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Posterior Propriety for Hierarchical Models with
Log-Likelihoods That Have Norm Bounds∗

Sarah E. Michalak† and Carl N. Morris‡

Abstract. Statisticians often use improper priors to express ignorance or to pro-
vide good frequency properties, requiring that posterior propriety be verified. This
paper addresses generalized linear mixed models, GLMMs, when Level I parame-
ters have Normal distributions, with many commonly-used hyperpriors. It provides
easy-to-verify sufficient posterior propriety conditions based on dimensions, ma-
trix ranks, and exponentiated norm bounds, ENBs, for the Level I likelihood. Since
many familiar likelihoods have ENBs, which is often verifiable via log-concavity
and MLE finiteness, our novel use of ENBs permits unification of posterior propri-
ety results and posterior MGF/moment results for many useful Level I distribu-
tions, including those commonly used with multilevel generalized linear models,
e.g., GLMMs and hierarchical generalized linear models, HGLMs. Those who need
to verify existence of posterior distributions or of posterior MGFs/moments for a
multilevel generalized linear model given a proper or improper multivariate F prior
as in Section 1 should find the required results in Sections 1 and 2 and Theorem 3
(GLMMs), Theorem 4 (HGLMs), or Theorem 5 (posterior MGFs/moments).

Keywords: exponentiated norm bound, generalized linear mixed model,
hierarchical generalized linear model, improper prior, multilevel objective Bayes.

1 Introduction

Bayesian approaches are used widely with multi-level models. The hierarchical models
considered here have three levels: the likelihood of the observed data (Level I), the
distributions of the unknown Level I parameters (Level II), and the prior distribution
of the unknown Level II hyperparameters (Level III). Improper (not finitely integrable)
Level III distributions on the Level II parameters are often used in practice by Bayesians
and objective Bayesians to represent ignorance and by many statisticians to achieve
frequency-calibrated procedures. The need to verify posterior propriety has been stressed
(Gelman et al., 1995; Carlin and Louis, 1996; Hobert and Casella, 1996, 1998; Natarajan
and Kass, 2000). Unfortunately, except in the simplest models, when improper priors
are used it can be daunting and time-consuming to verify that the resulting posterior
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distribution is proper. This demonstration sometimes is skipped, occasionally at the cost
of making inference from an improper posterior distribution. For example, Natarajan
and Kass (2000) prove that for certain GLMMs, a commonly-used invariant prior for
the variance of the random effects used in Tiao and Tan (1965), Wang et al. (1994),
and Zeger and Karim (1991) leads to an improper joint posterior distribution when that
prior for the random effects variance and any prior (proper or improper) for the fixed
effects are a priori independent. See Hobert and Casella (1998) and Berger et al. (2005)
for further discussion of posterior impropriety with this prior. Although the output from
a Markov chain Monte Carlo method may not indicate posterior impropriety (Hobert
and Casella, 1996, 1998; Natarajan and McCulloch, 1998), typical Markov chain Monte
Carlo estimates of expected values may not be consistent and may converge to 0 with
probability 1 if the posterior distribution is improper (see Athreya and Roy (2014) and
Hobert and Casella (1998), with related results in Athreya and Roy (2015)). Recognizing
these problems, Bayesian analysts sometimes use proper prior distributions to assure
posterior propriety, perhaps at the risk of overstating their prior information.

The development of the posterior propriety conditions presented here was motivated
by our collaboration with U.S. Department of Veterans Affairs (VA) researchers, which
used multi-level models for VA hospital evaluations. It was important to use nonin-
formative priors at Level III (flat priors on the Level II regression coefficients and the
Level II covariance matrix), partly to assure good frequentist properties, which gen-
erally require noninformative priors, and partly to assure hospital administrators that
the procedures let the data speak. The models used were hierarchical generalized linear
models, HGLMs, e.g., hierarchical logistic regression models. The results here generalize
from HGLMs to the following model structure, which includes GLMMs and HGLMs as
special cases.

Assume a hierarchical model in which nh observations are modeled for group h
at Level I, h = 1, . . . , k0, with yhi the observation from the ith unit in group h. In
particular, in Level I the data vector yh = (yh1, . . . , yhnh

)′ has density or mass function
fh with parameter ηh = (ηh1, . . . , ηhnh

)′ which follows a mixed model

yh ∼ fh(·|ηh); ηh = Uhγ +Xhεh (1)

where the yh are assumed independent unless otherwise specified, Uh is nh × du with
ith row equal to u′

hi, the du×1 vector of known fixed effects covariates for unit i, γ is a
du×1 vector of typically unknown fixed effects, Xh is nh×dx with ith row equal to x′

hi,
the dx×1 vector of known random effects covariates for unit i, and εh is a dx×1 vector
of unknown random effects specific to group h. Although each unit has a parameter ηhi
associated with it, the number of unknown model parameters is typically far less than∑k0

h=1 nh, which is the total number of elements in (η′
1, . . . ,η

′
k0
)′, because each ηhi is a

linear function of γ and its εh.

More general notation for k ≤ k0 groups, where k is defined immediately above
(13), incorporates the observed data vector y = (y′

1, . . . ,y
′
k)

′ and parameters η =

(η′
1, . . . ,η

′
k)

′, both with dimension N =
∑k

h=1 nh, in a likelihood L(η|y) that does not
necessarily assume independent observations, so that

η = Uγ +Xε. (2)
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With K = k ·dx, U (N ×du) is U1, . . . ,Uk stacked one on top of the other, X (N ×K)
is block-diagonal with Xh in the hth position, and

ε = (ε′1, . . . , ε
′
k)

′ ∼ NK(0,Λ). (3)

Here Λ (K ×K) may be fully unspecified and the prior density p(γ,Λ) is assumed to
satisfy

p(γ,Λ)dγdΛ ≤ Mπ(Λ)dγdΛ (4)

where the finite constant M permits prior densities on γ that are bounded with respect
to Lebesgue measure.

Special cases include GLMMs and HGLMs. For the GLMMs addressed here, the
dx× 1 random effects vector εh is assumed to follow a multivariate Normal distribution
in Level II with mean 0 and unknown variance matrix A that is fully unspecified so
that Λ from (3) is equal to Ik ⊗A and

εh = (εh1, . . . , εhdx)
′ ind.∼ Ndx(0,A). (5)

The prior density for γ and A in Level III is assumed to have the following bound:

p(γ,A)dγdA ≤ Mπ(A)dγdA (6)

for some finite constant M .

The HGLMs considered here have Levels I, II, and III specified as follows:

yh
ind.∼ fh(·|ηh); ηh = Zhβh, (7)

βh
ind.∼ Ndz ((Idz ⊗w′

h)γ,A), (8)

p(γ,A)dγdA ≤ Mπ(A)dγdA (9)

where Zh is nh × dz with ith row equal to z′
hi, the dz × 1 vector of known Level I

covariates for unit i in group h, βh is a dz × 1 vector of unknown regression parameters
for group h, wh is a dw × 1 vector of known group-level covariates for group h, the
vector γ has length dz · dw, and the parameters γ and A are unknown and assigned the
prior distribution in (6) for some constant M .

The HGLM in (7)–(9) is a special case of the GLMM because for the HGLM

βh = (Idx ⊗w′
h)γ + εh; εh

ind.∼ Ndz (0,A). (10)

With this,

ηh = Zh[(Idx ⊗w′
h)γ + εh] = Zh(Idx ⊗w′

h)γ +Zhεh (11)

so the HGLM can be written in GLMM notation with

Uh = Zh(Idx ⊗w′
h) and Xh = Zh. (12)



548 Posterior Propriety with Exponentiated Norm Bounds

In the case in which the Level II mean is equal to γ, Uh = Xh = Zh. A slightly different
representation of the HGLM facilitates the proof of Theorem 4 in Section 6.

