coefficients of the interactions being shrunk more aggressively to zero than the
coefficients of the main effects.

Generalized additive models

The generalized additive model (GAM) (Hastie and Tibshirani, 1993) is a non-linear
regression model which represents the mean of the response as a linear combination of
potentially non-linear functions of each variable so that

yi =

p∑
j=1

fj(Xij) + εi
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where εi ∼ N(0, σ2) and fj are function to be estimated from the data. Reviews of
Bayesian analysis of these models are given by Kohn et al. (2001) and Denison et al.
(2002). A common approach assumes that each non-linear function can be represented
as a linear combination of basis functions so that, e.g.,

fj(Xij) = θjXij +

K∑
k=1

γjk g(Xij , τjk)

where g(x, τj1), . . . , g(x, τjK) are a set of basis functions with knot points τj1, . . . , τjK .
This leads to a linear model for the responses

yi =

p∑
j=1

fj(Xij) + εi =

p∑
j=1

θjXij +

p∑
j=1

K∑
k=1

γjk g(Xij , τjk) + εi. (5)

The set of knot points is often chosen to be relatively large and many γjk’s are set to zero
to avoid over-fitting. In a Bayesian framework, this is usually approached as a variable
selection problem and so we effectively have p different variable selection problems (one
for each variable). We will refer to this as selection at the basis level. There is also the
more standard variable selection problem of choosing a subset of the variables which
are useful for predicting the response. The effect of the j-th variable is removed from
the model if θj and γj1, . . . , γjK are all set to zero. We refer to this as selection at the
variable level. In this model, prior independence between the coefficients for the j-th
variable (θj) and (γj1, . . . , γjK) seems unreasonable and dependence in size (rather than
the sign) of these coefficients will be reasonable in many problems. Typically, we would
like different types of adaptive shrinkage at the basis level and the variable level which
suggests a prior with at least two adaptive shrinkage parameters.

3.2 General construction

The examples in Section 3.1 illustrate the need for priors which allow dependence in
the size of regression coefficients but not their sign with hyperparameters that control
the level of adaptive shrinkage implied by the prior for different regression coefficients.
Hierarchical priors are a simple and useful way to build such a prior distribution. We
assume that the regression coefficients can be arranged in L levels and that β(l) is the
(pl × 1)-dimensional vector of regression coefficients in the l-th level. Intuitively, higher
levels add additional flexibility (and complexity) to the model and so the inclusion of
these regression coefficients would depend on regression coefficients at earlier levels. For
example, the first level could refer to a linear regression with main effects only and higher
levels add interactions of increasing order. The prior for the regression coefficients at
a particular level are assumed to have the same adaptive shrinkage parameter a priori
and typically become more aggressively shrunk to zero at higher levels. Our general
prior, building on (2), assumes that

β
(l)
j

ind.∼ N
(
0,Ψ

(l)
j

)
, j = 1, . . . , pl, l = 1, . . . , L,
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and

Ψ
(l)
j = al

fl
(
Ψ(1), . . . ,Ψ(l−1)

)
E[fl

(
Ψ(1), . . . ,Ψ(l−1)

)
]
η
(l)
j , j = 1, . . . , pl, l = 1, . . . , L (6)

where fl is a function only taking non-negative values, η
(l)
1 , . . . , η

(l)
pl are independent of

Ψ(1), . . . ,Ψ(l−1), with η
(l)
1 , . . . , η

(l)
pl

i.i.d.∼ Gl where Gl is a distribution specific to the l-th

level with E[η
(l)
j ] = 1 and al = E[Ψ

(l)
j ] = V[β

(l)
j ] is a level-specific scale parameter. The

prior allows correlation between Ψ
(l)
i and Ψ

(m)
j but β

(l)
i and β

(m)
j are uncorrelated (al-

though, they can be dependent). The function fl controls the effects of Ψ(1), . . . ,Ψ(l−1)

on Ψ(l) and will usually be a simple function whose expectation can be easily calculated,
e.g. a combination of additions and multiplications. Products have the useful property
of being small if one element in the product is small and sum have the useful property
of being small if all elements in the sum are small. Other choices of fl, such as min-
imum or maximum are possible, but calculation of the expectation could be difficult.
The structure is quite general. For example, a Bayesian group lasso (Kyung et al., 2010;

Raman et al., 2009) arises from taking a single level, setting Ψ
(1)
i = Ψ

(1)
j if i and j are in

the same group and choosing η
(l)
j to have a gamma distribution. The construction could

be extended to a prior where the regression coefficients are correlated by assuming that
β are dependent conditional on Ψ but this is not considered in this paper.

Example: Linear model with interaction terms

In our framework, we interpret strong heredity as a prior belief that δjk in (4) will be
strongly shrunk to zero if either βj or βk are strongly shrunk to zero. We interpret weak
heredity as a prior belief that δjk will be strongly shrunk to zero if both βj and βk are
strongly shrunk to zero. These prior beliefs can be represented using the prior in (6)
with L = 2. The first level contains the main effects and has p1 = p terms listed as
β1, . . . , βp. The second level contains the interactions and has p2 = p(p − 1)/2 terms
listed as δjk for k = 1, . . . , j − 1, j = 1, . . . , p.