For GLMMs and HGLMs, the results here address models for which an exponentiated
norm bound (ENB) holds for the Level I likelihood for k ≤ k0 groups

L(η|y) ≤ c0 exp(−c1‖η‖) (13)

for constants c0, c1 > 0. Our results address priors with the general prior structure in
(6) or (9) and with the following bound

p(γ,A)dγdA ≡ π(A)dγdA ≤ M
|A|a

|Idx +A|a0
dγdA (14)

where the constant M < ∞. As detailed in Section 2, an ENB exists for a log-concave
likelihood with all MLEs in a bounded set. Examples of log-concave likelihoods include
exponential family models with natural links and some links that are not the natural
link. The priors on A in (14) are proper if and only if a > −1 and a0 − a > dx and
are then called multivariate F distributions. Otherwise, when they are improper, we
refer to them as improper multivariate F distributions. These priors are special cases
of Condition 1 in Berger et al. (2005) when their parameter � = 1.

The difficulty of assuring posterior propriety for these types of models inspired our
development of the main theoretical results. In particular, there were no easy-to-check
conditions for posterior propriety of hierarchical logistic regression models. For con-
venience, our results for exponential family models, including GLMs, HGLMs, and
GLMMs, are restricted to known convolution parameters (“dispersion” parameter in
the language of McCullagh and Nelder (1996)), with unknown convolution parame-
ters discussed in Section 9 Remark 1. Table 1 summarizes our main results, illustrating

Model Prior Structure Parameter
that Must
Have ENB

Required #
of Groups
with ENBs

Matrices
Required to
Be of Full
Rank

Theorem

GLMM Equation (14) η k > 2dx + du
+ 2(a− a0)

Fixed
Effects U ,
Random
Effects X

3

HGLM Equation (14) η, equivalently
β or β∗

(Equation (20))

k > 2dz + dw
+ 2(a− a0)

Level I
Predictors Z,
Level II
Predictors W

4

GLM Bounded Prior
on Regression
Coefficients

η – Predictors U 1

Table 1: Summary of Conditions for Posterior Propriety.
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GLMMs (kmin = 2dx + du + 1)
Citation Model link dx du kmin k0
Zeger and Karim (1991) Bernoulli random

intercept
logit 1 8 11 250

Diggle et al. (1994) Poisson GLMM log 2 4 9 30
Natarajan and Kass (2000) Bernoulli GLMM logit 2 4 9 30 or 50
Sinharay and Stern (2002) Bernoulli random

intercept
probit 1 2 5 31

Sinha (2004) Bernoulli random
intercept

logit 1 6 9 38

HGLMs (kmin = 2dz + dw + 1)
Citation Model link dz dw kmin k0
Wong and Mason (1985) hierarchical

logistic regression
logit 3 4 11 15

Aitchison and Ho (1989) multivariate
Poisson–Log
Normal

log 2 1 6 100

Everson and Morris (2000) bivariate Normal
hierarchical model

identity 2 2 7 27

Michalak (2001) hierarchical
logistic regression

logit 4 1 10 26

Bronskill et al. (2002) hierarchical
logistic regression

probit 3 1 8 22

Table 2: Number of Groups That Must Have an ENB, kmin, When a = a0 = 0 for
GLMMs and HGLMs (Theorems 3 and 4).

their ease of application to a wide variety of models, and Table 2 applies them to several
models from the literature, with details of their application provided in Section 8. The
results in Table 2 demonstrate that the required number of groups with an ENB, kmin,
is modest and typically much less than the number of groups being jointly modeled, k0.

Our main contributions are as follows. An exponentiated norm bound for the Level
I likelihood (13) provides an easy-to-work-with unified approach to posterior propriety
and to finiteness of posterior moments and MGFs. The ENBs emphasized here enable
a unified treatment for many likelihoods, including those with the structure specified in
(2)–(4), i.e., GLMs, GLMMs, and HGLMs. Hence, the results here encompass certain
results from Natarajan and Kass (2000), in which the random effects are a subset of
the fixed effects, and certain results from Chen et al. (2002) that require independence
of the fixed effects and the random effects.

The structure of this paper is as follows. Section 2 offers conditions under which
the existence of an MLE implies that an ENB holds for GLMs, GLMMs, HGLMs, and
other models. Section 3 reviews related work. Section 4 presents results for GLMs, other
one-level models, and a general mixed model, all with ENBs. With the ENB satisfied
and using a prior density bounded by an improper multivariate F prior density in (14),
Sections 5 and 6 provide easily-verified sufficient conditions for posterior propriety for
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GLMMs and HGLMs that are based on dimension counts and matrix ranks. Section 7
contains results for posterior moments and MGFs. Referencing Table 2, Section 8 dis-
cusses the application of our results to certain models from the literature. Section 9
presents remarks pertaining to and extensions and generalizations of this work, and
Section 10 offers conclusions. Appendix A presents Theorem 6, which describes con-
ditions that lead to ENBs for a variety of Level I likelihoods, and related discussion.
Appendix B provides terminology, notation, and results that are used to develop the
results here, and Appendix C contains proofs of the theorems in this paper.

2 Exponentiated Norm Bounds

All of our results involve verifying that an ENB exists for the likelihood of η, where an
ENB is defined to hold if constants c0, c1 > 0 exist such that

L(η|y) ≤ c0 exp(−c1‖η‖). (15)

The constants c0 and c1 can be chosen independently of the Lp norm, p ≥ 1, because
of norm equivalence, where two norms Lp and Lq on R

r are said to be norm-equivalent
if and only if there exist constants 0 < c2, c3 such that c2‖v‖p ≤ ‖v‖q ≤ c3‖v‖p for any
vector v (Appendix B). While c0 and c1 in (15) cannot depend on η, they may depend
on any known values including y, X, U , and the Lp norm, etc. Note that independence
in (1) is unnecessary if an ENB holds in (15). Of course, (15) holds if the following
equation (16), which can be easier to verify, holds

L(ηh|yh) ≤ c0h exp(−c1h‖ηh‖), h = 1, . . . , k. (16)

The bound in (15) or (16) may not hold for all k0 groups being modeled jointly;
thus the groups with an ENB are indexed from 1 to k ≤ k0, i.e., k is the number
of groups for which (15) holds. Any additional groups without an ENB can only add
information. If posterior propriety holds for the k groups with an ENB, then assuming
no new parameters are added to the model it also must hold for all k0 ≥ k groups.
Remark 7 in Section 9 provides details.

Use of the ENB for the Level I likelihood as defined in (15) enabled the development
of the results here, which cover a broad class of models. These results leverage ENBs
for Level I likelihoods to provide relatively simple sufficient conditions for verifying
the propriety of posterior distributions and of certain posterior moments in multi-level
generalized linear models, including HGLMs and GLMMs.

The ENB condition is quite general and may hold for bounded likelihoods that are
non-differentiable, discontinuous, non-concave, or that have other irregular behavior,
but have tails that are bounded by an ENB.

More specifically, Theorem 6 in Appendix A proves that if a likelihood as a function
of η is log-concave and the MLE of η exists and is unique (or more broadly if η has
multiple MLEs, all MLEs lie a bounded set), then the likelihood has an ENB as a
function of η.
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GLMs with natural links are log-concave. Thus, the likelihood function L(η|y) for
a GLM with natural link and a finite MLE has an ENB as a function of η. More
generally, given a GLMM (or other model) with a log-concave likelihood, it has an ENB
if the MLE of η exists. When the observed data follow a Bernoulli distribution, Pratt
(1981), using a latent-variable response function approach, provides examples of link
distributions, i.e., response functions, that lead to log-concavity of the likelihood. These
include the Normal; Logistic; Sine; Extreme-Value; the Gamma, Weibull, and Pareto,
all when the shape parameter is at least 1; the Beta when both parameters are at least
1; and the t-distribution. With binary data, finiteness of the MLE may also be verified
using a separating hyperplane condition (Albert and Anderson, 1984; Natarajan and
Kass, 2000; Chen and Shao, 2001; Roy and Hobert, 2007; Lin et al., 2013), but that
requires the concatenated [U ,X] matrix to be of full rank, a condition that is not
required for the posterior propriety results here.