In the case of strong heredity, we use the prior

βj ∼ N
(
0, a1 η

(1)
j

)
and δjk ∼ N

(
0, a2 η

(2)
jk η

(1)
j η

(1)
k

)
.

The prior variance of δjk is small if at least one of η
(1)
j , η

(1)
k or η

(2)
jk is small. Therefore,

an interaction term δjk will tend to be small (since its variance is small) if either η
(2)
jk is

small or if at least one of βj or βk are small (which suggests that at least one of η
(1)
j or

η
(1)
k is small). In the case of weak heredity, we use the prior

βj ∼ N
(
0, a1 η

(1)
j

)
and δjk ∼ N

(
0, a2 η

(2)
jk

1

2

(
η
(1)
j + η

(1)
k

))
.

The prior variance of δjk is small if η
(2)
jk is small or both η

(1)
j and η

(1)
k are small. Therefore,

the interaction terms will tend to be small if η
(2)
jk is small or if both βj and βk are small

(using similar reasoning to the strong heredity case).
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Figure 2: Shrinkage profiles for the model with the ShIS and ScIS priors with λ1 = 10λ2.
The shrinkage profile are for: β(2) with the ShIS prior (solid line), β(2) with the ScIS
prior (dashed line), and β(2) with the one-stage prior (dot-dashed line) with d = 1/SE2.

3.3 Comparative shrinkage propagation

The hierarchical prior induces a marginal posterior distribution of the regression coeffi-
cients at each level. Clearly, smaller values of scale al will tend to lead to more shrinkage

of the marginal posterior mean of β
(l)
j . However, the influence of Gl is less clear. We

will concentrate on the shape of the shrinkage profiles for the marginal posterior mean

of β
(l)
j and investigate its dependence on G1, . . . , Gl. This will provide a rationale for

choosing al and Gl to give particular shrinkage profiles.

As an illustration, we consider a two level prior with one regression coefficient at
each level where fl is a product. It is assumed that V[β(1)] = λ1 d and V[β(2)] = λ2 d
(where λ2 ≤ λ1 to induce the same or greater shrinkage at the second level), G1 is a
Ga(λ1, λ1) distribution. To illustrate the importance of the choice of G2, we consider
two choices: G2 is the same distribution as G1, which we refer to as a scale-induced
shrinkage (ScIS) prior, or, G2 is a Ga(λ2, λ2) distribution, which we refer to as a shape-
induced shrinkage (ShIS) prior. The shrinkage profile for β(1) depends only on G1 and
will be the same for both prior. However, the shrinkage profile of β(2) will differ. The
marginal priors for β(2) have the forms

β
(2)
j ∼ N(0, λ2 dΨ) , Ψ ∼ Ga(λ1, λ1/η

(1)
j ), η

(1)
j ∼ Ga(λ1, λ1)

with the ScIS prior and

β
(2)
j ∼ N(0, λ2 dΨ) , Ψ ∼ Ga(λ2, λ2/η

(1)
j ), η

(1)
j ∼ Ga(λ1, λ1)

with the ShIS prior. For comparison, we consider the one-level prior

β
(2)
j ∼ N(0, λ2 dΨ) , Ψ ∼ Ga(λ2, λ2)

which has the same prior variance for β(2) as both priors and the same adaptive shrinkage
parameter as the ScIS prior.

Figure 2 shows the shrinkage profile for both the ShIS and ScIS priors. The ShIS
prior, leads to more adaptive shrinkage than the ScIS prior, that is more shrinkage
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for small coefficients and less shrinkage for larger coefficients. This effect is more pro-
nounced when λ2 is small (which indicates greater adaptive shrinkage). The shape of
the shrinkage profiles for β(2) with the ScIS prior more closely resembles the shrinkage
profiles for β(2) for the one-level prior. This suggests the form of G1, . . . , GL as well
as the scale parameters a1, . . . , aL play an important role in determining the shrinkage
profile for the marginal posterior mean of the regression coefficients. In particular, the
adaptive shrinkage parameter for the conditional distribution of β(2) gives a good guide
to the type of adaptive shrinkage for the marginal posterior mean of β(2). We will only
consider ScIS-type prior in the rest of this paper.

The following results express the adaptive shrinkage parameters for the marginal
posterior mean in hierarchical priors where fl is a product or sum in terms of the
adaptive shrinkage parameter for the conditional distributions. We also consider the
usefulness of this concept for characterising the shrinkage profile. The scale parameter
al is assumed to be al = sl d where sl is the adaptive shrinkage parameter of Gl and d is

a global scale parameter. It follows that E[Ψ
(l)
j ] = sl d which mimics the normal-gamma

prior distribution where the adaptive shrinkage parameter and d are the shape and scale
parameters of the gamma distributions respectively.