In addition to Bernoulli data, our results apply to other exponential family models,
including the Normal, Gamma, Poisson, and Binomial. These exponential family models
can also have log-concave likelihoods when a link function other than the natural link
is used. When the observed data follow a Gamma distribution, the natural link is the
reciprocal, but the more commonly-used log link also leads to a log-concave likelihood.
Wedderburn (1976) details that the Poisson likelihood is log-concave with certain power
links and with the identity link given certain conditions and that the Binomial likelihood
is log-concave when the arcsin, complementary log-log, or probit link is used. Thus, both
the natural link functions and a number of other commonly-used link functions lead
to log-concave likelihoods. Other examples of log-concavity include Laplace’s double
exponential distribution, which is not an exponential family (Spiegelhalter et al., 1995).

Wedderburn (1976) details when MLEs of the regression coefficients are finite, unique,
and/or exist in the interior of the parameter space for Binomial, Poisson, Normal, and
Gamma GLMs. The results in Wedderburn (1976) can be applied to the GLMM Level I
model in (1) or (2) by using them to verify whether the MLE of (γ′, ε′h)

′ in (1) for a
particular group h is finite or whether the MLE of (γ′, ε′)′ in (2) for a set of groups is
finite. Statistical software that fits GLMs may also be helpful in determining when η
has a finite MLE.

The existence of an ENB may depend on the data. For example, suppose a binary
logistic regression is used to assess hospital patient outcomes. If all male patients have
one outcome and all female patients have the other outcome and an indicator for gender
is included in the model, then an ENB will not exist. Similarly, if all of the patients
have the same outcome, then an ENB will not exist.

The results in Wedderburn (1976) and those involving the separating hyperplane con-
dition for existence of an MLE with binary data (Albert and Anderson, 1984; Natarajan
and Kass, 2000; Chen and Shao, 2001; Roy and Hobert, 2007; Lin et al., 2013) assume
that the design matrix is of full rank. In the case of a GLMM this condition means
that the concatenated [U ,X] matrix would need to be of full rank. The main poste-
rior propriety results for GLMMs in Chen et al. (2002), with the exception of a result
addressing a proper inverse Wishart prior on the Level II variance matrix, also assume
that a subset of the rows in the concatenated [U ,X] matrix is of full rank. In contrast,
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our results do not require [U ,X] to be of full rank because η can have a finite MLE
even when [U ,X] is not of full rank. As an example, both U and X may include an in-
tercept term. In this case, without prior information on the components in γ and ε that
correspond to the intercept terms, the intercept term parameters are non-identifiable.
However, the sum of the intercept term parameters in γ and ε is estimable and hence η
is estimable and can have a finite MLE. Similarly, an HGLM with no Level II predictors
other than an intercept has Zh = Uh = Xh so that [U ,X] does not have full rank,
a case which our posterior propriety results also permit.

3 Related Work

Other work has considered posterior propriety for these and related models. Berger
et al. (2005) lists various priors that provide posterior propriety for Normally-distributed
data, assuming certain HGLM models. While our results for Normal and for non-Normal
Level I data include many often-used improper hyperpriors, our priors are less general
in the Normal case than those of Berger et al. (2005). However, our Theorem 4 provides
posterior propriety results for multivariate Normal data and for certain non-Normal data
when HGLMs have likelihoods with ENBs and when familiar improper multivariate F
distributions, also used in Berger et al. (2005)’s Corollary 2.10(a), are specified. In so
doing, our work provides results for non-Normal data that Berger et al. (2005) does
not address. It is plausible that prior distributions that yield posterior propriety for
Normal data also will enjoy posterior propriety when transported to other HGLMs that
have ENBs. In providing necessary and sufficient conditions for the Normal case, Berger
et al. (2005) shows that our sufficient conditions (Theorem 4) also are necessary, at least
when applied to Normal observations at Level I.

Chen et al. (2002) presents broad conditions for posterior propriety of GLMMs in
which, as here, the data follow an exponential family with a flat prior on the fixed
effects and Normal distributions for the random effects. That work provides sufficient
conditions and also provides necessary conditions for posterior propriety with certain
improper priors on the random effects covariance matrix. For certain binary GLMMs,
their Theorem 3.4 provides necessary and sufficient conditions broader than those here.
However, their results for HGLMs, like those needed for the VA data, and for GLMMs
with collinearity between the random effects matrix (X) and the fixed effects matrix
(U), are limited to proper Wishart priors for the inverse of the random effects covariance
matrix.

Natarajan and Kass (2000) presents a sufficient condition for posterior propriety for
GLMMs in which the random effects are a subset of the fixed effects, a case the results
here cover, as well as a necessary condition and a sufficient condition for posterior
propriety for Bernoulli data. Their conditions sometimes require complicated integral
evaluations.

Our use of an ENB permits unification of certain results from Chen et al. (2002) and
Natarajan and Kass (2000). Specifically, an ENB approach provides a single theory and
resulting posterior propriety conditions that apply both when the random effects are a
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subset of the fixed effects (Natarajan and Kass, 2000) and when the random effects are
linearly independent of the fixed effects (Chen et al., 2002).

Sun et al. (2001) provides posterior propriety conditions for a class of GLMMs with
a prior specification designed for spatial modeling. Kim et al. (2008) and Roy and
Dey (2014) discuss posterior propriety for certain models with unknown link function
parameters.

For Bayesian spline estimators in logistic regression and logistic GLMMs, Ragha-
van and Cox (1998) discusses equivalence of the existence of the MLE and posterior
propriety, as we do in Section 4, using a bound for the fixed effects akin to an ENB.
Speckman et al. (2009) presents related results about the equivalence of MLE existence
and posterior propriety for multinomial logistic and probit choice models.

Results about posterior propriety for GLMs include those in Ibrahim and Laud
(1991) (GLMs with Jeffreys priors); Dey et al. (1997) (overdispersed GLMs); Gelfand
and Sahu (1999) (identifiability, posterior propriety, and Gibbs sampling for GLMs);
Ghosh et al. (1999) (spatial GLMs); Garvan and Ghosh (1999) (two parameter disper-
sion models including some GLMs); and Chen et al. (2004) (regression models with
missing covariates).

Related posterior moment conditions for non-hierarchical models include those of
Ibrahim and Laud (1991) (GLMs), Kim and Ibrahim (2000) (Weibull and extreme value
regression models), and Chen and Shao (2001) (dichotomous quantal response models).
In the hierarchical setting, Yang and Chen (1995) establish conditions for the existence
of certain posterior moments in multivariate Normal hierarchical models.

Finally, Dey et al. (1997) uses an intersecting-hyperplanes approach to bound log-
concave likelihoods.

4 Posterior Propriety of One-Level Models with ENB
Likelihoods, GLMs, and a General Class of Mixed
Models

This section presents results for one-level models with ENB likelihoods, such as GLMs,
and for a general class of hierarchical models. Theorem 1 addresses certain single-level
models with ENBs, e.g., GLMs, that have flat priors on the regression coefficients.
This theorem implies posterior propriety for any one-level model with an ENB for the
unknown parameters when they are assigned a bounded prior distribution.

Theorem 1. For fixed y assume a likelihood L(η|y) with an ENB for η as in (15),
where η = Uγ, U (N × du) has full rank du, and the prior density for γ is bounded,
i.e., p(γ) ≤ M < ∞. Then, the posterior distributions of γ and of η are proper and γ
and η have proper posterior MGFs.

For the models described in Theorem 1, an ENB implies both finite MLE(s) and
posterior propriety, e.g. for GLMs with natural links and known convolution parameters.
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Theorem 1 holds for GLMs when η is the natural parameter if the MLE is unique
(or more generally if multiple MLEs are uniformly bounded) because the likelihood is
log-concave and therefore with a unique MLE will have an ENB. However, neither the
natural link nor exponential families are required for log-concavity or for an ENB to
hold; see Section 2.