We first consider the case where the underlying random variables are gamma dis-
tributed, in which case the adaptive shrinkage parameter is given by the shape parameter
of the gamma distribution.

Theorem 1 (Gamma case). Suppose that ηi ∼ Ga(λi, 1) for i = 1, 2, . . . ,K then

1. the adaptive shrinkage parameter of Ψ is min{λi} if Ψ =
∏K

i=1 ηi.

2. the adaptive shrinkage parameter of Ψ is
∑K

i=1 λi if Ψ =
∑K

i=1 ηi.

An interesting special case occur when there are two levels and f2(Ψ
(1)
j ) = Ψ

(1)
j so

that Ψ
(2)
j = η

(1)
j η

(2)
j for which the density has the analytic expression,

g(Ψ) =
2

Γ(λ1)Γ(λ2)
Ψ(λ1+λ2)/2−1K|λ1−λ2|(2

√
Ψ)

where Kν(·) is the modified Bessel function of the third kind (Abramowitz and Stegun,
1964, p. 374). The distribution is referred to as the K-distribution (Jakeman and Pusey,
1978) in several areas of physics. Using a small value approximation (Abramowitz and
Stegun, 1964, Eq. 9.6.9), this density at a value of Ψ near zero is approximately pro-
portional to

Γ(|λ1 − λ2|)
Γ(λ1)Γ(λ2)

Ψmin{λ1,λ2}−1,

and the adaptive shrinkage parameter is min{λ1, λ2} which agrees with Theorem 1.

Theorem 1 can be extended to the case where the underlying random variables are
gamma-gamma distributed as defined in (3):
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Figure 3: Shrinkage profiles for various choices of products of two normal-gamma prior
distributions with: λ1 = λ2 (solid line), λ1 = 5λ2 (dashed line), λ1 = 10λ2 (dot-dashed
line) with d = 1/SE2 compared to a normal-gamma(λ1, d) with shape λ1 (dotted line)
with d = 1/SE2.

Theorem 2 (Gamma-gamma case). Suppose that ηi ∼ GG(λi, ci, 1) for i = 1, 2, . . . ,K
then

1. the adaptive shrinkage parameter of Ψ is min{λi} if Ψ =
∏K

i=1 ηi.

2. the adaptive shrinkage parameter of Ψ is
∑K

i=1 λi if Ψ =
∑K

i=1 ηi.

Therefore, the shape close to zero of the products of either a normal-gamma or
normal-gamma-gamma distribution is controlled by the shape parameters λ1, . . . , λK

rather than the other characteristics of the priors. Proofs of these theorems are in
supplementary Appendix B.

Theorems 1 and 2 give expressions for adaptive shrinkage parameter, which is the
shape close to zero of the density, of a product or sum of gamma or gamma-gamma
distributed random variables. We now assess the ability of the adaptive shrinkage pa-
rameter to characterise the shrinkage profile for a hierarchical prior. Figure 3 shows the

shrinkage profiles of β
(2)
j when L = 2 and G1 and G2 are both gamma distributions.

The marginal prior for β
(2)
j is

β
(2)
j ∼ N(0, λ2 dΨ) , Ψ ∼ Ga(λ2, λ2/η

(1)
j ), η

(1)
j ∼ Ga(λ1, λ1)

where d = 1/SE2 and SE is standard error of the least squares estimate of β
(2)
j . For

comparison, we consider the one-level prior

β
(2)
j ∼ N(0, λ2 dΨ) , Ψ ∼ Ga(λ2, λ2).

In both cases, the adaptive shrinkage parameter is λ2. Typically we want high shrinkage
for small coefficients (t small) and little shrinkage of large coefficients (t large). The
shape of the shrinkage curves are very similar for different choices of λ1 with shrinkage
decreasing slightly as λ2 becomes larger. The effect is more pronounced if λ2 is smaller.
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Figure 4: Shrinkage profiles for various choices of products of two normal-gamma-gamma
prior distributions with: λ1 = λ2 (solid line), λ1 = 5λ2 (dashed line), λ1 = 10λ2 (dot-
dashed line) with d = 1/SE2 compared to a normal-gamma-gamma with shape λ1

(dotted line) and scale d = 1/SE2.

This suggests that the adaptive shrinkage parameter (although fairly crude) does give
comparable forms of shrinkage for different values of t. In the NGG case, we consider

marginal prior for β
(2)
j with the form

β
(2)
j ∼ N(0, λ2 dΨ) , Ψ ∼ GG(λ2, c, (c−1)η

(1)
j /λ2), η

(1)
j ∼ GG(λ1, c, (c−1)/λ1)

and the one-level prior

β
(2)
j ∼ N(0, λ2 dΨ) , Ψ ∼ GG(λ2, c, (c− 1)/λ2).