Theorem 2 provides a result for a general class of models in which the likelihood, as
a function of η ≡ Uγ +Xε, has an ENB as in (15), ε ∼ NK(0,Λ) with Λ fixed and
known, and γ is Lebesgue distributed on R

r, r ≡ du.

This theorem builds on Theorem 1 by showing that if Λ is known, or if it has a
proper prior distribution, then the posterior distribution is proper even when [U ,X] is
not of full rank. Result 3 in Theorem 2 is crucial to the proofs of posterior propriety
results for GLMMs (Theorem 3).

Theorem 2. Let η ≡ Uγ + Xε in N -dimensions have a likelihood function L(η|y)
with an ENB, i.e., for some c0, c > 0, L(η|y) ≤ c0(exp(−c‖η‖)). Matrices U (N × du)
of full rank r ≡ du ≤ N and X (N ×K) not necessarily of full rank are known. Assume
γ has an (improper) Lebesgue distribution on R

r and that, given Λ (not necessarily of
full rank), ε ∼ NK(0,Λ).

1. Let Q ≡ IN − U(U ′U)−1U ′, the projection matrix orthogonal to U . Then for
any given Λ there exist constants c2, c3 > 0 (not depending on c or Λ) such that

E(L(η|y)) ≤ c0E(exp(−c‖η‖)) ≤ (c2/c
r)× |IK + c3c

2X ′QXΛ|−1/2. (17)

2. If Λ is known or has a proper prior distribution, then the posterior distribution of
(η, γ, Λ) is proper.

3. If the prior distribution on Λ is improper, then the posterior distribution of (η,
γ, Λ) is proper if the expectation of the right side of (17) is finite.

The dependency of the terms c2/c
r and c3c

2 on c is included to address cases in
which a convolution parameter exists and is unknown, with Remark 1 in Section 9
providing details. The constants c2 and c3 (and c4 in Theorem 3) can depend on all
known values including c0 (but not c because c can absorb an unknown convolution
parameter), all dimension counts, and the data y, X, and U .

Theorem 2 applies in two special cases: (i) when γ = 0 and r = 0 so that Q = IN

and (ii) when U is square so that Q is a matrix of 0s.

Since Λ is arbitrary in Theorem 2, the outcomes for different groups need not be
independent, allowing for a more general variance structure in Theorem 2 than for the
typical GLMM, in which Λ = Ik ⊗A.

5 Posterior Propriety of GLMMs

This section addresses widely-used GLMMs with exchangeability in Level II in which
Λ = Ik ⊗A and K ≡ k · dx.



S. E. Michalak and C. N. Morris 555

Theorem 3 applies to the GLMMs in (1), (5), and (6) when the data in (1) follow
an exponential family with known convolution parameter, an ENB (13) for the Level I
likelihood exists, and U is of full rank. More generally, it also applies when the Level
1 likelihood for a non-exponential family distribution has an ENB. Result 3 provides
easy-to-check results for the prior in (14).

Theorem 3. Assume the model in (1), (5), and (6) with Λ = Ik ⊗A (A is dx × dx),
that an ENB for the likelihood of η for k groups exists so that (17) holds with c > 0
(given A), for Results 1–3 that U in (2) has full column rank (which implies k ≥ du),
and for Results 2 and 3 that X in (2) also has full column rank.

1. If π(A) is proper, then the posterior distribution is proper.

2. Let π(A) be improper and k > du. If there exists a finite c4 > 0 (not depending
on c) such that

∫
(|Idx + c4c

2A|)−
k−du

2 π(A)dA < ∞, (18)

then the posterior distribution on (γ, A) is proper.

3. Let k > du with the joint prior distribution on γ and A specified as in (14),

i.e., p(γ,A) ≤ M |A|a

|Idz+A|a0
, and the convolution parameter known. If the prior

distribution on A is proper, the posterior distribution is proper by Result 1. If the
prior distribution is improper as a function of A, then the posterior distribution
is proper if a > −1 and k > 2dx + du + 2(a − a0), i.e., the integer k must be at
least kmin:

kmin ≡
{

2dx + du + 2(a− a0) + 1 if (2dx + du + 2(a− a0)) ∈ Z,
�2dx + du + 2(a− a0)� otherwise

(19)

where �x� is the ceiling of x.

With Result 3 and given a and a0, the kmin for posterior propriety requires one
additional ENB group for each additional fixed effect that is added to the model (aug-
menting Uh, equivalently U , by one column) and two additional ENB groups for each
random effect that is added to the model (augmenting Xh by one column).

Theorem 3 also applies when U is partially or fully collinear with X, with the proof
of the special case U = XM with η = X(Mγ + ε) instructive.

Sharper bounds may be obtained for patterned A matrices with fewer unknown
parameters, e.g., if A were an equi-correlation matrix. Specifically, Lemma 5, referenced
in the proof of Theorem 3, provides a lower bound (generally not sharp) for certain
determinants that include projections. See Remark 5 in Section 9.
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6 Posterior Propriety of HGLMs

This section presents posterior propriety results for HGLMs with the structure in
(7)–(9).

In (7) ηh = Zhβh, leading to η = Zβ, where Z is the block diagonal matrix with
Zh in the hth position and β = (β′

1, . . . ,β
′
k)

′. As in the proof of Theorem 1, if Z is of
full rank, it is equivalent to prove finiteness of the posterior distribution as a function
of η or as a function of β. This holds because with Z of full rank, η and β are norm
equivalent (Section 2 and Appendix B define norm equivalence).

It facilitates the proof of Theorem 4 to reorder the elements of β so that β∗ ≡
(β11,β21, . . . ,βk1, . . . ,β1dz

,β2dz
, . . . ,βkdz

)′, where βhj is the jth element of βh. The
distribution on β∗ is given by

β∗ = (Idz ⊗W )γ + ε∗ (20)

where γ follows Lebesgue measure in dz · dw dimensions,

ε∗ = (ε11, ε21, . . . , εk1, . . . , ε1dz , ε2dz , . . . , εkdz )
′ ∼ Nk·dz (0,A⊗ Ik), (21)

W is the k×dw matrix with hth row w′
h, and A⊗Ik is different from Ik ⊗A from the

GLMM case when dz > 1. With the notation in (20), Idz ⊗W and Ik·dz are analogous
to U and X in the GLMM, respectively.

The result for GLMMs in Theorem 2 is applied to HGLMs since HGLMs are special
cases of GLMMs. However, for the HGLM, a sharper result is obtained because of its
special form with U = Idz ⊗W and X = Ik·dz in (20). It is assumed that the likelihood
of β, equivalently η, has an ENB (13).

Theorem 4. Assume the model in (7)–(9), that k groups have an ENB for the likelihood
of β at some c > 0, that Z has full rank, that the joint prior distribution on γ and A
is proportional to π(A)dγdA, and that W in (20) has full rank dw ≤ k.

1. If π(A) is proper, then the posterior distribution is proper.

2. Let π(A) be improper and k > dw. If there exists a constant c3 > 0 such that∫ (
|Idz + c3c

2A|
−(k−dw)

2

)
π(A)dA < ∞, (22)

then the posterior distribution on (γ,A) is proper.

3. Let k > dw with the joint prior distribution on γ and A specified as in (14),

i.e., p(γ,A) ≤ M |A|a

|Idz+A|a0
, and the convolution parameter known. If the prior

distribution on A is proper, the posterior distribution is proper by Result 1. If
the prior distribution is improper as a function of A, posterior propriety requires
a > −1 and k > 2dz + dw + 2(a− a0), i.e., the integer k must be at least kmin:

kmin ≡
{

2dz + dw + 2(a− a0) + 1 if (2dz + dw + 2(a− a0)) ∈ Z,
�2dz + dw + 2(a− a0)� otherwise.

(23)
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Similar to Theorem 3 for GLMMs, with Result 3 and given a and a0, the kmin for
HGLM posterior propriety requires two additional ENB groups for each Level I covariate
that is added to the model (augmenting Zh by one column) and one additional ENB
group for each Level II covariate that is added to the model (augmenting W by one
column).