Figure 4 shows the shrinkage profiles with different values of c show results that are
very similar to the normal-gamma case.

Example: Linear model with interaction terms

Returning to the linear model with interaction terms example in Section 3.1, we use
the flexible gamma-gamma mixing distribution for the hierarchical prior. In the case

of strong heredity, we assume that a1 = λ1 d, a2 = λ2 d, η
(1)
j ∼ GG(λ1, c,

c−1
λ1

) and

η
(2)
jk ∼ c

λ2
GG(λ2, c,

c−1
λ2

) for c > 1. The adaptive shrinkage parameters are λ1 for the
main effects and min{λ1, λ2} for the interactions. More aggressive shrinkage of the
interactions than the main effects corresponds to λ2 < λ1. In the case of weak heredity,
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we assume that a1 = λ1 d, a2 = λ2 d, η
(1)
j ∼ GG(λ1, c,

c−1
λ1

) and η
(2)
jk ∼ c

λ2
GG(λ2, c,

c−1
λ2

)
for c > 1. In this case, the adaptive shrinkage parameters are λ1 for the main effects and
2min{λ1, λ2} for the interactions. More aggressive shrinkage of the interactions than
the main effects corresponds to λ2 < λ1/2.

4 Computational strategy

Posterior inference with these priors can be made using Markov chain Monte Carlo
methods. In this section, we will describe the general strategy for inference rather than
describe algorithms for specific models. We will assume the general model

yi = α+

L∑
l=1

X
(l)
i β(l) + εi, i = 1, . . . , n

where X
(l)
i is a (n × pl)-dimensional matrix whose columns are given by the variables

in the l-th level, εi
i.i.d.∼ N(0, σ2),

β
(l)
j

i.i.d.∼ N
(
0,Ψ

(l)
j

)
, j = 1, . . . , pl, l = 1, . . . , L

and

Ψ
(l)
j = s

(l)
j d

fjl
(
Ψ(1), . . . ,Ψ(l−1)

)
E[fjl

(
Ψ(1), . . . ,Ψ(l−1)

)
]
η
(l)
j , j = 1, . . . , pl, l = 1, . . . , L. (7)

Typically, the distribution of η
(l)
j has parameters which are denoted φ(l). The Gibbs

sampler will be used to sample from the posterior distribution of the parameters (α, β, σ,
Ψ, d, φ) where β = {β(l)|l = 1, . . . , L}, Ψ = {Ψ(l)|l = 1, . . . , L} and φ = {φ(l)|l =
1, . . . , L}. The full conditional distributions of (α, β) and σ2 follow from standard results
for Bayesian linear regression models. The parameters Ψ, d and φ are updated one-
element-at-a-time by adaptive Metropolis-Hastings random walk steps using a variation
on the algorithm proposed by Atchadé and Rosenthal (2005). The output of adaptive
Metropolis-Hastings algorithms are not Markovian (since the proposal distribution is
allowed to depend on the previous values of the Markov chain) and so standard Markov
chain theory cannot be used to show that the resulting chain is ergodic. Relatively simple
conditions are given for the ergodicity of adaptive Metropolis-Hastings algorithms by
Roberts and Rosenthal (2007). Our algorithms meet these conditions with the additional
restriction that Ψ, d and φ are bounded above (at a very large value). Suppose that we
wish to update φ(l) at iteration i (the same idea will also be used to update the elements
of Ψ and d). A new value φ(l) ′

is proposed according to

log φ(l) ′
= log φ(l) + ε(l)

where ε(l) ∼ N(0, σ
2 (i)

φ(l) ). The notation σ
2 (i)

φ(l) makes the dependence on the previous

values of the chain explicit and the induced transition density of the proposal is denoted
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q
σ
2 (i)

φ(l)

(φ(l), φ(l) ′
). The value φ(l) ′

is accepted or rejected using the standard Metropolis-

Hastings acceptance probability

α
(
φ(l), φ(l) ′

)
=

∏pl

j=1 p
(
Ψ

(l)
j

∣∣∣φ(l) ′
)
p

(
φ(l) ′) q

σ
2 (i)

φ(l)

(
φ(l) ′

, φ(l)
)

∏pl

j=1 p
(
Ψ

(l)
j

∣∣∣φ(l)
)
p

(
φ(l)

)
q
σ
2 (i)

φ(l)

(
φ(l), φ(l) ′) .

The variance of the increment is updated by

log σ
2 (i+1)

φ(l) = log σ
2 (i)

φ(l) + i−a
(
α

(
φ(l), φ(l) ′

)
− τ

)

where 1/2 < a ≤ 1. This algorithm leads to an average acceptance rate which converges
to τ . We choose a = 0.55 and τ = 0.3 (following the suggestion of Roberts and Rosenthal
(2009)) in our examples.

The posterior distribution can be highly multi-modal and so it is necessary to use
parallel tempering to improve the mixing. An effective, adaptive implementation is
described by Miasojedow et al. (2013).

5 Examples

5.1 Example 1: Blood glucose data

A blood glucose data set has been studied by Hamada and Wu (1992) amongst others.
Yuan et al. (2007) analysed these data using their extension of the LARS algorithm
which includes both strong and weak heredity. The data has one two-level factor and
seven three-level factors. The experimental design and data are given in Yuan et al.
(2007). We followed their analysis by fitting a linear model with interactions and by
including the three levels as linear and quadratic effects using orthogonal polynomials.
The model in Section 3.1 was extended to allow for quadratic effects and assumed that

yi =

p∑
j=1

Xijβj +

p∑
j=1

X2
ijγj +

p∑
j=1

j−1∑
k=1

XijXikδjk + εi, i = 1, . . . , n.

The prior proposed in Section 3.2 was extended with γj
ind.∼ N(0, λ1 d η

(1)
j ). The pa-

rameter c was chosen to be 2 giving a heavy tail to the NGG distributions (but also a
finite variance). The priors for the hyperparameters of the model were as follows. The
adaptive shrinkage parameter for the main effects was given the prior λ1 ∼ Ex(1) which
centred the prior over a heavy-tailed version of the Bayesian lasso. We defined λ2 = rλ1

where 0 < r < 1 which implies that the interactions will be shrunk more aggressively
than the main effects. We assumed that r ∼ Be(2, 6) which implied that E[r] = 1/3
suggesting that the interactions will be substantially more aggressively than the main
effects. The scale parameter, d, was given the prior p(d) ∝ (1+d)−2 which implied that
E[d] = 1 with a heavy tail.
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Figure 5: Blood glucose data – the posterior distribution of the regression coefficients
with strong heredity shown as the posterior median (cross) and 95% credible interval
(solid line). The main effects are ordered linear and quadratic, the interactions are
ordered linear effect of first factor and linear effect of second factor, quadratic effect of
first factor and linear effect of second factor, linear effect of first factor and quadratic
effect of second factor, quadratic effect of first factor and quadratic effect of second
factor.

The marginal posterior distributions of the regression coefficients using the strong
heredity prior are presented in Figure 5. The most important terms were the interaction
between C and H which had posterior medians which are furthest from zero and some
95% credibility intervals which did not include zero. In particular, the interaction be-
tween the linear and quadratic effects of C with the quadratic effect of H were the most
important terms. The interactions of AH also showed some signs of being important
since, although the posterior median was zero for both regression coefficients, the 95%
posterior credibility intervals placed substantial mass on positive and negative values for
the linear and quadratic effects respectively. The linear and quadratic effects of C also
seemed important with posterior medians away from zero and support for a wide-range
of values. All other effects had posterior medians which were very close to zero with a
95% credibility interval concentrated around 0.

The marginal posterior distributions of the Ψ’s are shown in Figure 6. The variable
C had the largest posterior median main effect followed by A and H. In terms of the
interactions, it was clear that AH and CH had the largest upper point of the 95%
credible interval which illustrated the importance of these interactions in the model. All
these results were consistent with inference about the regression coefficients but gave a
clearer picture of the importance of different variables.

The prior with weak heredity was also fitted and the results showed a very simi-
lar picture to those using the strong heredity prior. The Ψ’s for the main effect of C
and H were estimated to be slightly smaller than under strong heredity and the other
main effects were estimated to be slightly larger. This reflected the importance of the
interaction of CH in the model. Under strong heredity, there was stronger evidence
of the importance of the main effects of C and H. The Ψ’s for the importance of the
interactions between AH and CH were estimated to be slightly smaller.

The inference about the adaptive shrinkage parameters λ1 and λ2 and the scale
parameter d are shown in Table 1. The parameter λ1 had a posterior median 0.48 which
indicated that some effects were close to zero. The parameter λ2 had a much smaller
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Figure 6: Blood glucose data – the posterior distribution of Ψ for each main effect and
each interaction shown as the posterior median (cross) and 95% credible interval (solid
line).

λ1 0.48 (0.15, 2.71)
λ2 0.054 (0.018, 0.89)
d 2.69 (0.26, 27.89)

Table 1: Blood glucose data – the posterior distribution of the hyperparameters sum-
marised as posterior median and 95% credible interval.

posterior median which indicated that the data supported more aggressive shrinking of
the interactions. These results were consistent with the inferences about the regression
coefficients.