7 Existence of Posterior Moments and MGFs

Theorem 5 provides conditions under which the posterior MGFs of η, γ, and ε exist.
Level II variances and covariances also are addressed. This theorem includes HGLMs and
GLMMs with non-Normal observations that are not covered by the references discussed
in Section 3.

Theorem 5. Assume the model in (1)–(4) with an ENB for some c > 0 and with
E(exp(−c∗||η||)) < ∞ for some c∗ < c for at least kmin groups.

1. Then η has a proper posterior distribution and the posterior MGF of η exists.

2. Assume further that the concatenated [U ,X] ≡ C matrix is of full rank. Then
the posterior MGF of the corresponding vector (γ′, ε′)′ exists. Also, the trace of Λ
(K ×K), its eigenvalues, all of its elements, any norm of Λ, and the generalized
variance |Λ|1/K have finite posterior MGFs. This means the determinant |Λ| has
infinitely many moments.

3. Under the above conditions including the full rank condition in Result 2, when Λ =
Ik ⊗A, as in the GLMM case, the trace of A, its eigenvalues, all of its elements,
any norm of A, and the generalized variance have proper posterior MGFs. This
means the determinant |A| has infinitely many moments.

In summary, under the conditions for posterior propriety, the posterior MGF of η,
E(exp(t′η)|y), also exists (Result 1) if there is a value c∗ < c for which the expectation
of the ENB is finite, whether or not U and X in the GLMM or HGLM case are collinear.
Posterior MGFs of γ, ε, and of all elements of Λ or A are also proved to exist (Results 2
and 3) if in addition the concatenation [U ,X] has full rank.

8 Examples

Table 1 in Section 1 summarizes our results for posterior propriety. lt is straightforward
to use these results to verify propriety of GLMMs discussed in Zeger and Karim (1991),
Diggle et al. (1994), Natarajan and Kass (2000), Sinharay and Stern (2002), and Sinha
(2004) and of HGLMs presented in Wong and Mason (1985), Aitchison and Ho (1989),
Everson and Morris (2000), Michalak (2001), and Bronskill et al. (2002), with Table 2
in Section 1 presenting the value of kmin for each of these studies. The results in Table 2
assume that full rank conditions for the matrices of the covariates are met and the prior
structure in (14) with a = a0 = 0, although not all of the works in Table 2 use this prior
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distribution or a prior distribution at all. In all of the studies in Table 2, the value of
k0, the total number of groups being jointly modeled, substantially exceeds kmin.

The models in Aitchison and Ho (1989) and Everson and Morris (2000) have a mul-
tivariate outcome at Level I. In this case, the scalar entries in the multivariate outcome
take the role of units within a group. As discussed in Remark 3 in Section 9, multivariate
GLMMs, multivariate HGLMs, and other models with a vector of observations for each
unit within a group are also covered by the theorems presented herein.

Everson and Morris (2000) use a bivariate Normal HGLM to model average patient
outcomes in k0 = 27 hospitals. In their model, the Level I variance is known, there
are two outcomes per hospital and no covariates in Level I so that Zh = I2, and
the Level II matrix of covariates W includes a constant term and a variable capturing
within-hospital patient severity so that dw = 2. The prior specified for the 4-dimensional
γ vector and for A is equivalent to the prior in (14) with a = a0 = 0. With this model,
posterior propriety requires k ≥ kmin = 2dz + dw + 1 = 2 × 2 + 2 + 1 = 7 hospitals to
have an ENB. For Normal data, the ENB for the Level I likelihood is automatic, but
the matrix W must be verified to have full rank and the convolution parameter must
be known. Theorem 5 Part 1 then provides that the posterior MGF of η exists.

9 Remarks and Extensions

The following remarks underscore extensions and implications of our results.

Remark 1. Unknown Convolution (Dispersion) Parameter.

In certain familiar GLMs, GLMMs, and HGLMs, the convolution parameter ν (“dis-
persion” parameter in McCullagh and Nelder (1996)) from the Level I density emerges
in the ENB in the middle term of (17) as a multiplier of c||η||. In such cases there may
exist 0 < ν0 < ν1 (ν1 possibly infinite) such that for all ν in the interval [ν0, ν1),

L(η, ν|y) ≤ c0 exp(−cν||η||). (24)

Then by monotonicity and by (17),

c0E (exp(−cν||η||)) ≤ c0E (exp(−cν0||η||)) (25)

≤ (c2/(cν0)
r)× |IN + c3(cν0)

2QXΛX ′|−1/2. (26)

To permit posterior propriety for a given proper prior distribution which is constrained
to [ν0, ν1) and which is independent of the remaining parameters, ν0 must be large
enough for posterior propriety to hold.

Remark 2. ENBs Include Non-Exponential Families and More General Models.

The results here merely require an ENB for the Level I likelihood of the unknown
parameters η and not necessarily an exponential family in Level I or independence in
Level I, as discussed in the context of GLMMs and HGLMs. ENBs can exist for likeli-
hoods that are discontinuous, non-differentiable, or that have other irregularities. Other
complicated examples might include cases in which different units or groups follow dif-
ferent Level I distributions and cases with missing data or other complications. In both
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cases, the required ENB condition must hold and the reasonableness of exchangeability
in Level II must be assessed. As discussed in Section A, the likelihood itself need not be
log-concave in order to have an ENB. Thus, the results here apply more broadly than
to GLMs, GLMMs, and HGLMs.

Remark 3. Generalization to Multivariate Outcomes.

Various multivariate outcomes can be addressed using the models considered here
and hence the results herein pertain in certain multivariate cases, e.g., as in Aitchison
and Ho (1989) and Everson and Morris (2000). In these two works, which are referenced
in Table 2 and Section 8, the observations for different outcomes within a group have
an analogous role to the observations for different units within a group.

Further, a multivariate observation may be modeled for each unit, e.g., patient, in
a group, e.g., hospital. For example, the vector observation yhi for unit i in group h
might be 2× 1, where the observations for each unit and the observations for different
units within a group may be correlated. In this case, ηhi = (ηhi1, ηhi2)

′ is a 2×1 vector,
where it is assumed that ηhi = ηh for all i in each group h. The model might then be
specified so that ηh = γ + εh for all h. Concatenating the ηh for k groups to form a
vector η yields η = (1k ⊗ I2)γ+ ε, where ε ∼ Nk·2(0, Ik ⊗A) and A is a 2× 2 matrix,
which is the structure already considered.

Remark 4. GLMMs when U and X Are Fully or Partially Collinear.

Theorems 2, 3, and 5 (Result 1) hold when there is full or partial collinearity between
the columns of U and X. For example, these results hold in the special case U = XM
for M a full-rank matrix with dimension K × du. Applied to GLMMs, these results
extend several results in Chen et al. (2002) for which non-collinearity between U and
X is required in the absence of a proper prior on A (which would assure identifiability).

Remark 5. Structured A Matrix.

Chen et al. (2002) includes conditions that hold when the random effects covariance
matrix is structured, e.g., the intra-class correlation model. Theorem 2 and Results 1
and 2 of Theorems 3 and 4 apply to structured covariance matrices when the inte-
gral in (18) or (22) is reinterpreted to refer to an integral over the lower-dimensional
parameterization of A.

Remark 6. Proper Prior for Elements of γ.

When γ is known and equals 0 (0, without essential loss of generality), conditions
for posterior propriety follow if the conditions of Theorem 2 are met with r ≡ du =
0. In the GLMM case if γ is entirely or partially known, let γ = (γ′

1,γ
′
2)

′ so that
η − U2γ2 = U1γ1 + Xε with U = [U1,U2] partitioned accordingly, γ2 known, and
γ1 with Lebesgue measure. This model has already been addressed with du replaced by
the number of columns in U1. Because posterior propriety holds for all fixed γ2, it also
holds when γ2 has a proper prior distribution. A similar result holds for HGLMs.

Remark 7. Additional Groups.

The previous theorems establish conditions for kmin groups that guarantee posterior
propriety. With posterior propriety established for k groups, it continues to hold with
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the inclusion of additional groups that may or may not have ENBs or other deficien-
cies. However, propriety is not guaranteed if the additional groups introduce additional
parameters and if the additional parameters do not have a proper prior.

Remark 8. Relationship with Stein Estimation when a = a0 = 0.

Theorems 3 for GLMMs and 4 for HGLMs provide conditions under which us-
ing the class of multivariate F priors in (14) leads to proper posterior distributions.
Lacking proper prior information and having observed independent Normal data, Y ∼
Nk(β, Ik), i.e., the celebrated James–Stein setting (James and Stein, 1961), the prior
density 1/||β||(k−2) was demonstrated by Stein to be a good choice (Stein, 1981) for
estimating β = (β1, β2, . . . , βk)

′ with quadratic loss. This is Stein’s “super-harmonic”
prior density (SHP), which produces a posterior mean on β, given Y , which is a formal
Bayes estimator that is spherically invariant, minimax (uniformly dominating Y as an
estimator), and is a closely-related admissible alternative to the James–Stein estimator
in this equal variance case. Letting β ∼ Nk(0, AIk) with the scalar A ∼ Unif (0,∞),
corresponding to a = a0 = 0 when dx = 1, yields the SHP upon marginalization (Mor-
ris, 1983a). More generally, choosing a = a0 = 0 for various two-level models for Normal
data and computing Bayesian 95% credible intervals for this prior thus far has produced
confidence intervals that usually exceed and at worst nearly meet their nominal 95%
rates, e.g., Morris (1983b), Everson and Morris (2000), Morris and Tang (2011), and
Morris and Lysy (2012).

10 Conclusion

The major results of this work are easy-to-verify conditions for the existence of expo-
nentiated norm bounds for likelihoods and for demonstrating posterior propriety for a
broad class of hierarchical models that have ENBs with Normal Level II priors. First,
the likelihoods of many common models have ENBs when MLEs exist (Section 2 and
Appendix A). ENBs can thus be leveraged to provide posterior propriety, posterior
MGFs, and possibly other results for a broad class of Level I models. Second, Theo-
rems 2 and 3 provide conditions for posterior propriety for a broad class of models with
ENBs and a partially or fully improper prior specification on the first two moments
of the Level II Normal distribution. Third, Theorems 3 for GLMMs and 4 for HGLMs
provide easy-to-check dimension-count and matrix rank conditions that suffice for pos-
terior propriety for this flexible and widely-used class of models when a prior density
bounded by some multiple of a multivariate F prior in (14), proper or improper, is used.
Fourth, Theorem 5 shows that with posterior propriety, posterior MGFs or moments of
key model parameters often exist.

The conditions herein are especially useful for data analysis because they merely
require determining the ranks of matrices and counting dimensions, such as the number
of groups and dimensions of covariate matrices, as needed for determining kmin. The only
complicated check involves verifying the existence of an ENB for the Level I likelihood.
For GLMs, GLMMs, and HGLMs with log-concave likelihoods (which are automatic
for natural links) the bound may be verified by ascertaining finiteness of Level I MLEs,
although MLE existence is not required for an ENB to hold.
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The theorems here emphasize the use of non-informative priors for the parameters of
the Level II Normal distribution. Such improper priors are used to provide procedures
with good frequency properties.

Appendix A: Results on Exponentiated Norm Bounds
(ENBs)

Theorem 6 provides conditions under which ENBs as in (15) exist for many models.

Theorem 6. For fixed y, let �(η|y) be a log-likelihood that is a function of η on a
convex subset C ⊆ R

N , with concave upper bound g(η), where g is bounded and all
maximizing values of g are contained in a bounded set.

1. For g(η) given as above and for any Lp norm ||η|| ≡ ||η||p, 1 ≤ p ≤ ∞, on R
N ,

constants c0 and c1 > 0 exist such that

L(η|y) ≡ exp(�(η|y)) ≤ exp(g(η)) ≤ c0 exp(−c1||η||). (27)

2. When (27) holds, then for any t with ||t||2 < c1/2 ≡ c2

exp(t′η)L(η|y) ≤ c0 exp(−c2||η||2). (28)

Proof. Result 1 holds because the negative of the concave function g is convex so that
the following Lemma 1 applies with convex f = −g. The result then follows because
�(η|y) ≤ g(η).

The proof of (28) uses (27) so that for ||t||2 ≤ c2 = c1/2 and because |t′η| ≤
||t||2||η||2,

exp(t′η)L(η|y) ≤ exp(c2||η||2)c0 exp(−c1||η||2) = c0 exp(−c2||η||2). (29)

The results above provide ENBs for non-differentiable or discontinuous likelihoods
and those with non-concave logarithms. As a corollary, if each of several likelihoods has
an ENB, then so does their product. The result in (28) prepares for proving finiteness
of MGFs in Sections 4 and 7. Finally, if the right inequality in (27) holds for c0 and c1,
of course, it also holds for any constant larger than c0 and any positive constant less
than c1.

Lemma 1 below is used in the proof of Theorem 6.

Lemma 1. Let f be a convex function defined on a convex subset C ⊆ R
N , with all of

its minima contained in a bounded set. Then f is bounded below by a linear function of
any Lp norm of its argument, 1 ≤ p ≤ ∞. That is, constants c1 > 0 and c∗0 exist such
that f(x) ≥ c∗0 + c1‖x‖ for all x. Further, this result extends to convex proper subsets
of RN .
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Proof. For simplicity, but without essential loss of generality, assume that 0 minimizes
f with f(0) = 0 and that all minimizers x of f have ‖x‖ < 1. By continuity of f
(convexity implies continuity) and by the compactness of the set {x : ‖x‖ = 1}, f(x)
has a minimum over the set ‖x‖ = 1. Letting x1 with ‖x1‖ = 1 be such a minimizer,
c1 ≡ f(x1) > 0. Now consider any x ∈ C with ‖x‖ ≥ 1. Define q ≡ 1/‖x‖ so 0 < q ≤ 1,
and let x2 ≡ qx. Then ‖x2‖ = 1 and so f(x2) ≥ c1. By convexity,

f(x) = (qf(x) + (1− q)f(0))/q ≥ f(qx+ (1− q)0)/q = f(x2)/q ≥ c1/q = c1‖x‖. (30)

Therefore, with c1 positive, f(x) ≥ c1‖x‖ ≥ c1‖x‖ − c1 when ‖x‖ ≥ 1. When ‖x‖ < 1,
f(x) ≥ 0 ≥ c1‖x‖ − c1. Taking c∗0 = −c1 proves the result.

The constants c∗0 and c1 can be chosen independently of p by letting c∗0 and c1 > 0
be values that work for L1 since ‖η‖1 ≥ ‖η‖p for all p.

Appendix B: Preliminaries for Posterior Propriety

The following terminology, notation, and results are used repeatedly.

Two norms Lp and Lq on R
r will be termed “norm-equivalent” if and only if there

exist constants 0 < c2, c3 such that c2‖v‖p ≤ ‖v‖q ≤ c3‖v‖p for any vector v, and then
we write ‖v‖p ∼= ‖v‖q.

The easy-to-prove results in Lemmas 2 and 3 are stated here to streamline language
and various proofs. Additional lemmas follow.

Lemma 2.

1. If a and b are orthogonal, i.e., a′b = 0, then for any three norms Lp, Lq,
and Ls with 1 ≤ p, q, s ≤ ∞, ‖a + b‖s ∼= ‖a‖p + ‖b‖q. More generally,
‖a+ b‖s ∼= ‖Γ1a‖p + ‖Γ2b‖q where Γ1 and Γ2 are orthogonal matrices that need
not be mutually orthogonal.

2. Let U be an N × du matrix of rank m, m ≤ du ≡ r. Let γ ∼ Lebesgue, i.e.,
uniformly, on R

r. Then for any fixed vector v ∈ R
r, η ≡ U(γ + v) has Lebesgue

measure on the m-dimensional range space of U .