5.2 Out-of-sample predictive performance

The performance of the hierarchical prior introduced in this paper was compared to
the hierarchical lasso (Bien et al., 2013) and three spike-and-slab priors for variable
selection for interactions (Chipman, 1996) using five-fold cross-validation. Three data
sets were used: ozone (Breiman and Friedman, 1985), Boston housing and blood glucose
(Hamada and Wu, 1992). The results are summarized by the root mean squared error
(RMSE) where the posterior predictive mean was used as the estimated prediction. The
results suggest that the predictive performance of the hierarchical prior is competitive
to both the hierarchical lasso and the spike-and-slab methods. The hierarchical prior
gives the smallest RMSE for two data sets and is a close second on the ozone data.
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Blood glucose Ozone Boston housing
Bayesian strong heredity 13.0 4.0390 3.83
Bayesian weak heredity 11.4 4.0469 3.75
Bayesian relaxed heredity 12.2 4.0482 3.70
Hierarchical shrinkage prior 10.5 4.0272 3.40
Hierarchical lasso 14.4 4.0181 3.70

Table 2: Out-of-sample root mean squared errors for hierarchical shrinkage prior, hier-
archical lasso and spike-and-slab priors for three data sets.

The effective sample sizes (ESS) were estimated for all methods using the initial
monotone sequence estimator defined by Geyer (1992). With the hierarchical prior in-
troduced in this paper, the estimates were 3317 for blood glucose, 249 for ozone and
57.2 for Boston housing. In contrast, the mixing was much worse for the Bayesian re-
laxed heredity method with estimates of 2.5 for blood glucose, 185 for ozone and 3.8
for Boston housing. The results were similar for the other two spike-and-slab priors.
In all data sets, the computational times of the hierarchical prior is roughly ten times
the computational time for the spike-and-slab prior. Therefore, the ESS per unit time
is higher with the hierarchical prior than the spike-and-slab for the blood glucose and
Boston housing data.

5.3 Example 2: Prostate cancer data

Data from a prostate cancer trial (Stamey et al., 1989) have become a standard exam-
ple in the regularization literature. The response is the logarithm of prostate-specific
antigen (lpsa). There are eight predictors: log(cancer volume) (lv), log(prostate weight)
(lw), age (in years), the logarithm of the amount of benign prostatic hyperplasia (lbph,
log(capsular penetration) (lcp), Gleason score (gl), percentage Gleason score 4 or 5 (pg)),
and seminal vesicle invasion (svi). We considered all variables to be continuous apart
from svi which is binary (it should be noted that Gleason score is ordinal and has 4
observed levels (scores of 6, 7, 8 and 9) in the data). Following Lai et al. (2012) the
continuous effects are flexibly modelled using the GAM model in Section 3.1 with a
piecewise linear spline basis function,

fj(Xij) = θjXij +

K∑
k=1

[γjk(Xij − τk)+]

where (x)+ = max{0, x} and τk = k−1
K−1 for k = 1, . . . , 60. All continuous variables were

normalized to have a minimum of 0 and a maximum of 1.

In Section 3.1, we discussed how inference in the GAM model could be seen as a
two-level variable selection problem (at the basis level and at the variable level). We
define a hierarchical shrinkage prior with two levels using a flexible gamma-gamma prior
for the variance of the normal prior,

θj ∼ N
(
0, λ1 d η

(1)
j

)
, η

(1)
j ∼ GG

(
λ1, c,

c− 1

λ1

)
,
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Figure 7: Prostate cancer data – the posterior distribution of the linear effects βj(x)
for each variable summarized as the posterior median (solid line) and pointwise 95%
credible interval (grey shading).

γjk ∼ N
(
0, λ2,j d η

(2)
jk η

(1)
j

)
, and η

(2)
jk ∼ GG

(
λ2,j , c,

c− 1

λ2,j

)
.

A small value of the parameter η
(1)
j implies that the j-th variable is unimportant and will

effect the shrinkage of both the linear effect θj and basis function coefficients γj1, . . . , γjK
leading to shrinkage at the variable level. The variable selection problem at the basis

level is achieved through the different values of η
(2)
jk which allow some basis function

coefficients to be set very close to zero. The prior allows different levels of adaptive
shrinkage for the basis function coefficients for each variable (i.e. adaptive shrinkage
parameter λ2,j for the j-th variable). The adaptive shrinkage parameters of the basis
functions for the j-th variable are min{λ1, λ2,j}. The adaptive shrinkage parameter of

the variables is λ1. The priors for the hyperparameters were: λ1 ∼ Ga(1, 1), λ2,j
i.i.d.∼

Ga(1, 10), and common scale, d as heavy tailed with p(d) ∝ (1 + d)−2. The parameter
λ1 controls adaptive shrinkage at the variable level and the choice centres the prior
for the regression coefficients over the Bayesian lasso prior. The smaller prior mean for
λ2,j , E[λ2,j ] = 0.1, implies greater levels of adaptive shrinkage at the basis level than
the variable level and that only a few knots will be important for each variable.

The results of fitting the flexible regression model are shown in Figure 7. The infer-

ence about the regression effects are shown as βj(x) =
fj(x)
x and can be interpreted as

the variable-dependent linear regression effect for the j-th variable. The effect of lv was
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Figure 8: Prostate cancer data – the posterior distribution of Ψ for each variable sum-
marized as the posterior median (cross) and 95% credible interval (solid line).

λ1 0.96 (0.31, 3.44) d 0.64 (0.09, 6.10)

Table 3: Prostate cancer data – the posterior distribution of the hyperparameters sum-
marised as posterior median and 95% credible interval.

clearly important with an effect with the posterior median increasing from 0.88 to 2.91
over the range of the data. The effect of lw also seemed important and relatively con-
stant over the range of the data. The other variables were clearly less important with
a posterior median which is constant and close to zero and a narrower 95% credible
intervals than the other variables. The effect of svi had a posterior median of 0.58 with
a 95% credible interval of (0.08, 1.06) which indicated the importance of this variable
for the regression model.

The posterior distribution of the Ψ
(1)
i is a measure of the overall strength of effect

for the i-th variable. The distribution for each variable is shown in Figure 8. The results
were consistent with the estimates of the regression effects. The lv variable gave the
largest posterior median and had support at larger values of Ψ than other variables.
The variables lw and svi also had important effects and had the next two largest values
of the posterior median and were clearly useful as a scalar summary of the regression
effects.

A summary of the posterior distribution of d and the adaptive shrinkage parameter
for variables, λ1, are shown in Table 3. The posterior median of λ1 is close to 1 indicating
that only some of the variables are important but that there is not a need for a lot of
adaptive shrinkage.

5.4 Example 3: Computer data

Data on the characteristics and performance of 209 CPUs were considered by Ein-Dor
and Feldmesser (1987) and subsequently analysed by Gustafson (2000) using Bayesian
non-linear regression techniques. The response is performance of the CPU. In common
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with Gustafson (2000), we consider 5 predictors: A, the machine cycle time (in nanosec-
onds); B, the average main memory size (in kilobytes); C, the cache memory size (in
kilobytes); D, the minimum number of input channels; and E, the maximum number
of input channels. In a similar spirit to Gustafson (2000), we modelled the data using
a GAM with interactions which introduces bivariate functions, fjl(·, ·), which allows
modelling of non-linear interaction effects. In this case, the GAM model is extended to

yi =

p∑
j=1

fj(Xij) +

p∑
j=1

j−1∑
k=1

fjk(Xij , Xik) + εi

=

p∑
j=1

θ
(M)
j Xij +

p∑
j=1

K∑
k=1

γ
(M)
jk g(Xij , τjk) +

p∑
j=1

j−1∑
k=1

θ
(I)
jk XijXik

+

p∑
j=1

j−1∑
k=1

K∑
l=1

K∑
m=1

γ
(I)
jklmg(Xij , τjl)g(Xik, τkm) + εi (8)

where, again, εi ∼ N(0, σ2). The γ parameters for the nonlinear functions (splines) in-
volveK knots. The bracketed superfixes (M) and (I) refer to main effects and interaction
levels respectively. We used the model with gj(x, τ) = (x− τ)+ and K = 10 knots. The
5 main effects and 10 interactions lead to 1055 regression parameters in the model.

Gustafson (2000) used a square root transformation of the predictors since these
data are highly skewed. In principle the distribution of variables shouldn’t matter in
non-linear regression modelling. However, knots are evenly spaced and so it would be
useful to have data relatively evenly spread across the range of the knots. We found
that a log transformation of the response lead to better behaved residuals than the
untransformed response and also transformed the variables by f(x) = log(1 + x). All
transformed variables were subsequently transformed to have a minimum of 0 and a
maximum of 1.

A hierarchical shrinkage prior can be constructed for this problem by combining
the prior for a GAM with only main effects and the prior for the linear model with
interactions. The regression coefficients are organized into four levels: a main effects
level, an interactions level, a basis level for main effects, and a basis level for interaction.

The main effects level has p1 = p terms of the form θ
(M)
j for j = 1, . . . , p. The interaction

level has p2 = p(p−1)/2 terms of the form θ
(I)
jk for j = 1, . . . , p and k = 1, . . . , j−1. The

basis level for main effects contains γ
(M)
jk for j = 1, . . . , p, k = 1, . . . ,K and has p3 = pK

terms. The basis level for interactions contains γ
(I)
jklm for j = 1, . . . , p, k = 1, . . . , j − 1,

l = 1, . . . ,K, m = 1, . . . ,K and contains p4 = (p − 1)/2K2. The proposed prior, with
strong heredity, is

θ
(M)
j ∼ N

(
0, λ1 d η

(1)
j

)
, η

(1)
j ∼ GG

(
λ1, c,

c− 1

λ1

)
,

θ
(I)
jk ∼ N

(
0, λ2 d η

(2)
jk η

(1)
j η

(1)
k

)
, η

(2)
jk ∼ GG

(
λ2, c,

c− 1

λ2

)
,
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Figure 9: Computer data – the posterior mean of each main effect and each interaction.
Darker colours represent lower values in the graphs for the interactions.