Lemma 3. The MGF of a random vector X = (X1, . . . , Xm)′ exists iff the MGF
of ||X||p exists (any Lp-norm, p ≥ 1) iff the marginal MGF exists for every Xj

(1 ≤ j ≤ m) iff the MGF of |Xj | exists for every Xj.

Lemma 4.

1. Let {Zj}Nj=1 be iid N(0, 1) and t1, . . . , tN > 0. Then

E(exp(−
N∑
j=1

tj |Zj |)) ≤ 2NE(exp(−
N∑
j=1

t2jZ
2
j )) = 2N/

N∏
j=1

(1 + 2t2j )
1/2. (31)
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2. More generally, if Y ∼ N(0,Σ) in N -dimensions (Σ not necessarily of full rank),
then for any c > 0

E(exp(−c||Y ||1)) ≤ E(exp(−c||Y ||2)) ≤ 2N/
√
|IN + (2c2/N)Σ|. (32)

Proof. For Result 1, first assume N = 1 and denote Mill’s ratio as M(z) ≡ Φ(−z)/φ(z),
the N(0, 1) CDF divided by its density. As is well-known, M(z) < 1/z for z > 0. The
identity E(exp(−t1|Z1|)) =

√
2/πM(t1) follows easily by completing the square in the

defining integral and simplifying. Because E(exp(−t1|Z1|)) ≤ 1 and M(t1) < 1/t1,

E(exp(−t1|Z1|)) ≤ min
{
(2/π)1/2/t1, 1

}
≤ 2/

√
1 + 2t21 = 2E(exp(−t21Z

2
1 )). (33)

When N > 1, (31) holds since

E(exp(−
N∑
j=1

tj |Zj |)) ≤ 2N
N∏
j=1

E(exp(−t2jZ
2
j )) = 2N/

N∏
j=1

(1 + 2t2j )
1/2. (34)

To prove Result 2, let D2
t be the diagonal matrix of eigenvalues of Σ (Dt ≡

diag(t1, . . . , tN )), so Σ = ΓD2
tΓ

′ for Γ an orthogonal matrix. Then Γ′Y ∼ DtZ, with
Z ∼ N(0, IN ). Since ‖Y ‖2 ≤ ‖Y ‖1,

E(exp(−‖Y ‖1)) ≤ E(exp(−‖Y ‖2)) = E(exp(−‖DtZ‖2)) (35)

≤ E(exp(−
N∑
j=1

|Zj |tj/
√
N)) ≤ 2N/|IN + (2/N)Σ|1/2 (36)

using (34). This proves (32) for c = 1, with other values of c > 0 given by replacing Y
by cY .

Lemma 5. Let T ≥ 0 be a symmetric N × N matrix and Q be an N × N projection
matrix of rank s. Denote du ≡ N − s. Then for all such Q

1. |IN +QT | ≥
∏s

j=1(1 + δj), where the δj are the s smallest eigenvalues of T .

2. In the special case when T is block diagonal with A appearing k times (A ≥ 0,
dx × dx) and with zeroes elsewhere, |IN +QT | ≥ |Idx +A|k−du .

Proof. It suffices to prove this for T a diagonal matrix because more generally if T =
ΓDΓ′ where Γ is orthogonal and D is diagonal then

|IN +QΓDΓ′| = |IN + Γ′QΓD| = |IN +Q∗D| (37)

where Q∗ ≡ Γ′QΓ is a projection matrix with the same rank s as Q.

Assume without loss of generality that the diagonal elements of D are increasing,
i.e., 0 ≤ δ1 ≤ δ2 ≤ · · · ≤ δN . For j = 1, . . . , N define (mj)

2 ≡ max(δs − δj , 0)/(1 + δs)
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and M ≡ diag(m1, . . . ,mN ) ≥ 0. Define D0 ≤ D as D0 ≡ δsIN − (1+ δs)M
2 ≤ δsIN .

Write Q∗ = GG′, where G is orthogonal such that G′G = Is. Then

|Is +G′DG| ≥ |Is +G′D0G| (38)

= |(1 + δs)Is − (1 + δs)G
′M2G| (39)

= (1 + δs)
s|Is −G′M2G| (40)

= (1 + δs)
s|IN −MGG′M | (41)

≥ (1 + δs)
s|IN −M2| (because GG′ = Q∗ ≤ IN ) (42)

= (1 + δs)
s

N∏
j=1

(1−m2
j ) =

s∏
j=1

(1 + δj), (43)

proving Result 1.

Result 2 is trivial (and not useful) if k ≤ du. With k > du, let T ∗ (N × N) have
Ik−du ⊗ A (A ≥ 0, dx × dx) in its upper left block and zeroes elsewhere so that A
appears du fewer times in T ∗ than it does in T . With this, the ordered eigenvalues of
T ∗ are dominated by the ordered eigenvalues of QT since T ∗ has zeroes in place of at
least the du largest eigenvalues of T . Then

|IN +QT | ≥ |IN + T ∗| = |Idx +A|k−du , (44)

proving Result 2.

Lemma 6. Let M1 and M2 be diagonalizable m×m matrices that commute (M1M2 =
M2M1), and let P 1 and P 2 be complementary r × r symmetric orthogonal projection
matrices with ranks r1 and r2, where r = r1 + r2. Then

|M1 ⊗ P 1 +M2 ⊗ P 2| = |P 1 ⊗M1 + P 2 ⊗M2| = |M1|r1 |M2|r2 . (45)

Proof. Since M1 and M2 can be diagonalized simultaneously (guaranteed by their
commutativity; see Horn and Johnson (1985, p. 50)), write M j = HDjH

−1, with Dj

diagonal and H non-singular. Then

M j ⊗ P j = (H ⊗ Im)× (Dj ⊗ P j)× (H−1 ⊗ Im). (46)

Insertion into |M1 ⊗ P 1 +M2 ⊗ P 2| and simplification gives

|M1 ⊗ P 1 +M2 ⊗ P 2| = |D1 ⊗ P 1 +D2 ⊗ P 2|. (47)

Use these steps again, now for P j = GI∗
jG

′,G orthogonal, I∗
j a diagonal projection ma-

trix with rj unit diagonal entries and zeroes elsewhere so that I∗
1+I∗

2 = Ir. Simplifying
further gives

|M1 ⊗ P 1 +M2 ⊗ P 2| = |D1 ⊗ I∗
1 +D2 ⊗ I∗

2| = |D1|r1 |D2|r2 = |M1|r1 |M2|r2 . (48)

The above approach, reapplied to the reversed determinant, gives

|P 1 ⊗M1 + P 2 ⊗M2| = |I∗
1 ⊗D1 + I∗

2 ⊗D2| = |M1|r1 |M2|r2 . (49)
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Appendix C: Proofs of Theorems

This appendix contains proofs of the theorems that appear in the body of this paper.

Proof of Theorem 1. We prove finiteness of the posterior MGF of η (or equivalently
of γ), from which posterior propriety follows. From Lemma 3 it suffices to prove finite-
ness of the MGF of ||η||, or alternatively of ||γ||, because, with U of full rank, η and γ
are norm-equivalent. Theorem 6 and its proof assure that c0, c3 > 0 exist for which

exp(t′η)L(η|y) ≤ exp(||t||2||η||2)L(η|y) ≤ c0 exp(−c2||η||2) ≤ c0 exp(−c3||γ||1) (50)

if ||t||2 is near 0 and with c3 adjusting c2 (Theorem 6) to account for the norm equiva-
lence of η and γ and norm equivalence of the L2-norm and the L1-norm. With this

∫
exp(t′η)L(η|y)dγ ≤ c0

∫
· · ·

∫
exp(−c3

du∑
i=1

|γi|)dγ1 · · · dγdu . (51)

The right term is finite because each individual integral in the product of integrals is
that of a double exponential distribution.