γ
(M)
jk ∼ N

(
0, λ3 d η

(3)
jk η

(1)
j

)
, η

(3)
jk ∼ GG

(
λ3,j , c,

c− 1

λ3

)
,

γ
(I)
jklm ∼ N

(
0, λ4,j,k d η

(4)
jklm η

(2)
jk η

(1)
j η

(1)
k

)
, η

(4)
jk ∼ GG

(
λ4, c,

c− 1

λ4

)
.

If η
(1)
j is small then both the main effects θ

(M)
j and the basis function coefficients

γ
(M)
jk will tend to be small. Similarly, if η

(2)
jk η

(1)
j η

(1)
k is small then both the interaction

terms θ
(I)
jk and the basis function coefficients γ

(I)
jklm will tend to be small. This allows

variable selection at the main effect and interaction term levels. The prior also links the
interaction and main effects terms (and, consequently, their associated basis function

coefficients) since η
(2)
jk η

(1)
j η

(1)
k is more likely to be small if both η

(1)
j and η

(1)
k are small.

We assume that λ2 < λ1 and so the sparsities are λ1 for the main effects level, λ2

for the interactions level, min{λ1, λ3,j} for the basis level for the j-th main effects and
min{λ2, λ4,j,k} for the basis level for interactions.

The priors for the hyperparameter of the model were as follows. The adaptive shrink-
age parameters for the main effects and interaction terms were chosen as λ1 ∼ Ex(1)
and λ2 = rλ1 where r ∼ Be(2, 6) which implied that E[r] = 1/3 suggesting that the
interaction are a priori much sparser than the main effects. The conditional adaptive

shrinkage parameters for the nonlinear terms were chosen to be λ4,j,k
i.i.d.∼ Ga(1, 100)

and λ2,j
i.i.d.∼ Ga(1, 10) which implies that nonlinear terms were less likely to be in-

cluded in the interaction function than the main effects function (which reflected the
larger number of terms in the interaction function). The scale parameter, d, was given
the prior p(d) ∝ (1 + d)−2 which implied that E[d] = 1 but with a heavy tail.

The estimated main effects and interactions are shown in Figure 9. The effect of
A, D and E were small whereas B and C had an increasing, non-linear effect with a
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Figure 10: Computer data – the posterior distribution of Ψ for each main effect and
each interaction summarized as the posterior median (cross) and 95% credible interval
(solid line).

λ1 1.96 (0.41, 4.68) λ2 0.40 (0.13, 1.12) d 0.84 (0.09, 10.06)

Table 4: Computer data – the posterior distribution of the hyperparameters summarised
as posterior median and 95% credible interval.

largest effect of roughly 4 for B and roughly 2 for C. The interaction effects mostly had
a posterior median of zero. The main exception was the interaction between B and C
which has a posterior median of -4 when both B and C are 1. This indicated that the
effect of large values of B and C were over-estimated by the linear effects alone.

Figure 10 shows the posteriors for the Ψ’s for the main effects and interactions.
These results were consistent with the estimated effects. The variables B and C had
the largest posterior medians and upper point of the 95% credible interval for the main
effects. Similarly, the interaction between B and C had the largest posterior median and
upper point of the 95% credible interval than the other interactions.

A summary of the posterior distribution of λ1, λ2 and d are shown in Table 4.
The posterior median of λ1 is close to 2 which indicates that most effects are relatively
important (although this is estimated with a wide 95% credible interval due to the small
number of regressors). The posterior median of λ2 indicates that the interactions are
much sparser than the main effects.

6 Discussion

This paper considers the specification of hierarchical priors in linear models where re-
gression coefficients can be divided into levels and the relationship between the regres-
sion coefficients can be expressed hierarchically. We describe some methods for control-
ling the adaptive shrinkage of groups of regression coefficients at different levels of the
prior. This is achieved through the shape rather than the scale of the gamma-gamma
mixing density and an appropriate level of adaptive shrinkage can be chosen. These
priors have applications in problems such as models with interactions and non-linear
Bayesian regression models. Rather than impose blanket sharp heredity principles, our
long-tailed normal-gamma-gamma priors are able to easily adapt if the data contradicts.
We feel that these approaches will have the potential for many applications in future.
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For example, Kalli and Griffin (2014) use a simple, two stage hierarchical prior in a
regression model with time-varying regression coefficients. This allows the control of
both adaptive shrinkage of the overall effect of a variable (where values of the regression
coefficients at all times are shrunk to zero) and adaptive shrinkage of the effect of each
regression coefficient over time.

Supplementary Material

Supplementary Material of “Hierarchical Shrinkage Priors for Regression Models” (DOI:
10.1214/15-BA990SUPP; .pdf).

References
Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions. Dover.
143

Armagan, A., Dunson, D., and Clyde, M. (2011). “Generalized Beta Mixtures of Gaus-
sians.” In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., and Weinberger, K.
(eds.), Advances in Neural Information Processing Systems 24, 523–531. 136, 137

Armagan, A., Dunson, D. B., and Lee, J. (2013). “Generalized double Pareto shrinkage.”
Statistica Sinica, 23: 119–143. MR3076161. 136
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