Proof of Theorem 2. Because of norm equivalence, it suffices to prove Result 1 for the
L1-norm of η, ‖η‖1. Defining P ≡ IN − Q = U(U ′U)−1U ′, write η as the sum of
two orthogonal components η = Uγε + QXε where γε ≡ γ + (U ′U)−1U ′Xε. Since
QU = 0, then, by Lemma 2, ‖η‖1 ≥ c4(‖Uγε‖1 + ‖QXε‖2), c4 is determined by norm
equivalence, so that for the middle term in (17)

E(exp(−c‖η‖1)) ≤ E(exp(−c c4||Uγε||1))E(exp(−c c4||QXε||2)). (52)

Conditioning on ε and using Lemma 2 Result 2, α ≡ Uγε follows Lebesgue mea-

sure in the r-dimensional range space of U . Hence, αj ∼ Lebesgue in one dimension,
‖α‖1 =

∑r
j=1 |αj |, and

∫∞
−∞ exp(−c c4|αj |)dαj = 2

c c4
for each j = 1, . . . , r. Thus,∫∞

−∞ · · ·
∫∞
−∞ exp(−c c4‖Uγε‖1)dγε = ( 2

c c4
)r < ∞ where dγε refers to Lebesgue mea-

sure (by Lemma 2). With this, in the right side of (52) E(exp(−c c4||Uγε||)) = ( 2
c c4

)r.

It remains, with ε ∼ NK(0,Λ), to show that a positive constant multiple of the deter-
minant term in (17) exceeds E(exp(−c c4‖QXε‖2)). This follows by applying Lemma 4
Result 2 to QXε with Σ ≡ QXΛX ′Q and because |IN + (2c24c

2/N)QXΛX ′Q| =
|IN + (2c24c

2/N)QXΛX ′| = |IK + (2c24c
2/N)X ′QXΛ|. This proves Result 1, upon

setting c3 = 2c24/N and choosing c2 = 2N (2/c4)
r.

The posterior distribution is proper if the right side of (17) integrates finitely with
respect to the prior distribution on Λ, proving Result 3. Because the determinant in
(17) is bounded above by unity, the right side of (17) always is bounded above by c2/c

r

and the expectation is finite if Λ has a proper prior, yielding Result 2.

Proof of Theorem 3. When π(A) is proper, the prior distribution on Λ is proper and
Result 1 follows from Theorem 2 Result 2.

To prove that (18) in Result 2 yields posterior propriety, assume k > du and recall
thatX is block diagonal (Xh), h = 1, . . . , k, so thatXΛX ′ is block diagonal (XhAX ′

h)
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and the eigenvalues of XΛX ′ are those separately of the XhAX ′
h. Since every Xh is

of full column rank dx, X
′
hXh ≥ c5Idx for some c5 > 0, for all h = 1, . . . , k. With this,

for all h, the non-zero eigenvalues of XhAX ′
h are those of A1/2X ′

hXhA
1/2, which is

at least c5A. Define T as the N × N block diagonal matrix which has Ik ⊗ A in its
upper left block and zeroes elsewhere (so that there are N − K zeroes on the main
diagonal where K = k ·dx). With this, XΛX ′ and T have the same number of non-zero
eigenvalues and the non-zero ordered eigenvalues of XΛX ′ are greater than or equal
to the non-zero ordered eigenvalues of c5T .

The projection Q = IN − U(U ′U)−1U ′ has rank s ≡ N − du > 0 so that for any
b > 0,

|IK + b(X ′QX)Λ| = |IN + bQ(XΛX ′)| ≥ |IN + bc5QT | ≥ min
Q∗

|IN + bc5Q
∗T |, (53)

where Q∗ is an arbitrary projection with the same rank as Q.

Result 2 of Lemma 5 provides a lower bound for the right side of (53). With this,

|IK + b(X ′QX)Λ| ≥ |Idx + bc5A|k−du . (54)

Thus from (17) and (54) and with b = c3c
2 and c4 = c3c5 > 0,

E(exp(−c‖η‖)) ≤ (c2/c
r)

∫
(|Idx + c4c

2A|−
k−du

2 )π(A)dA. (55)

Since an ENB exists for the likelihood for at least one c > 0 (sufficiently small), c2/c
r > 0

is finite and (18) holds. This proves Result 2.

Under the conditions of Theorem 3 Result 3 the following integral must be finite:∫ |A|a

|Idx +A| 2ao+k−du
2

dA. (56)

The form in (56) is that of a multivariate Fb1,b2 distribution,

p(F )dF ∝ |F |
b1
2

|Im + F | b1+b2
2

dF

|F | 1+m
2

, (57)

where F is an m×m symmetric positive definite matrix. This density integrates finitely
if and only if b1, b2 > m − 1. Thus, by comparing lines (56) and (57), m = dx, b1 =
2a + dx + 1, and b2 = 2a0 + k − du − 2a − dx − 1 so that posterior propriety requires
a > −1 and k − du > 2(a− a0) + 2dx.

Proof of Theorem 4. With Z of full rank and by norm equivalence, it is equivalent to
prove finiteness of the posterior distribution as a function of η or as a function of β∗.
With this, Result 1 follows from Result 2 of Theorem 2.

For Result 2, apply Theorem 2 to (20) with η = β∗ to find that for some c > 0 there
exists c2, c3 > 0 (not depending on c and A) such that

E(exp(−c‖β∗‖1)) ≤ (c2/c
r)× |Ik·dz + c3c

2(Idz ⊗QW )(A⊗ Ik)|−1/2 (58)

where QW = Ik − PW and PW is the projection onto the column space of W . Now,
with b = c3c

2,
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|Idz·k + b(Idz ⊗QW )(A⊗ Ik)| = |Idz·k + bA⊗QW | (59)

= |Idz ⊗ (PW +QW ) + bA⊗QW | (60)

= |Idz ⊗ PW + (Idz + bA)⊗QW | (61)

= |Idz + bA|k−dw (62)

where the last line holds by Lemma 6. Equation (62) provides the general case upon
integrating over π(A).

For Result 3, the proof of GLMM Theorem 3 provides posterior propriety for the
prior in (14) if k > 2dz + dw + 2(a− a0) and if a > −1.

Proof of Theorem 5. Since the ENB holds at c, it holds for all values less than c. Finite-
ness of the expectation holds for all values greater than c∗. Hence, both hold for all values
between c∗ and c inclusive.

For Result 1, by Lemma 3 the posterior MGF of η exists iff E(exp(t||η||)) < ∞ for
some t > 0 (t ≤ 0 need not be addressed, by monotonicity). With p(ε,γ,Λ) the prior
density on ε, γ, and Λ, the following holds up to a constant multiple

E(exp(t||η||)) ≤
∫

exp(t||η||) exp(−c||η||)p(ε,γ,Λ)dεdγdΛ (63)

= E(exp(−(c− t)||η||)). (64)

This is finite if t > 0 is chosen so close to 0 that c− t > c∗. Therefore, η has an MGF.

To prove Result 2, with C ≡ [U ,X] of full rank and (γ′, ε′)′ ≡ φ, ||η|| = ||Cφ|| ≥
b||φ||, where b2 is the smallest eigenvalue of C ′C. With this and t > 0 sufficiently
small, E(exp(bt||φ||)) ≤ E(exp(t||η||)) < ∞ so that φ has an MGF by (63) and (64).
Therefore, ε and γ both have MGFs.

For Results 2 and 3 about Λ and A, since ε has an MGF, for each j = 1, . . . ,K
then E(exp(tεj)) < ∞ for small t near 0. Thus with εj ∼ N(0, λjj), E(exp(tεj)) =
E(exp(t2λjj/2)) < ∞, so that λjj has an MGF for all j. Hence, MGFs exist for tr(Λ) =∑

j(λjj), for all eigenvalues of Λ, and therefore for
∑

i,j |λij |. The generalized variance
of Λ has an MGF because the geometric mean of Λ’s eigenvalues is dominated by the
arithmetic mean, tr(Λ)/K. In the special case Λ = Ik ⊗ A (GLMMs), these moment
results are inherited by A.
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